= 2
cnn \’ \ University of Pennsylvania

"% | Libraries |
UNIVERSITY of PENNSYLVANIA SC h o) I a rIyCO mmons

General Robotics, Automation, Sensing and

Lab Papers (GRASP) Perception Laboratory

6-2008

Solving Stereo Matching Problems Using Interior Point Methods

Camillo J. Taylor
University of Pennsylvania, cjtaylor@cis.upenn.edu

Arvind Bhusnurmath
University of Pennsylvania, bhusnur4@seas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/grasp_papers

Recommended Citation
Camillo J. Taylor and Arvind Bhusnurmath, "Solving Stereo Matching Problems Using Interior Point
Methods", . June 2008.

Published in:

Arvind Bhusnurmath and Camillo J. Taylor. Solving Stereo Matching Problems Using Interior Point Methods. In
Proceedings of the Fourth International Symposium on 3D Data Processing, Visualization and Transmission,
3DPVT, Stefan Gumhold, Jana Kosecka, Oliver Staadt, eds. June 2008. pp. 321-329.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/grasp_papers/49
For more information, please contact repository@pobox.upenn.edu.


https://repository.upenn.edu/
https://repository.upenn.edu/grasp_papers
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp
https://repository.upenn.edu/grasp_papers?utm_source=repository.upenn.edu%2Fgrasp_papers%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/grasp_papers/49
mailto:repository@pobox.upenn.edu

Solving Stereo Matching Problems Using Interior Point Methods

Abstract

This paper describes an approach to reformulating the stereo matching problem as a large scale Linear
Program. The approach proceeds by approximating the match cost function associated with each pixel
with a piecewise linear convex function. Regularization terms related to the first and second derivative of
the disparity field are also captured with piecewise linear penalty terms. The resulting large scale linear
program can be tackled using interior point methods and the associated Newton Steps involve matrices
that reflect the structure of the underlying pixel grid. The proposed scheme effectively exploits the
structure of these matrices to solve these linear systems efficiently.

Comments
Published in:

Arvind Bhusnurmath and Camillo J. Taylor. Solving Stereo Matching Problems Using Interior Point
Methods. In Proceedings of the Fourth International Symposium on 3D Data Processing, Visualization
and Transmission, 3DPVT, Stefan Gumbhold, Jana Kosecka, Oliver Staadt, eds. June 2008. pp. 321-329.

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/grasp_papers/49


https://repository.upenn.edu/grasp_papers/49

Solving Stereo Matching Problems using Interior Point Methods
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Abstract

This paper describes an approach to reformulating the
stereo matching problem as a large scale Linear Program.
The approach proceeds by approximating the match cost
function associated with each pixel with a piecewise lin-
ear convex function. Regularization terms related to the
first and second derivative of the disparity field are also
captured with piecewise linear penalty terms. The result-
ing large scale linear program can be tackled using inte-
rior point methods and the associated Newton Steps involve
matrices that reflect the structure of the underlying pixel
grid. The proposed scheme effectively exploits the structure
of these matrices to solve these linear systems efficiently.

1. Introduction and Related work

Stereo matching is one of the classic problems in com-
puter vision. Like many other problems in the field, the
stereo problem is often rephrased as an optimization prob-
lem where the goal is to minimize an objective function
which models the costs associated with matching pixels at
various disparities and includes terms that seek to reward
overall ’smoothness’ (except at occlusion boundaries).

Currently, these optimization problems are often solved
using discrete optimization techniques such as Belief Prop-
agation or Graph Cuts. In this work we seek to demon-
strate that continuous convex optimization techniques can
also serve as an effective tool for solving these kinds of op-
timization problems.

More specifically we describe an approach to tackling
these types of optimization problems wherein the origi-
nal objective function is approximated by a convex variant
which can be solved using interior point methods. The re-
sulting approach has a number of useful features. Firstly
it allows us to naturally handle problems, like stereo where
the decision variables are continuous without requiring any
intermediate quantization. Secondly, we are able to nat-
urally incorporate penalty terms involving more complex
functions of the disparity values, such as a Laplacian term
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which allows us to better model slanting surfaces. Recent
work by Woodford et al. [20] demonstrates the need for
such terms. Thirdly this formulation involves solving a set
of convex optimization problems with all of the guarantees
that that entails.

