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Abstract

Stochastic optimisation problems minimise expectations of random
cost functions. We use ’optimise then discretise’ method to solve stochas-
tic optimisation. In our approach, accurate quadrature methods are re-
quired to calculate the objective, gradient or Hessian which are in fact inte-
grals. We apply the dimension-adaptive sparse grid quadrature to approx-
imate these integrals when the problem is high dimensional. Dimension-
adaptive sparse grid quadrature shows high accuracy and efficiency in
computing an integral with a smooth integrand. It is a kind of generalisa-
tion of the classical sparse grid method, which refines different dimensions
according to their importance. We show that the dimension-adaptive
sparse grid quadrature has better performance in the optimise then dis-
cretise’ method than the ’discretise then optimise’ method.

1 Introduction

Stochastic optimisation is a useful tool in decision making and has many appli-
cations. The general form of an unconstrained stochastic optimisation problem
is

min
u∈U

E[h(u,W )], (1)

where W is a d dimensional random vector which is defined on the probabil-
ity space (Ω,B,P), B is the Borel σ-algebra and P is the associate probability
measure. U is a subset of Rn which contains all possible decisions.

If the random vector W subjects to a probability density p(w) on Rd the
objective is of the form

F (u) := E [h(u,W )] =

∫
Rd

h(u,w)p(w) dw =

∫
Rd

f(u,w) dw (2)

where f(u,w) = h(u,w)p(w).
There are two categories of approaches to solve the stochastic optimisation

problem. One is based on the idea of ’discretise then optimise’ while the other is
based on ’optimise then discretise’. When we apply the ’discretise then optimise’
method(DTOM) to solve the stochastic optimisation problem, it turns out to be
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the so called scenario generation method. The main idea of this kind of methods
is to first approximate the integrals (2) by a quadrature rule Q,

F (u) ≈ S(u) = Q(f(u, ·)). (3)

then use S(u) as a surrogate objective function and minimise it. The key of
the scenario generation method is to find a good approximation to the original
objective function. Monte Carlo(MC) and Quasi Monte Carlo(QMC) methods
are successfully used in scenario generation for many applications.There are also
many studies in convergence of the MC and QMC methods [8, 23, 18, 19, 24].
Recently, Michael, Sanjay and David developed the scenario generation via the
sparse grid method (SGSG) [3, 4]). The advantage of their approach, as shown in
their paper, is the SGSG method converges faster than these scenario generation
methods based on MC and QMC if the integrand in the objective function is
smooth enough. They also showed the epi-convergence of the SGSG. However,
there are also disadvantages of SGSG. When an integral is approximated using
a sparse grid quadrature, weights of some grid points can be negative. The
problem brought from these negative weights is that some important properties
of the objective function, e.g. convexity, are no longer kept [26]. The original
convex objective function can be replaced by a non-convex surrogate function
in SGSG method. This will bring more difficulties in computing the problem,
e.g. from convex optimisation to non-convex optimisation, and analyse the
performance of the whole algorithm.

Here we will study the alternative ’optimise then discretise’ method (OTDM)
and apply the idea to solve the stochastic optimisation problems. The basic idea
of our approach is to solve the system of equations

∇F (u) = G(u) = 0. (4)

There are many numerical methods can be used to solve the system of the non-
linear equations. In order not to be too general, we focus on the Newton-type
methods in this paper. For the integrals appear during the computation of the
gradient G, we will apply more sophisticated dimension adaptive sparse grid
method.

Newton’s method and its variants have been widely used in solving nonlinear
optimisation problems and nonlinear equations [16, 17]. Hessian matrix needs
to be computed in the original Newton’s method while most its variants such
BFGS and L-BFGS-B are gradient based method. The iterations of Newton-
type method can be written into the following form

up+1 = up −A−1
p G(up), p = 1, 2, . . . (5)

where Ap is an approximation to the Hessian Matrix. The convergence of the
Newton-type methods are well studied [16]. Newton’s method is quadrati-
cally convergent when the initial value is close enough to the minimiser. Other
Newton-type methods(Quasi Newton methods) have lower convergence rate
than Newton’s method [16], however, they are used more frequently in prac-
tical computation since the Hessian matrix is not required to be computed and
stored. These convergence theories can make sure the sequence {up} generated
by the (5) converges to a minimiser. However, in practice, one can only get a
perturbed sequence {ūp} rather than the ideal sequence up. This is because of
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the existence of both rounding errors and truncated errors during the approxi-
mation to the function value F , gradient G and the computation of iterations
(5). It is shown in [25, 16, 7] that if the error from an approximation of the
gradient G is sufficiently small, then the perturbed Newton-type method will
produce a sequence {ūp} which converges to a minimiser u∗. This result also
implies the Newton-type method can stop convergence if the error in the ap-
proximation of the gradient G is large to some extent. However, computing the
gradient G involves computing high dimensional integrals when d is large. It is
difficult to get a very accurate approximation in this case. Thus it is important
for us to know when to stop the iterations in the Newton-type method. If we
stop it too early, the solution can not achieve its best potential accuracy. If we
stop too late, we will waste a great amount of computational cost. We offer
the stopping criterion for our method based on the error analysis mentioned in
[25].

If we assume the integral and the derivative are interchangeable, then the
gradient G is

G(u) = ∇F (u) =

∫
Ω

∇f(u,w) dw. (6)

Each component of G is an integral. As we have mentioned before, if these
integrals are high dimensional, it will be very difficult to compute them even
for moderate accuracy. This is so called ’curse of dimensionality’. However, for
special function classes, such as functions which have bounded mixed derivatives,
the sparse gird method [11, 2, 9] can mitigate the curse of dimensionality to
a large extent. The performance of the sparse grid method can be further
improved if we treat each dimension differently. Actually, in many applications,
the importance of different dimensions are not equal. This property inspires
the idea of the dimension-adaptive sparse grid [14, 10, 13, 12, 15]. Unlike the
classical sparse grid method which treats all the dimensions equally during the
computation, the dimensional adaptive sparse grid method always refines the
most ’important’ dimension first. The performance is thus improved for those
integrals with dimensions of different importance. Both the sparse grid method
and the dimension-adaptive sparse grid method are used when we compute high
dimensional integrals in the computation.

This paper is organised as follows. In section 2, we introduce basic concepts
and results in optimisation which we need to use. In section 3, we review
the sparse grid and dimension adaptive sparse grid method. The ’optimise then
discretise’ method and algorithms based on it are given in section 4. In section 5,
we study the convergence of the sequence generated by the algorithm in section
4. In section 6, we develop the stopping criterion for our method. Finally, we
show some high dimensional examples in the last section.

2 Basic concepts of optimisation

First we begin with introducing some basic concepts of optimisation.

Definition 2.1. u∗ is a global minimizer of F if F (u) ≥ F (u∗) for all u ∈ Rn.

Definition 2.2. F is convex when F satisfies

F (tu+ (1− t)v) ≤ tF (u) + (1− t)F (v), ∀u, v ∈ Rn, t ∈ [0, 1].
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F is γ-strongly convex when there exists γ > 0 such that

F (tu+(1−t)v) ≤ tF (u)+(1−t)F (v)− 1

2
γt(1−t)‖u−v‖22, ∀u, v ∈ Rn, t ∈ [0, 1].

We then make some smoothness assumptions on the cost function F such
that the global minimiser of the stochastic optimisation problem exists.

Definition 2.3. A function g : Rp → Rq is Lipschitz continuous with constant
L > 0 if

‖g(x)− g(y)‖2 ≤ L‖x− y‖2, ∀x, y ∈ Rq.

Assumption 2.1. The function F is continuously differentiable and ∇F is
Lipschitz continuous with constant L > 0. In this case, we call F L-smooth.

By using Taylor expansion, we have ‖∇2F (u)‖2 ≤ L if F is L-smooth and
twice continuously differentiable.

The following Lemma gives connection between convexity of a function and
its smoothness.

Lemma 2.1 ( [20]). If F is continuously differentiable, then F is convex if and
only if F lies on or above any tangent line:

F (v) ≥ F (u) +∇F (u)T (v − u), ∀u, v ∈ Rn.

Also, F is γ-strongly convex if and only if

F (v) ≥ F (u) +∇F (u)T (v − u) +
γ

2
‖v − u‖22, ∀u, v ∈ Rn.

If F is twice continuously differentiable, then F is convex if and only if ∇2F (w)
is positive semidefinite for every w ∈ Rn. Also, F is γ-strongly convex if and
only if ∇2F (w) ≥ γI.

By using this Lemma, we can show the existence and uniqueness of global
minimizers for strongly convex functions.

Theorem 2.1 ( [20]). If F : Rn → R is continuously differentiable and strongly
convex, then it has a unique global minimizer.

If the function f satisfies assumptions in Theorem 2.1, we can make sure the
stochastic optimisation problem is well defined. Next, we consider the numerical
solvers to solve the problem. In order not to be too general, we will use Newton-
type methods as our solvers. According to the optimality condition, solving the
stochastic optimisation problem is equivalent to solve the following system of
equations

G(u) = ∇F (u) = 0. (7)

The Newton-type methods generate following sequence {up}

up+1 = up −A−1
p G(up), p = 0, 1, 2, . . . (8)

and one expects the limit of this sequence will be the solution of (7). In the
iteration, Ap ∈ L(U) is an approximation to the derivative G

′
(u), namely, the
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Hessian of F . Ap can be generated in many different ways and different choices
of Ap lead to different kinds of Newton-type methods. For example, if we take

Ap = ∇2F (up),

this is exactly Newton’s method. If we take

Ap = α−1
p Bp,

where αp is chosen by exact/inexact line search and Bp is updated from the
previously computed value Bp−1

Bp = Bp−1 +
yp−1y

T
p−1

sTp−1yp−1
− (Bp−1sp−1)(Bp−1sp−1)T

sTp−1Bp−1sp−1
,

where B0 = I, sp := up+1−up and yp := ∇F (up+1)−∇F (up), then the iteration
(8) becomes the BFGS method [16, 17], one of the most frequently used Quasi
Newton methods.

If we further assume ∇2F (u) is definite, bounded and Lipschitz continuous,
see details in [16, 17], the Newton method is quadratically convergent when
the initial value is close enough to the minimiser while the BFGS method is
superlinearly convergent. We can similarly assume the positive definiteness and
boundedness of ∇2f(u,w), ∀w ∈ Ω and the Lipschitz continuity of ∇2f(u,w),
∀w ∈ Ω to make sure Newton method and BFGS method are convergent.

When we consider high dimensional problems, the difficulty lies in the ap-
proximations of F (u), ∇F (u) and ∇2F (u).The objective F (u) and each compo-
nent of ∇F (u) and ∇2F (u) are high dimensional integrals in such case. More-
over, we have to compute them at each iteration in the solvers. This will result
in the curse of dimensionality.

3 Dimension-adaptive sparse grid

3.1 Formulation of the Dimension-adaptive sparse grid

Here we introduce the sparse grid and the dimension-adaptive sparse grid method
to approximate the d dimensional integral∫

[−1,1]d
f(x) dx. (9)

The sparse grid quadrature is built upon 1D quadrature. Suppose we have a
sequence of 1D quadrature rules

Qi(f) =
∑

xi,j∈Gi

ci,jf(xi,j) (10)

where Gi is a set which contains all quadrature points {xi,j , j = 1, . . . , Ni}
of the jth 1D quadrature rule. Ni is the number of the quadrature points.
{wi,j , j = 1, . . . , Ni} are the corresponding weights of the jth rule. In particu-
lar, we focus on hierarchical quadrature rules here. The hierarchical means the
sets Gi are nested, i.e. Gi ⊂ Gi+1, ∀i.
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Once we have a sequence of 1D quadrature rules, we can define the differences

∆i(f) = Qi(f)−Qi−1(f), i = 1, 2, . . . (11)

with Q0(f) = 0. By using these differences, the lth quadrature rule can be
written as

Ql(f) =

l∑
i=1

∆i(f). (12)

Multidimensional quadrature rules can be constructed based on the similar
idea. Product rule is one of the methods used to deal with multidimensional
integrals. The d-dimensional product rule is of the form

Ql(f) =
∑

xl,j∈Gl

cl,jf(Xl,j) (13)

where
Gl = Gl1 × · · · ×Gld
cl,j = cl1,j1 . . . cld,jd
xl,j = (xl1,j1 , . . . , xld,jd).

(14)

If we defined the d-dimensional differences as the tensor product of the 1D
differences

∆i(f) = ∆i1 ⊗ · · · ⊗∆id(f), (15)

then the product rule (13) can be written as

Ql(f) =
∑
i≤l

∆i(f). (16)

Instead of using all the differences in the index set {j, j ≤ l}, the sparse grid
quadrature only sums over a subset of it. The level l sparse grid quadrature is
then defined by

Qdl (f) =
∑

i≤l+d−1

∆i(f). (17)

In fact, we can build a multidimensional quadrature by summing up any
downset I of the full grid index set {i, i ≤ l}. The downset is defined as below.

Definition 3.1. We say I is a downset if it satisfies

i ∈ I and m ≤ i, (18)

then m ∈ I.