This paper describes an approach to constructing a con-
vex approximation to the stereo problem and shows how to
exploit the structure of the resulting problem to effectively
minimize an objective function involving hundreds of thou-
sands of continuous variables.

An excellent survey of the methods of doing stereo was
published in Scharstein and Szeliski’s taxonomy of stereo
algorithms [16]. Currently the standard method of testing
these algorithms is by running them on the Middlebury data
sets [17]. The website vision.middlebury.edu/stereo keeps
track of the algorithms that perform well on these data sets.

As per [16] methods of solving stereo generally fall into
either a local framework in which individual pixels or pixel
windows are matched across images or global frameworks
wherein a global energy function needs to be minimized.

Yoon and Kweon [25] introduce a new similarity mea-
sure that is based upon the central assumption that a pixel
in the left image and a pixel in the right image that look
alike and happen to be distinctive in each image, are more
likely to be a match pair. Among local strategies this is the
one that performs best.

Almost all of the top ranked algorithms on the Middle-
bury data set define a global energy function that is mini-
mized for finding the disparities. The methods that are been
successful in solving the data sets are dynamic program-
ming, belief propagation and graph cuts.

Dynamic programming optimizes an energy function
along a direction, which usually is along each of the scan-
lines. The most successful employment of this method is
that by Hirschmuller in [9, 10] wherein the energy func-
tion is optimized in 8 or 16 different directions in what he
terms a Semi Global Matching(SGM) method. Cues from
segmentation are used for handling untextured areas. Seg-
mentation based ideas are used heavily in the layered ap-
proaches (for example [2, 26]).



The current top ranked algorithms all use belief propaga-
tion. Usually the belief propagation is done using [7]. Sun
et al. [19] use a symmetrical energy function which takes
into account disparity maps as well as occlusion maps from
both images. Klaus et al. [12] use oversegmentation and ro-
bust plane fitting through the segments to come up with a
set of candidate disparity planes. Belief propagation is used
to solve an energy function on the segments. An iterative al-
gorithm using hierarchical belief propagation is proposed in
Yang et al. [21] wherein the data term of the energy function
is re-weighted in regions which are occluded or unreliable.

So far linear programming has not figured as a method
of solving the energy minimization problem. Yanover et al.
[23] did a comparative study on the usage of belief prop-
agation and linear programming via Chekuri et al. [5] for
solving energy minimization and their conclusion was that
the linear programming module is usually infeasible for the
energy minimization due to the extremely large number of
variables involved. Our goal therefore is to show that linear
programming is indeed a possible feasible approach with
efficiency and can therefore be treated as an alternative to
graph cuts [4, 4], belief propagation and the current variant
of belief propagation - TRW [13]. The most successful use
of linear programming for Energy minimization is that by
Komodakis et al. [ 1 5] wherein duality theory is used to per-
fom an efficient primal dual optimization involving graph
cuts, a combinatorial technique. Our method concentrates
on solving the problem in the continuous domain and there-
fore has the potential to be a better fit for problems like
stereo.

While stereo has not seen the successful usage of lin-
ear programming, it is worthwhile noting that a problem
domain like motion has been solved by linear program-
ming [11, 1]. The work by Jiang et al. [| 1] in matching
feature points is similar to ours in that the data term for each
pixel is approximated by a convex combination of points on
the lower convex hull of match scores. However, this re-
duces the formulation into optimization for the interpolants
associated with these convex hull points. Also this method
uses the simplex method for solving the LP. By using inte-
rior point methods we are able to exploit the structure in a
more efficient manner.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the novel LP formulation. Section 3 lays
out the algorithm and Section 4 lists the key decisions to be
made while solving the LP. Results on the Middlebury data
set are provided in section 5. We conclude in Section 6 and
describe future work in 7.

2. Formulation of the linear program

Assume a pair of stereo images labeled L and R for left
and right image respectively are given. The sizes of the im-
ages are W x H and let N = W H denote the total number

Figure 1. Example of the optimization in 1 dimension. The blue
plot shows ground truth disparities along a scanline and the green
shows the solution obtained by our interior point method.

of pixels that have to labeled with disparities. In the sequel
we describe an approach to casting this labeling problem as
an energy minimization problem that can solved via linear
programming. The formulation will be explained in a 1 di-
mensional setting (per scanline) for ease of understanding.
It is easy to extend it to include smoothness in both vertical
and horizontal directions which is done during our actual
implementation of the algorithm.