We call the multidimensional quadrature defined on such downset as gener-
alised sparse grid quadrature and

QdI (f) =
∑
i∈I

∆i(f). (19)

For the generalised sparse grid quadrature, the downset I is chosen before we
compute the quadrature. Different downsets I are chosen in different applica-
tions. The truncated sparse grid, the sparse grid with fault, etc are several
frequently used generalised sparse grid.
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The dimension-adaptive sparse grid is still with the form

QdI (f) =
∑
i∈I

∆i(f). (20)

while the downset I is decided during the computation according to the ’im-
portance’ of each dimension. There are two important things needed to be
considered before designing the dimension adaptive algorithm. First, when we
add a new surplus ∆if to the sum, we need to make sure the newly generated
index set I ∪ {i} is still a downset. This is because we need to use the method
of differences to compute the telescope sum and thus every index j which have
smaller entries than i in at least one dimension must be included in I. Second,
the algorithm is required to detect the ’important dimension’ and do refinement
first in ’the most important dimension’ at each iteration.

Algorithm 1 Dimension adaptive sparse grid quadrature

Initialize I = {1} and s = ∆if
while Termination condition not reached do

Consider all possible covering elements to I and put them in a heap A
Select i from heap A with largest ∆if
s=s+∆if

end while

The termination condition we considered in this paper is

I = {i ≤ l | |∆if | ≥ ε} . (21)

The termination condition |∆if | ≥ ε has been used in many dimension adap-
tive sparse grid algorithms to stop the while loop [13, 12, 15]. The additional
condition i ≤ l we added here is aimed at avoiding excessive refinement in some
dimensions. Here, we say {i} is a covering element of a downset I if I ∪ {i} is
also a downset.

We use Ql,ε as the operator for the dimension-adaptive sparse grid quadra-
ture in Algorithm 1 with the termination condition (21). The choice of the
downset I depends on f , l, ε, so we have

Ql,ε(f) = QI(f,l,ε)(f). (22)

It should be noted here we have to use different notations for the quadrature
method(Ql,ε) and the computing formula(QI). This is because when the same
quadrature method applied to approximate different integrals, e.g. integrals
with integrand f and g, respectively, we can get different downsets If and Ig,

If = I(f, l, ε) 6= I(g, l, ε) = Ig. (23)

Thus, the formula used to approximate the integrals are different, that is,

QIf 6= QIg . (24)

For non-adaptive approach, we don’t have such problem. We use the same
notation(Q) to denote both quadrature method and computing formula.
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3.2 1D quadrature rules

We use the following three types of 1D quadrature rules to build our dimension-
adaptive sparse grid quadratures. They are the trapezoidal rule, the Clenshaw-
Curtis rule [5] and the Gauss-Patterson rule [22]. All of these are hierarchical
quadrature rules. The trapezoidal rule has O(4−l) accuracy on the uniform
grid with N = 2l−1 + 1 grid points when the integrand f ∈ C2. The accuracy
can be further improved to O(2−lr) if the integrand f ∈ Cr is periodic. The
N = 2l−1+1 points Clenshaw-Curtis rule uses extremal points of the Chebyshev
polynomial of degree N+1 as its quadrature points. The N+1 points Clenshaw-
Curtis rule integrates polynomials of degree less or equal than N exactly [11,
15]. The accuracy of an N points rule is O(2−lr) [6, 11]. The Gauss-Patterson
rule is a Kronrod extension of the corresponding Gauss rule. The polynomial
degree of exactness of an N = 2l − 1 points rule is (3N − 1)/2. Its accuracy
for the integrals with integrand f ∈ Cr is also O(2−lr) [6, 11] for an N points
rule. It is noteworthy that both level l trapezoidal rule and Clenshaw-Curtis
rule have 2l−1 + 1 quadrature points while the level l Gauss-Patterson rule has
2l − 1 quadrature points.

3.3 Accuracy of high dimensional quadrature rules

We will mainly discuss the accuracy of the dimension-adaptive sparse grid
quadrature rules. Before that, we first provide the results on product rule and
sparse grid quadrature.

The computational complexity of the product rule is O(Nd
l ) for li = l. How-

ever, the accuracy is O(2−lr). Here we notice that the accuracy is not depend
on the dimension which results in the curse of dimensionality.

For the sparse grid quadrature rules, If we assume the integrand f has
bounded mixed derivatives up to order r, i.e., f ∈ Hr([−1, 1]d) where

Hr([−1, 1]d) =

{
f : [−1, 1]d → R : max

|α|∞≤r

∥∥∥∥∂|α|1f∂αW

∥∥∥∥ <∞} (25)

where ‖ · ‖ denotes the L2 norm and |α|∞ = maxj αj , then the error of the
sparse grid quadrature is O(N−r(logN)(d−1)(r−1)) [11, 2, 15]. The N here is
the number of the sparse grid quadrature points.

Next, we study the accuracy of the dimension-adaptive sparse grid quadra-
ture. The error of the dimension-adaptive sparse grid interpolation has been
studied in [14, 13, 12]. Similar as the analysis in [14], we first have following
bound on |QLf −QIf |.

Proposition 3.1. (Priori error bound) Let I = {i | i ≤ l, |∆if | ≥ ε} and QLf−
QIf be the error of the dimension adaptive sparse grid quadrature on set I rel-
ative to Qlf . We further denote L = {i | i ≤ l} and the number of all indices

in L is |L| =
∏d
k=1(lk + 1). Then we get the bound

|QLf −QIf | ≤ |L|ε. (26)
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Proof. According to the definition, we have

|QLf −QIf | = |
∑
i∈L

∆if −
∑
i∈I

∆if | = |
∑
i∈L\I

∆if |

≤
∑
i∈L\I

|∆if | ≤
∑
i∈L\I

ε ≤
∑
i∈L

ε = |L|ε.
(27)

The first inequality follows from the triangle inequality. The second inequality
holds because L\I = {i ≤ l | |∆if | < ε}. The third inequality follows by the
fact I ⊂ L.

From the proof of the proposition (3.1), we do not use any information from
the computation process of the QIf . The error bound can be derived before
computing QIf . However, after we compute QIf by the dimension-adaptive
sparse grid method, we will know exactly what the downset I is. This can help
us improve the error bound.

Proposition 3.2. (Posteriori error bound) Suppose the downset I is known
after we computed the QIf . The error bound in 3.1 can be improved by

|QLf −QIf | ≤ (|L| − |I|)ε, (28)

where the set L = {i | i ≤ l}.

Proof. Since I = {i | i ≤ l, |∆if | ≥ ε} is a subset of L, we have

|QLf −QIf | = |
∑
i∈L\I

∆if | ≤
∑
i∈L\I

|∆if | = (|L| − |I|)ε. (29)

When we compute a high dimensional integral, we won’t set a very small ε,
e.g. 10−15, in the termination condition since the computational cost is usually
unaffordable for most cases. Thus, neither priori error bound nor posteriori
error bound is good when we consider a high dimensional problem since |L| will
grow exponentially when the dimension increases while the ε can’t be chosen as
small as possible. In order to get a more accurate error bound, we need to use
the smoothness of the integrand f .

Lemma 3.1. If f ∈ Hr([−1, 1]d) and we have following estimation for the 1D
quadrature rules Qi

|If −Qif | ≤ ‖I −Qi‖‖f‖ ≤ γr2−ri‖f‖ (30)

where the constants γr can be obtained by known bounds for the respective Peano
kernels(ref), then if hierarchical rules are used in building d dimensional quadra-
ture rules, we have |∆if | ≤ Cdr 2−r|i|‖f‖ where Cdr = γdr (1 + 2r)d.

Proof. Since we use hierarchical rules, the 1D difference can be written as

∆if = Qif −Qi−1f =
∑

xi,j∈Gi

ci,jf(xi,j)−
∑

xi−1,j∈Gi−1

ci−1,jf(xi−1,j)

=
∑

xi,j∈Gi

bi,jf(xi,j)
(31)
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where bi,j = ci,j for quadrature points in the set Gi\Gi−1 and bi,j = ci,j−ci−1,j

otherwise. Then for 2D case, we have

∆i1 ⊗∆i2f =
∑

xi1,j1∈Gi1

∑
xi2,j2∈Gi2

bi1,j1bi2,j2f(xi1,j1 , xi2,j2), (32)

Furthermore,

|∆i1 ⊗∆i2f | ≤ ‖∆i1‖‖
∑

xi2,j2
∈Gi2

bi2,j2f(·, xi2,j2)‖

≤ ‖∆i1‖ sup
0≤α1≤r

sup
s∈[−1,1]

|∆i2f
(α1,0)(s, ·)|

≤ ‖∆i1‖ sup
0≤α1≤r

sup
s∈[−1,1]

‖∆i2‖‖f (α1,0)(s, ·)‖

≤ ‖∆i1‖‖∆i2‖‖f‖.

(33)

This can be generated to d dimensional case that is

|∆if | = |∆i1 ⊗∆i2 ⊗ · · · ⊗∆idf | ≤ ‖∆i1‖‖∆i2‖ . . . ‖∆id‖‖f‖. (34)

We can derive the upper bound of the norm of the 1d difference operator from

‖∆ik‖ = ‖Qik −Qik−1
‖

≤ ‖I −Qik‖+ ‖I −Qik−1
‖

≤ rγ2−rik(1 + 2r).

(35)

Combining (34) and (35), we get

|∆if | ≤ Cdr 2−r|i|‖f‖. (36)

Theorem 3.1. Under the conditions of Lemma (3.1), we can further improve
our posteriori bound by

|QLf −QIf | ≤ K
∑
i∈L\I

2−r|i|. (37)

Proof. The proposition (3.1) follows directly from the proposition (3.2) and the
Lemma (3.1). K = Cdr ‖f‖ is a constant.

Corollary 3.1. Suppose m is one of the indices such that |m| ≤ |i|,∀i ∈ L\I,
then the posterior bound is

|QLf −QIf | ≤
ε

ρ

∑
i∈L\I

2r(|m|−|i|) (38)

where ρK2−r|m| = ε and

ρmin :=

∑
i∈L\I 2r(|m|−|i|)

|L| − |I|
≤ ρ < 2r. (39)
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Proof. We first notice we can rewrite (37) as

|QLf −QIf | ≤ K2−r|m|
∑
i∈L\I

2r(|m|−|i|). (40)

By using ρK2−r|m| = ε, we get the inequality (38). For the lower bound of ρ,
we expect the error bound (38) is not worse than the posterior error bound in
the proposition (3.2),otherwise we can use the latter one. Thus, we have

ε

ρ

∑
i∈L\I

2r(|m|−|i|) ≤ ε(|L| − |I|), (41)

This leads to the lower bound of ρ. For the upper bound, if we denote the kth
negative unit vector as ek = [0, . . . , 1, . . . , 0], then according to the definition of
m, there exists an index m−ek ∈ I, otherwise we should choose m−ek instead
of m in the theorem. According to the Theorem 3.1 and the definition of the
downset I, we have

ε < |∆m−ek
f | ≤ K2−r(|m|−1). (42)

Thus, using the definition of ρ, we have

ρ =
ε

K2−r|m|
≤ K2−r(|m|−1)

K2−r|m|
= 2r. (43)

By using the error estimation in the Theorem 3.1 and the error bound for
d-dimensional product rule, we can obtain a bound on |If − QIf | by using
trapezoidal rule, that is

|If −QIf | ≤ |If −QLf |+ |QLf −QIf | ≤ cd2−lr +K
∑
i∈L\I

2−r|i| (44)

In the above bound, isotropic grid Gl, li = l is used in the comparison. In [13],
the authors get an optimised priori error bound for |If−QIf | by balancing error
bounds for the term |If −QLf | and |QLf −QIf |. The ε need to be chosen very
small in order to achieve the optimized bound for high dimensional problems.
In this paper, we are more interested in the case when

|If −QLf | � |QLf −QIf | (45)

which means the approximation of the integral need to be accurate to some ex-
tent on the corresponding full grid, otherwise we can not expect the dimensional
adaptive sparse grid method which uses a subset of quadrature points on the
full grid provides a good approximation. Larger ε is allowed in this situation.

4 The ’optimise then discretise’ method

We will show the framework of the ’optimise then discretise’ method and test
a 2D example to illustrate its performance. For simplicity, we first use Newton
method as our optimisation algorithm. It is shown in the Algorithm 2. The
Algorithm 3, 4, 5, 6 and 7 are discretised versions of the Newton method in
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Algorithm 2 from simple to complex. In the Algorithm 3 and 4, we use non-
adaptive quadrature Q to compute the integrals. In the Algorithm 6 and 7,
we use the dimension adaptive quadrature Q to compute the integrals. The
notation Di denotes the ith discretised derivative and thus D2

ij is the ijth second

order discretised derivative. D denotes the discretised gradient and D2 denotes
the discretised Hessian.

In Algorithm 3, we use different non-adaptive surrogate at each iteration.
The non-adaptive quadrature operator Q and the discretised derivative opera-
tors Di, Dij are commutative, i.e.

DiQp = QpDi and D2
ijQp = QpD

2
ij .

This is because both two operators are fixed finite summations. In Algorithm
4, we further allow different choices of the non-adaptive quadrature for the
objective and different component of gradient and Hessian.

The Algorithm 5 looks almost the same as the Algorithm 3 except the
quadrature method is dimension adaptive. However, they have essential dif-
ferences. The dimension adaptive operator Q and the discretised derivative
operators Di, Dij are not commutative. This observation leads to a new Algo-
rithm 6. The reason why the dimension adaptive operator and the discretised
derivative operators are not commutative is because the downsets used in the
computation are not equal, i.e.