Assume a labeling d is given. Given a pixel location ¢ we
will let d; will denote the corresponding disparity value. An
energy function is needed that will quantitatively evaluate
this labeling. Referring to Figure 1 which shows the ground
truth disparities of a particular scanline in blue our goal is
to get a solution which is close to it. Our current effort is
shown as the dashed green plot.

As is the case with most energy minimization formula-
tions, this involves the creation of a data term and a smooth-
ness term. Let Eg,, be the data term. We split the smooth-
ness term into energy related to disparity gradient - Fgq
and energy related to disparity Laplacian - Ej,,. This is in
order to account for objects that are planar but not fronto-
parallel. We wish to allow for disparities that change in
a linear manner over the image which is achieved by in-
corporating a penalty term that is related to the Laplacian.
Then the energy of the labeling along any scanline can be
expressed as

w W1
E(d) = Z Faua(d;) + Z Egraa(di, dig1)
=1 i=1
W-1
+ Z Erop(di, di—1,diy1) (1)

=2

The additional term of the Laplacian in the energy func-
tion is a significant difference from most conventional al-
gorithms which take into account only pairwise interactions



of the pixels. The notion of smoothness can be thus be in-
corporated in different ways in this algorithm. The gradient
term appeals to a piecewise constant model of the dispar-
ity solution while the Laplacian term appeals to a piecewise
linear model of the solution.

For the gradient based energy term a natural choice is
just |d; — d;11], but to allow for small changes in disparity
we choose

0 if |dl —d,’+1| > €
wg, (|d; — dit1] —€)  otherwise
2
To take into account disparity discontinuities this penalty
term gets weighted differently at different pixel locations.
wy, is the weight corresponding to pixel ¢.
For the Laplacian based energy term we just use the dis-

crete approximation of the Laplacian.

Egraa(diydip1) = {

Erp(diydiyr,di—1) = wi, |2d; — di—y — dipa|  (3)

Again in a manner similar to the gradient term, w;, rep-
resents the weight of this energy term for pixel <.

The formulation therefore currently incorporates terms
involving absolute values of the variables. All these terms
can be removed by adding variables and constraints as
shown in [3]. Define a set of variables y, as proxies for
the gradient terms. To capture the effect of 2 introduce the
following constraints

Yg; > di —dit1 — €
Ygs > dig1 —d; —¢€
O S ygi S GMax (4)

Similarly introduce variables y; as proxies for the Lapla-
cian terms. To capture the effect of 3

Y, > —di—1 +2d; —dit1
Y, > di—1 —2d; + digq
0 <w, < Imax ®)

Thus at this stage, the only component of the energy
function that is not convex is the data term. We address
this issue in the following subsection.

2.1. Convex approximation of the data term

Conventionally in stereo the data term associated with
assigning the label d to a pixel (zr,yr) is given by some
function of the intensity differences between a patch around
L(zr,yr) and a patch around R(zf — d,yr). Assume we
have a discrete set of potential disparity values dy, < ... <

6 ‘ ‘ ‘ ‘ ‘ ‘
10 15 20 25 3%|spar|ty35 40 45 50 55
Figure 2. Example of the proposed convex approximation of a
score function. The blue plot is that of the scores corresponding to
different disparities for a particular pixel and the brown line seg-
ments show the approximation. Essentially a lower convex hull is

computed.

dmax. Corresponding to each disparity value d; we obtain a
score that indicates the likelihood of the pixels matching up.
Given these scores, the disparity value that should be cho-
sen based only on this information is the one that provides
the minimum score. Our aim is to lower bound the score
values of each pixel with a continuous, convex function of
the disparity.

To do this we construct a piecewise linear function in a
manner similar to computing the convex hull of the entries
in the score array as shown in Figure 2.

Note that we do not require the disparity values in the
(disparity, score) pairs to correspond to integral disparity
values. This allows us to easily incorporate subpixel dispar-
ity scores directly into the score function.