I(Dif,εp,lp) 6= I(f,εp,lp)

I(D2
ijf,εp,lp) 6= I(f,εp,lp).

One can also generalise the Algorithm 6 to the Algorithm 7 by allowing the usage
of different parameters in dimension adaptvie quadrature for the objective and
different component of gradient and Hessian. Though Algorithm 7 will be more
flexible than Algorithm 6, we mostly use Algorithm 6 in practice because it is
usually hard to get information used for choose different parameters and the
algorithm 7 is too complex.

Algorithm 2 OPTIMISE

1: Take an initial u0 ∈ Rn and p := 0
2: Compute G0 = ∇F (u0)
3: while ‖Gp‖ > ε do
4: Compute the Hessian Hp = ∇2F (up)
5: Update

up+1 = up −H−1
p Gp

6: Set p := p+ 1
7: Compute Gp = ∇F (up)
8: end while
9: Output up and F (up)

For more complicated quasi Newton methods, we take BFGS method with
the exact line search as an example. The optimise algorithm and its adaptive
discretised version are shown in the Algorithm 8 and Algorithm 9 which are

12



Algorithm 3 DISCRETISED VERSION

1: Take an initial ū0 ∈ Rn and p := 0
2: Compute the approximation of the gradient Ḡ0 = DQ0(f(ū0, ·))
3: while ‖Ḡp‖ > ε do
4: Compute the approximation of the Hessian H̄p = D2Qp(f(ūp, ·))
5: Update

ūp+1 = ūp − H̄−1
p Ḡp (46)

6: Set p := p+ 1
7: Compute the approximation of the gradient Ḡp = DQp(f(ūp, ·))
8: end while
9: Output ūp and F̄p := Qp(f(ūp, ·))

Algorithm 4 GENERAL DISCRETISED VERSION

1: Take an initial ū0 ∈ Rn and p := 0
2: Compute the approximation of the gradient Ḡ0 = [QG0,i(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do
4: Compute the approximation of the Hessian H̄p = [QHp,i,j(D

2
ijf(ūp, ·))]n×n

5: Update
ūp+1 = ūp − H̄−1

p Ḡp (47)

6: Set p := p+ 1
7: Compute the approximation of the gradient Ḡp = [QGp,i(Dif(ūp, ·))]n×1

8: end while
9: Output ūp and F̄p := QOp (f(ūp, ·))

Algorithm 5 DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0
2: Compute the approximation of the gradient Ḡ0 = DQε0,l0(f(ū0, ·))
3: while ‖Ḡp‖ > ε do
4: Compute the approximation of the Hessian H̄p = D2Qεp,lp(f(ūp, ·))
5: Update

ūp+1 = ūp − H̄−1
p Ḡp (48)

6: Set p := p+ 1
7: Compute the approximation of the gradient Ḡp = DQεp,lp(f(ūp, ·))
8: end while
9: Output ūp and F̄p := Qεp,lp(f(ūp, ·))

13



Algorithm 6 MODIFIED DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0
2: Compute the approximation of the gradient Ḡ0 = [Qε0,l0(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do
4: Compute the approximation of the Hessian H̄p = [Qεp,lp(D2

ijf(ūp, ·))]n×n

5: Update
ūp+1 = ūp − H̄−1

p Ḡp (49)

6: Set p := p+ 1
7: Compute the approximation of the gradient Ḡp = [Qεp,lp(Dif(ūp, ·))]n×1

8: end while
9: Output ūp and F̄p := Qεp,lp(f(ūp, ·))

Algorithm 7 GENERAL DISCRETISED VERSION(ADAPTIVE)

1: Take an initial ū0 ∈ Rn and p := 0
2: Compute the approximation of the gradient

Ḡ0 = [QGε0,i,l0,i(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do
4: Compute the approximation of the Hessian

H̄p = [QHεp,i,j ,lp,i,j (D2
ijf(ūp, ·))]n×n

5: Update
ūp+1 = ūp − H̄−1

p Ḡp (50)

6: Set p := p+ 1
7: Compute the approximation of the gradient

Ḡp = [QGεp,i,lp,i(Dif(ūp, ·))]n×1

8: end while
9: Output ūp and F̄p := QOεp,lp(f(ūp, ·))

14



extensions of the Algorithm 2 and the Algorithm 6, respectively. In practice,
the exact line search (51) is replaced with inexact line search for efficiency.
The commonly used inexact line search is strong Wolfe’s rule. The sequence
up generated by BFGS with Wolfe’s rule is proved to converge to the exact
minimizer u∗ superlinearly [17]. It should be noted that we need to compute
the objective F in the line search methods(include the strong Wolfe’s rule used
in practice)in each iteration while this is not required if we use Newton method.

Algorithm 8 BFGS OPTIMISE

1: Take an initial u0 ∈ Rn , an initial positive definite matrix H0 and p := 0
2: while ‖G(up)‖ > ε do
3: Compute the search direction vp = −HpG(up)
4: Find the step length αp by exact line search

min
αp

F (up + αpvp). (51)

The underlying A−1
p here is αpHp.

5: Update
up+1 = up + αpvp

6: Define sp := up+1 − up and yp := G(up+1)−G(up)
7: Update

Hp+1 =

(
I −

spy
T
p

sTp yp

)
Hp

(
I −

yps
T
p

sTp yp

)
+
sps

T
p

sTp yp

8: p:=p+1
9: end while

10: Output up and F (up)

In order to illustrate our method, we provide the following 2D example. We
will look into this example and it will also be used to explain the idea of next
two sections.

Example 4.1. We consider the following minimization problem

min
u∈R

F (u) (52)

where F (u) = E
[
u2 + (W 2

1 + 10W 2
2 )u
]
. W1 and W2 are i.i.d. random variables.

The integrand satisfies assumption 2.1. Moreover, the objective function is
strictly convex in this example, so we conclude that there is a unique minimizer
of this problem. By using the linearity of the expectation, the minimizer of the
problem is

u∗ = −E[W 2
1 ] + 10E[W 2

2 ]

2
. (53)

In particular, here we further assume

Wk ∼ Beta(α, β), k = 1, 2. (54)

with α = 5, β = 5. The exact minimizer is then u∗ = −1.5 and the minimum is
−2.25.
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Algorithm 9 BFGS DISCRETISE

1: Take an initial ū0 ∈ Rn, an initial positive definite matrix H̄0 and p := 0
2: Compute Ḡ0 = [Qε0,l0(Dif(ū0, ·))]n×1

3: while ‖Ḡp‖ > ε do
4: Compute the search direction v̄p = −H̄pḠp
5: Find the step length ᾱp by exact line search

min
ᾱp

F̄p(ūp + ᾱpv̄p)

where F̄p := Qεp,lp(f(ūp, ·)) and the corresponding Ā−1
p is ᾱpH̄p

6: Update
ūp+1 = ūp + ᾱpv̄p

7: Compute Ḡp+1 = [Qεp+1,lp+1(Dif(ūp+1, ·))]n×1

8: Define s̄p := ūp+1 − ūp and ȳp := Ḡp+1 − Ḡp
9: Update

H̄p+1 =

(
I −

s̄pȳ
T
p

s̄Tp ȳp

)
H̄p

(
I −

ȳps̄
T
p

s̄Tp ȳp

)
+
s̄ps̄

T
p

s̄Tp ȳp

10: Set p:=p+1
11: end while
12: Output ūp and F̄p := Qεp,lp(f(ūp, ·))

In Figure 1, we apply the Algorithm 9 to solve the problem. We use forward
difference to approximate the derivatives of the integrand. We compare the
performance of the dimension-adaptive sparse grid quadrature and the sparse
grid quadrature. For the OTDM based on the sparse grid quadrature, we fix
the level l for each run which results in the same choices of the quadrature rule
Qp and Qp,1 for any p. For the OTDM based on the dimension-adaptive sparse
grid quadrature, we also fix the ε and l in the while condition 21. However, the
choices of the quadrature rule are no longer the same for all Qp and Qp,1. This
is because the underlying downsets are not necessary to be the same for all Qp
and Qp,1. We see in Figure 1 that the convergence rates are improved for both
Clenshaw–Curtis and Gauss–Patterson when we apply the dimension-adaptive
method. Especially, the average number of the grid points used in each iteration
is substantially reduced for the same accuracy in the solution and the objective
when Gauss– Patterson is used as 1D rule. For Clenshaw–Curtis, we can also
see this pattern, moreover, higher accuracy are obtained for both computed
minimizer and minimum.

The exact expression of the gradient in the previous 2D Example 4.1 is

G(u) = ∇E[u2 + (W 2
1 + 10W 2

2 )u]

=

∫ 1

0

∫ 1

0

[2u+ (w1 + 10w2)]p(w1, α, β)p(w2, α, β) dw1dw2

(55)

where p is the probability density function. In Figure 4, we again solved problem
with the BFGS method. We use 100 points and 1000 points Monte Carlo method
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(a) Solution error (b) Solution error

(c) Objective error (d) Objective error

Figure 1: Computational results for the 2D problem: (a) errors of computed minimizer
vs. number of grid points used in each iteration(average for the dimension-adaptive sparse
grid method).(b) errors of computed minimizer vs. ε in the termination condition of the
dimension-adaptive algorithm. (c) errors of computed minimum vs. number of grid points
used in each iteration. (d) errors of computed minimum vs. ε in the termination condition of
the dimension-adaptive algorithm. We compare the dimension-adaptive sparse grid based on
Gauss–Patterson(dasg gp) and Clenshaw–Curtis(dasg cc) with sparse grid based on Gauss–
Patterson(sg gp) and Clenshaw–Curtis(sg cc).

to approximate the integral G(u) respectively. The sparse grid, the dimensional-
adaptive sparse grid based on Gauss–Patterson 1D quadrature and the Monte
Carlo are used in approximating the objective function. We intentionally choose
the same random points for Monte Carlo in objective approximation with those
in gradient approximation when number of points equals to 100 in (a), (b)
and 1000 in (c), (d). Thus, according to the propositions, the Monte Carlo
surrogate methods are actually used. We can see from the Figure 4, both
convergence performances of sparse grid and dimensional adaptive sparse grid
are better than the Monte Carlo method (include those points which is actually
surrogate method). The amount of work will be substantially reduced in the
objective function if we apply the dimension-adaptive sparse grid in computing
the objective. In addition, the dimension-adaptive sparse grid method performs
better than sparse grid method in computing both solution and objective.

5 Convergence analysis

We now study the sequence generated by the algorithm introduced in the pre-
vious section. Because of the presence of the errors (Both truncated errors
and rounding errors), the actual sequences {ūp} generated by the Newton-type
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(a) Solution error (b) Objective error

(c) Solution error (d) Objective error

Figure 2: Computational results for the toy problem. Here we use the exact expression of
the gradient. Monte Carlo method is used to approximate the gradient and three different
quadrature methods are used to approximate the objective function. (a) number of grid
points vs. errors of computed minimizers(average of 10 runs of each method with gradient
approximated by 100 points Monte Carlo method. (b)number of grid points vs. errors of
computed minimum. (c)number of grid points vs. errors of computed minimizers(1000 points
Monte Carlo). (d)number of grid points vs. errors of computed minimum.

method is

ūp+1 = (I + E0(ūp))
(
ūp + θ̄(ūp)

)
, p = 0, 1, . . . , . (56)

In the above formula, E0(ūp) is the relative error of the addition of ūp and
θ̄(ūp). The norm of this error is of the order of the machine epsilon and thus
very small, so this error is neglected in our analysis. θ̄(ūp) is the exact solution
of the following linear system

Āpz = −Ḡp (57)

where
Āp = Âp + E1(ūp)

Ḡp = G(ūp) + E2(ūp).
(58)

Âp is an approximation of the Hessian. Since Âp is computed by using the

information of previously computed ūt and Ât, t < p, we use the different
notation Âp rather than Ap here. E1(ūp) and E2(ūp) are errors occur when we

approximate Âp and G(ūp).
In [25], the author shows the crucial condition for the convergence of such

perturbed Newton-type method is

ηp = ||Ā−1
p G′(ūp)− I||+

||Ā−1
p (Ḡp −Gp)||

||(G′(ūp))−1Gp||
< 1 (59)
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The following theorem [25] provides more details on the convergence result

Theorem 5.1. If ||E0|| = 0 and ηp ≤ η < 1 for all p = 0, 1, . . . , and if ū0

satisfies

||ū0 − u∗|| <
2(1− η)

(3− η)µ
, (60)

then the perturbed Newton-type method (56) − (58) produces a sequence {ūp}
which converges to u∗.

Because of the presence of the term ||(G′(ūp))−1Gp|| in the denominator, we
can expect that the inequality (59) will finally be violated and the convergence
theory will fail. Therefore, there exists some neighborhood of u∗ such that the
sequence generated by the Newton-type method converges outside this neighbor-
hood while the behavior of the sequence generated by the successive iterations
is not predictable if they are inside the neighborhood. This also suggests further
iterations will not improve the accuracy and we can stop the algorithm once the
ūp reaches the neighborhood.