The constraints associated with the score values are that
they need to lie above the line segments. Let variable y,,,
be associated with the match score for pixel i. Assume
there are S; segments that approximate the score function
for the i*" pixel, then we have the following constraints cor-
responding to the match variables.

ajid; + by, j € {1,2,...5;}
Ym; < YMaz; (6)

Ym;
0

IN IV

where variables a;; and b;; represent the slope and inter-
cept for the jth segment. The data term Fq4,4, can now sim-
ply be written as a weighted sum of these y,, score values.
The weights are needed in order to take care of the occlu-
sions. Pixels that are occluded have no match and therefore
their match weights need to be 0. However, they still show
up in the gradient and Laplacian terms and through this pro-
cess, the background disparities usually get filled in.

Therefore the final formulation of the objective function
is



w W-1 W—-2
E(d) = Zwmyw + Z Wy, Yg; + Z wyy, (1)
=1 =1 =1

And this objective function is optimized under the
matching constraints of 6, the gradient constraints of 4 and
the Laplacian constraints of 5.

3. Using interior point method to solve the LP

The optimization problem in equation 7 can now be min-
imized using the interior point log barrier method [3]. The
linear programming problem can be stated more compactly
as

minw?®z

st Az <b ®)

where z is a vector formed by concatenating all of the
- . T
decision variables, * = [ d Ym Yg W ] , and w
is the vector formed by the corresponding weights, w =
T
[ 0 wy wyg w, ] .
The matrix A concatenates all of the linear constraints
and is given by

A, —In, 0 0

By 0 0 0

0 Bn 0 0

G 0o —Iv-1 0

A=| -G 0 —IW-1 0 )

0 0 B, 0

L 0 0 —JW=2

-L 0 0 —JW=2
| 0 0 0 B |

where By, B,,, By, B; correspond to the bounds on the
d, Ym, Yg, Y1 variables.

a1l 0 0
a21 0 0
0 0

as,1 0 0

0 ai12 0 0

0 a9 0 0

0 as,2 0 0

0 0 0

0 0 aim
0 0 :

L0 oo 0 agywm

The matrix I, is a sparse matrix with the same fill pat-
tern as A,,, but has 1s in place of the a;; entries.
G represents the gradient constraints

G=1|¢g . . (11)

L=| o o (12)

We now use interior point barrier method [3] to solve the
problem.

Let the Newton step direction be 6z = [6d 8y, 6y, 0y;]” .
Let S =b— Ax.

Then the Newton step involves solving

[ATdiag(S;2)Alox = g (13)

where diag(S; ?) is a diagonal matrix with the squared
inverse of each entry of S along the diagonal.

g=—tw— ATe (14)

where e is a column vector with each entry e; = 1/.5;.

Split g into 4 blocks corresponding to the columns of A.
9=19a 9n 95 a0 1"

It can be seen that AT diag(S; %) A takes on the following
form

Hy HL HI HT
H, D, 0 0
H, 0 D, 0 (15
H 0 0 D
where
Hy = Al DA, + BiD:By+G"DiG+L"Df L
H, = —-A'DiI,
Hy, = GD,
H = LD; (16)

and D;,D;,Df,Df,DthDl,DWDQ are all di-
agonal matrices.

Solve for 0y, dy, and dy; in terms of dd to get the fol-
lowing equation

(Hy— H.,D;,'H,, — H' D' H, — H] D; " Hy)6d

m-—m

= (9a— HL,D;'gm — H] D, gy — H' D gr) (17)



which can be written more concisely as

Hyod = gg (18)

This is the fundamental step of the whole algorithm and
needs to be done efficiently.

Let us examine the structure of H. H), contains scaled
versions of GTG, LTL and AL A,,. AT A,, is diagonal,
GG is tridiagonal and LT L is pentadiagonal. This means
that L7 L is the dominant contributor to the sparsity struc-
ture of the matrix in question. Therefore the main step of
the algorithm is just the solution of a system of symmetric
and positive definite pentadiagonal equations.

As noted before the actual implementation of the algo-
rithm involves terms in both horizontal and vertical direc-
tions. This results in block pentadiagonal systems which
have pentadiagonal blocks along the diagonal and diagonal
blocks on the off diagonal.

Essentially we have a structure that looks like

"A, BT Cf 0 0 ]

B, - 0

c, 05_2 (19)
0o . . B,
| 0 0 C,—o B,1 A,

where the A; are pentadiagonal and the B; and the C;
are diagonal.