In order to find out when to stop further iterations, we look into the two
terms in (59). When G′(ūp) can be well approximated and (57) can be solved
with relative high accuracy, the first term can be kept small. This means the
errors in the Jacobian approximation are tolerable if

τp = ||Ā−1
p G′(ūp)− I|| � 1. (61)

Corollary 5.1. [25] If (61) holds, then the convergence of the perturbed Newton-
type method might breakdown when

‖Ḡp −Gp‖ >
‖Ḡp‖

1 + κ(Āp)
. (62)

where κ(Āp) is the condition number of Āp.

According to the Corollary 5.1, the accuracy of computed minimizer depends
on how accurate the gradient can be approximated. For the same problem, if
the gradients can be approximated in higher accuracy, which means we can get
smaller ||Ḡp−Gp||, then it is likely that more effective iterations can be carried
on in the Newton-type method according to (62). Thus, we can obtain a better
solution. The problem is it will be very expansive to get a moderately accurate
approximation to the gradient if we are dealing with high dimensional problems.
Thus, there is no need to do iteration (8) many times for this kind of problems
and (62) actually provide us with a simple stopping criterion. In the stopping
criterion (62), the condition number κ(Āp) can be computed during the iteration
with little cost. However, it will be difficult to obtain the exact value ||Ḡp−Gp||
and ||Gp||. Following theorem gives an estimation of the ratio of ||Ḡp −Gp|| to
||Gp|| and provide more detailed stopping criterion for our method.

Theorem 5.2. Consider solving the stochastic optimisation problem (2), we
assume here the integrand satisfies

(i) f(·,W ) ∈ C2(U) for all W ∈ Ω.

(ii) f(u, ·) ∈ Hr(Ω)(r ≥ 1) for all u ∈ U .
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We apply the dimension-adaptive sparse grid(ε) to approximate the integrals
and forward difference method to approximate the derivatives in the computa-
tion. We further assume all the components of the gradient at pth iteration are
computed by the same downset as that in computing the objective function at
pth iteration. Then, we have

‖Ḡp −Gp‖ ≤ ‖E1
p‖+ ‖E2

p‖ (63)

where the qth element of E1
p and E1

p are

E1
p,q = K1

p,qh

E1
p,q = K2

p,q2
−lpr +K3

p,q

∑
i∈Lp\Ip

2−|i|r (64)

where Ki
p,q, i = 1, 2, 3 are constants. Therefore, our method based on dimension-

adaptive sparse grid method might breakdown when

‖E1
p‖+ ‖E2

p‖ >
‖Ḡp‖

1 + κ(Āp)
. (65)

Proof. We use forward difference quotient

G̃p,q =
F (ūp + heq)− F (ūp)

h
(66)

to approximate the qth component Gp,q of Gp, where h is the difference in-
crement. We further denote the qth component of Ḡp as Ḡp,q which can be
expressed as

Ḡp,q =
F̄ (ūp + heq)− F̄ (ūp)

h
(67)

where F̄ (ūp) = QIp(f(ūp, ·)).
By using triangle inequality, we have

‖Ḡp −Gp‖ ≤ ‖Ḡp − G̃p + G̃p −Gp‖ ≤ ‖Ḡp − G̃p‖+ ‖G̃p −Gp‖. (68)

Since f(·,W ) ∈ C2(U) for any W ∈ Ω, we can get F ∈ C2(U). Thus, for the
qth component of G̃p −Gp, we have

|G̃p,q −Gp,q| ≤ K1
p,qh. (69)

For the term ‖Ḡp − G̃p‖, we have

Ḡp,q − G̃p,q

=
1

h
(F̄ (ūp + heq)− F̄ (ūp))−

1

h
(F (ūp + heq)− F (ūp))

=
1

h
(QIp(f(ūp + hēq, ·))−QIp(f(ūp, ·)))−

1

h
(I(f(ūp + hēq, ·))− I(f(ūp, ·)))

=QIp

(
1

h
(f(ūp + hēq, ·)− f(ūp, ·))

)
− I

(
1

h
(f(ūp + hēq, ·)− f(ūp, ·))

)
=(QIp − I)

(
1

h
(f(ūp + hēq, ·)− f(ūp, ·))

)
.

(70)
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We used the assumption of the same downset Ip in the second equality. The third
equality is due to the linearity of the operator QIp and I. Since f(u, ·) ∈ Hr(Ω)
for any u ∈ U , we know that the function

1

h
(f(ūp + hēq, ·)− f(ūp, ·)) ∈ Hr(Ω). (71)

Thus, we get following upper bound

|Ḡp,q − G̃p,q| ≤ K2
p,q2
−lpr +K3

p,q

∑
i∈Lp\Ip

2−|i|r (72)

Combining inequalities (68), (72) and (69), we get (63).
By using Corollary 5.1, we get the breakdown condition (65).

Remark 5.1. Theorem (5.2) actually provides us with rough stopping criterion.
It can be checked at each iteration in Newton-type method if one can get reason-
able estimations of the constants K1

p,q, K
2
p,q, K

3
p,q. The h, lp, Lp and Ip can be

obtained during the computation. The second terms of E2
p,q can also be replaced

by the bound in corollary (3.1). The advantage of doing this is that instead of
estimating the constant K3

p,q, we can get a reasonable stop by tuning ρ.

6 Stopping Criterion

In this section, we discuss the stopping criterion for our method. It is important
to know when we should stop the Newton-type method for fixed tolerance ε in
the termination condition of the dimension-adaptive sparse grid method. A good
stopping criterion can save a lot of computational cost. This is because if the
problem is high dimensional, each iteration will be very expansive to compute
even if we apply the dimension-adaptive sparse grid method to reduce the cost
in computing the related integrals. Another reason is it is possible that further
iterations can not improve the accuracy of the solution. It might happen that
the computed solution becomes even worse after we increase more iterations.
Also, computation of the termination condition of some existing optimization
solvers can involve a great number of evaluations of objective functions and
gradients, such as the Wolfe’s rule used in BFGS method in scipy.optimize
package. Sometimes, computing the termination condition is even expansive
than computing the solution itself. The study of the stopping criterion can
also shed light on how to choose the tolerance ε in the termination condition
of the dimension-adaptive sparse grid method for a specific problem with given
requirement on the accuracy of the solution.

Though Theorem (5.2) gives us some hints to derive a stopping criterion,
accurate estimations of the coefficients are required. However, this is usually
difficult especially for high dimensional problems. In addition, the estimation
method can vary for different problems, thus it will be complex to obtain a
general stopping criterion from the Theorem.