Such structured matrices are ideal candidates for iterative
solvers like conjugate gradients [8]. Also by performing
incomplete Cholesky decomposition of these matrices in a
manner similar to [6], good preconditioning can be achieved
which significantly reduces the number of conjugate gradi-
ent iterations needed for convergence.

The algorithm for solving the optimization problem is
stated below in Algorithm 1.

4. Using the solution framework for Stereo

The first step in our stereo matching procedure is to com-
pute a correlation volume which encodes for each pixel the
costs associated with all legal disparities. For this pur-
pose we employed the Adaptive Matching Score method
described by Yoon and Kweon in [24]. In this implementa-
tion we used 33x33 windows and the following parameter
values vy, = 36, 7. = 7. Prior to computing the support
weights in each window, the color image was smoothed us-
ing a 5x5 median filter to enhance color homogeneity while
respecting image edges.

Once the match scores had been computed for the inte-
ger disparities, a quadratic fit was used in the vicinity of
local minima to establish subpixel offset and subpixel score

Algorithm 1 Calculate the optimal disparity(d) for the
problem in 8

1: choose an initial set of disparities and y,,, y, and ¥;

2: choose an initial ¢ value and a p value and set newton
decrement = oo

3: while ¢ <t,.x value do

4:  while Newton decrement is greater than a threshold

do

5 Compute the Hessian from equation 15

6: Compute the gradient (g) from equation 14

7: Compute dd from equation 18

8 Use dd to obtain §y,,,0y, and dy;.

9 Compute Newton decrement = g7 6

10: Compute the step size [ using line search

11: Update d, Yy, Yg, Y1 by 36d, B0Ym, B0yq and By,
respectively.

12:  end while

132 t=pxt

14: end while

values. This resulted in a set of (disparity, score) values for
each pixel where the disparity values are not all integral.

The convex approximation procedure described in sec-
tion 1 was then applied to the score function associated with
every pixel to produce a piecewise linear convex lower ap-
proximation for use in the optimization procedure.

The structure of the constraint system associated with
the LP is determined by these convex approximations and
the gradient and laplacian equations which are fixed.

What remains then is to specify the weights associated
with the match terms, w,, , the gradient terms and the lapla-
cian terms.

The match weights associated with each pixel should
represent the degree of confidence in that pixels match
score. The reasoning here is that pixels that are occluded
or otherwise suspicious should have low w,, values reflect-
ing the fact that their match costs should be devalued while
the weights pixels whose disparities are more certain should
be enhanced.

We begin by using the initial disparity estimates pro-
vided by the Yoon and Kweon matcher to decide on which
pixels appear reliable by using a simple left right check. Ad-
ditionally, we use the disparity discontinuities found in the
right image to predict occlusions in the left image and vice
versa in a manner similar to the approach described in Sun
etal. [19].

The resulting match weights w,,, essentially represent an
approximation for the occluded regions in the image. Fig-
ure 3 shows what these match weight images look like for
various images.

The weights associated with the gradient and laplacian
term are computed by considering the color differences be-
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Figure 3. Match weights being used in the algorithm

tween neighboring pixels. Similar weighting terms are used
in most modern stereo matching algorithms. In this partic-
ular case the weight associated with the difference between
disparity i and disparity i+1 is computed as follows

Wyi = s4 exp(f(Aci/a)Q) (20)

Where Ac; represents the Euclidean difference between
the colors associated with pixel ¢ and pixel ¢ + 1 in Lab
space.

The weight associated with the Laplacian term y;; >
|di—1 — 2d; — d;41]| is computed as follows

Wi = s exp(—((Aci,l/U)2 + (ACz‘/U)2)/2) @2y

Note that the Laplacian weight considers the difference
between pixel ¢ and ¢ — 1 as well as the difference between
pixels 4 and ¢ + 1. In this implementation the parameter
values were set as follows s, = 1,5, = 2,0 = 6. Once
again the image is smoothed with a 5x5 median filter before
the color differences deltaic are computed.

5. Results

The proposed method was applied to the Middlebury
data set and the results are summarized in figure 4. The first
two columns show the images and ground truth disparities
respectively while the last two columns show the results of
our implementation of the Adaptive Support weight method
which is used to construct the correlation volume and the fi-
nal results of the optimization procedure.

We also show the pixels that have errors exceeding a 0.5
pixel threshold in figure 5. Note that this is the strictest
possible threshold in the Middlebury dataset.

The entire procedure was implemented in Matlab and the
time required to perform the LP optimization was 9 minutes
on a Intel Core 2Duo system with 2GB of memory. During
this procedure the system performed 40 Newton iterations
where each step took approximately 13.4 seconds. Again
the vast majority of the computational effort is spent in-
verting the sparse system in equation 18. As is typical of

a barrier method, the system converges to an answer quite
rapidly.

Table 1 shows the percentage of erroneous pixels with a
0.5 pixel threshold and compares it against other state of the
art methods. It also shows the improvement we get by using
our method on top of our implementation of the Yoon and
Kweon matcher.

6. Conclusion

In this paper we have described a novel approach to
employing convex optimization methods to computer vi-
sion problems. The approach proceeds by approximating
the original energy function with a piecewise linear convex
lower approximation and then tackling the resulting convex
problem.

There are two main observations underlying this ap-
proach. The first is that the proposed convex functions pro-
vide a reasonable model of the true objective function in
most cases and effectively capture the ambiguities inherent
in the data. The second is that the Hessian matrices associ-
ated with the resulting optimization problems have special
structure which mirrors the clique structure of the under-
lying objective function. By exploiting this structure we
are able to effectively solve problems involving hundreds
of thousands of variables. Problems that were previously
beyond the reach of generic LP solvers

We have demonstrated this approach in the context of
stereo vision and have described results obtained by apply-
ing this method to standard data sets. However, the ap-
proach is quite general and could be applied to a number
of problems including motion estimation, homography esti-
mation and image deformation estimation.

7. Future Work

There are a number of directions that could be taken to
further improve the results on the given data sets. The cur-
rent system performs a single pass to arrive at the final re-
sult. One can imagine a system that proceeds in several
rounds where the results of one round are used to refine the
weights used in the next round.



Figure 4. Results on the Middlebury data set. The first column shows the ground truth, the second shows the results obtained by us using

Yoon and Kweon Adaptive weighting scheme [24]. The cost volume obtained from this algorithm is sent in as input to our optimization
scheme and the final result after the optimization is shown in column three.
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Figure 5. Bad pixels with a 0.5 threshold
Other methods make use of explicit color segmentations

and plane fitting methods. These approaches are particu-
larly effective on this data set where planar surfaces pre-

dominate. This type of analysis could easily be incorpo-
rated into the overall system. Explicit segmentations could
also serve to improve performance on and around occlusion



Table 1. Our place in the Middlebury evaluation table with a 0.5 pixel error threshold. Please note that the row corresponding to Adaptive
weighting consits of scores that we get upon implementing the algorithm by ourselves and hence are not completely in agreement with

scores in [24]

Tsukuba Venus Teddy Cones
nonocc | all | disc | nonocc | all | disc | nonocc | all | disc | nonocc | all | disc

SubPixDoubleBP [22] 8.78 945 | 149 0.72 1.12 | 5.24 10.1 164 | 21.3 8.49 14.7 | 16.5

C-SemiGlobal [10] 13.9 14.7 | 18.9 33 3.82 | 109 9.82 17.4 | 22.8 5.37 11.7 | 12.8
ImproveSubPix 8.96 9.66 | 16.2 4.62 541 | 16.9 11.0 17.8 | 24.1 4.90 10.8 | 12.2
OverSegBP [26] 7.75 8.17 | 13.8 4.33 473 | 16.8 13.2 19.3 | 27.5 6.53 12.6 | 14.0
SemiGlob [9] 134 14.3 | 20.3 4.55 5.38 | 15.7 11.0 18.5 | 26.1 4.93 12.5 | 135
GenModel [18] 7.89 10.0 | 18.5 4.59 6.03 | 23.5 14.8 22.8 | 31.8 10.2 20.2 | 19.0
LP 18.7 19.3 | 20.8 3.0 3.71 | 18.8 13.5 19.2 | 29.7 9.57 16.2 | 20.3

Adaptive Weight (our) 19.8 21.4 | 18.6 3.67 5.28 | 16.9 14.0 229 | 28.0 9.24 19.5 | 18.3
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bound [12] A.Klaus,M.S dK.K S based
While our Matlab implementation does a reasonable job matching using belief propagation and a self-adapting dis-
of performing a large scale optimization on a quarter of a similarity measure. In /CPR, 2006. 2
million continuous variables, we feel that there is ample [13] V. Kolmogorov. .C.on.vergent tree-reweighted message pass-
room for further improvement in this area. More specif- ing for energy minimization. PAMI, 28(10), 2006_~ 2
ically the structure of equation 19 makes it particularly [14] V'.K.Olfnogor.ov and R. Zabih. What energy functions can be
amenable to parallel solution methodologies that could ex- minimized via graph cuts. PAMI, 26(2), 2004. 2
ploit the abundance of floating point performance afforded (151 N. K,OInOdale :and G Tziritas. A new framework for ap-
by GPUs and other parallel architectures proximate labeling via graph cuts. In /CCV, 2005. 2
’ [16] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. [JCV,
References 47:7-42,2002. 1

[1] M. Ben-Ezra, S. Peleg, and M. Werman. Real-time motion [17] D. Scharstein and R. Szeliski. High-accuracy stereo depth
analysis with linear programming. In /CCV, 1999. 2 maps using structured light. In CVFR, 2003. 1 )

[2] M. Bleyer and M. Gelautz. A layered stereo matching al- (18] C. Strecba, R'. Fraflser?s, and _L'_V' Gool.  Combined depth
gorithm using image segmentation and global visibility con- and outlier estimation in multi-view stereo. In CVPR, 2006.
straints. In ICIP, 2004. | 8 . _

[3] S. Boyd and L. VandenBerghe. Convex Optimization. Cam- (191 J. Suni Y.L S.B. Kang, and ,H'-Y' Shum. Symmetric stereo
bridge University Press, 2004. 3, 4 matching for occlusion handling. In CVPR, 2005. 2, 5

[4] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en- [20] O. Woodford, P. 'Torr, I Reid, and A. Fitzgibbon. Glf)bal
ergy minimization via graph cuts. PAMI, 23(11), 2001. 2 stereo reconstruction under second order smoothness priors.

. ' o i In CVPR, 2008. 1

[5] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. Approxima- . )

. . . . . [21] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister.
tion algorithms for the metric labeling problem via a new . ; . . . .
linear programming formulation. In SODA, 2001. 2 Stereo matching with color-weighted correlation, hierarchi-

[6] P.Concus, G. Golub, and G. Meurant. Block preconditioning ;?)l()gelzlef propagation and occlusion handling. - In CVPR.
for the conjugate gradient method. SIAM Journal of Scien- ) . . .
tific Computing, 6(1), 1985. 5 [22] Q. Yang, R. Yang, J. Davis, and D. Nister. Spatial-depth

’ ; ) lution f i s. I PR, 2007.
[7] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa- super resolution for range images .n CV, 007. 8 .
gation for carly vision. In CVPR, 2004. 2 [23] C. Yanover, T. Meltzer, and Y. Weiss. Linear programming
) N ) ) relaxations and belief propagation - an empirical study. Jour-
[8] g GkQIUban C. \t/ Il;oan. le/g(;tgleCOmp utations. The Johns nal of Machine Learning Research, 7:1887-1907, 2006. 2
Opins University tress, . . [24] K.-J. Yoon and I. S. Kweon. Adaptive support-weight ap-
[9] H. Hirschmuller. Accurate and efficient stereo processing
. . ; . proach for correspondence search. PAMI, 28(4), 2006. 5, 7,
by semi-global matching and mutual information. In CVPR, 3
. 2005‘. 1,h8 e S o denvi b [25] K.-J. Yoon and I. S. Kweon. Stereo matching with the dis-
[10) H. Hirschanullr. tereo viston i structured eavironments by tinctive similarity measure. Tn ICCV, 2007, |
consistent semi-global matching. In ’ t [26] C. L. Zitnick and S. B. Kang. Stereo for image-based ren-

[11] H. Jiang, M. Drew, and Z.-N. Li. Matching by linear pro-
gramming and successive convexification. PAMI, 29(6),
2007. 2

dering using image over-segmentation. IJCV, 75(1), 2007.
1,8




	Solving Stereo Matching Problems Using Interior Point Methods
	Recommended Citation

	Solving Stereo Matching Problems Using Interior Point Methods
	Abstract
	Comments

	tmp.1254928932.pdf.lpAXh