Here we provide another way to find the stopping criterion. It works better
and much easier to implement in practice. Suppose ūp is the approximated
minimizer generated by some Newton-type methods after pth iteration. When
ūp is close enough to the exact minimizer u∗, we have following Taylor expansion

F (ūp) = F (u∗)+∇F (u∗)(ūp−u∗)+(ūp−u∗)T∇2F (u∗)(ūp−u∗)+o(‖ūp−u∗‖2).
(73)
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Since u∗ is the minimizer of F , we have ∇F (u∗) = 0. F is convex, therefore
∇2F (u∗) is positive semidefinite. Thus, we have ‖ūp−u∗‖2 increases(decreases)
with i as F (ūp) increases(decreases). However, the exact value of F (ūp) is
usually not easy to get. Therefore, in our approach, instead of using the exact
function value at ūp, we use the value of some high accuracy approximations
of the function. If we denote the high accuracy approximation by dimension-
adaptive sparse grid quadrature with ε in its termination condition at u as
Fε(u) = QIf(u, ·), then we can decide when to stop the Newton-type method
by studying the trend of Fε(ūp).

The advantage of this stopping criterion is the computation does not involve
estimation of the error ‖G − Ḡ‖. We only need to compute Fε(ūp) for some
smaller εs with the same algorithm which used to compute the approximation
of the objective function. Also, the additional computational cost for computing
Fε(ūp) is affordable in most cases for even high dimensional problems. This is
because we use Newton-type method as our optimisation solver, so the number
of iterations will not be too large. Also, the computational cost of getting such
stopping criterion is much lower than that of computing the gradient in each
iteration when the dimension of U is high.

In fig 3 and fig 4, we solve the toy problem by using surrogate method
with ε = 1 and ε = 0.1 respectively. For both two figures, the subfigures
in the first row show the relation between error |u∗ − ūp| versus the number
of iterations. We can see from these figures, we should stop the algorithm
after first iteration for all three cases. If we further increase the iteration, the
errors will grows. The reason for this is the gradients are approximated with
relatively low accuracy. From the convergence theory, we know the convergence
of the Newton-type method might break down in this case. The subfigures in
the second row presents function values on the surrogate versus the number of
iterations. As we expected, Fε(ūp) is decreasing. The subfigures in the third
row show the function values of the surrogate functions with ε = 0.001 on ūp.
Compare the subfigures in the first row with the corresponding subfigures in
the third row, we can see that the trends of the functions are the same for all
three quadrature rules. Thus, we can predict when to stop the Newton-type
method by studying the trends of the functions in the third row respectively.
Our method successfully predicts the stopping times(after first iteration) for all
three quadrature rules in this example. The subfigures in the fourth row, we fit
the data points (|u∗ − ūp|, Fε/4(ūp)) to a quadratic function. We find that the
quadratic curves almost go through all the data points which suggests our error
model is reasonable.

7 High dimensional examples

7.1 50D additive example

Consider following minimization problem

Example 7.1.

min
u∈U

E

[
d∑
i=1

exp (−uiW 2
i )

]
(74)
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(a) Gauss Patterson (b) Clenshaw Curtis (c) Trapezoidal Rule

Figure 3: Solve the toy problem with ε = 1.
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(a) Gauss Patterson (b) Clenshaw Curtis (c) Trapezoidal Rule

Figure 4: Solve the toy problem with ε = 0.1.

where Wi are i.i.d random variables which subject to uniform distribution
U(0, 1) and the set U = [0, 1]d. Thus the integral form of the objective function
can be written as

F (u) =

∫
[0,1]d

d∑
i=1

e−uiw
2
i dw. (75)

The gradient G(u) is

G(u) = ∇F (u)

= −

[∫
[0,1]d

w2
1e
−u1w

2
1 dw1, . . . ,

∫
[0,1]d

w2
de
−udw

2
d dwd

]
,

(76)

so we have G(u) ≤ 0 for any u ∈ [0, 1]d and thus the exact minimizer is u∗ =
(1, . . . , 1) for this problem.

The reference objective function value can be computed by

F (u) =

∫
[0,1]d

d∑
i=1

e−uiw
2
i dW =

d∑
i=1

∫
[0,1]

e−uiw
2
i dwi. (77)
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At the minimizer, we have the exact objective

F (u∗) = d

∫
[0,1]

e−w
2
i dwi = d(F(1)−F(0)) (78)

where F is the cumulative distribution function.
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Figure 5: Compute the additive example with d = 50.

Here, we apply the ’optimize then discretise’ approach to solve the problem.
We use ’L-BFGS-B’ method in scipy.optimize package as our solver. We apply
the dimension-adaptive sparse grid method to computing the objective func-
tion while use the Monte-Carlo method to approximate the high dimensional
integrals involved in computing the gradient.

We still have the approximated gradient Ḡ(u) ≤ 0 for any u ∈ [0, 1]d. This
is because the integrand of each entry of the gradient is non-positive and only
positive weights are used in the Monte Carlo method. Thus, no matter how
many samples used in the Monte Carlo method, we will always get a descent
direction at each step during optimization process. It is noteworthy here that
both low level sparse grid method and dimensional-adaptive sparse grid method
with large ε may change the sign of integral approximated and therefore lead to
wrong search direction.

In the example, we only use the Monte Carlo method with 10 samples to com-
pute the gradient components. In order to increase the accuracy in minimum,
when we approximate the objective function, we increase samples in the Monte
Carlo method and decrease ε in the termination condition of the dimension-
adaptive sparse grid. The result shows all of three methods achieve the exact
minimizer as we expected. The errors in minimum of two dimension-adaptive
approaches drop much faster than the Monte Carlo method.

7.2 Application to stochastic control

In this section, we illustrate our dimension-adaptive sparse grid method with an
instance of a discrete time open-loop stochastic control problem. The general
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form of such control problem can be found in Bertsekas [1]. The control problem
is described by following discrete time dynamic system

xi+1 = ψi(xi, ui, wi), i = 0, . . . , d− 1 (79)

Here xi and ui are states and controls respectively where x0 is given. wi are
disturbances. Here we only consider a special case when the states, the controls
and the disturbances are in one dimensional space. When the disturbances in
the system are unknown, we usually model them as i.i.d. random variables Wi

with given probability density function. In this case, the open-loop means the
controls ui do not depend on the disturbances [21] and we can further write the
dynamic system in its random form:

Xi+1 = ψi(Xi, ui,Wi), i = 0, . . . , d− 1. (80)

If we further define the vectors of states,controls and noises, i.e.,

X = (x0, . . . , Xd−1), u = (u0, . . . , ud−1), W = (W0, . . . ,Wd−1), (81)

then we can rewrite the dynamic system as

X = Ψ(X,u,W ). (82)

where Ψ is a function can be derived from ψi.
Our task now is to determine what is the ’best’ control for the dynamic

system (80) or (82) to minimize the expected cost

E [Φ(u,X)] (83)

where Φ is a given function.
Here we focus on the case when X can be solved explicitly from the dynamic

system (82), that is,
X = ξ(u,W ). (84)

In this case, the original problem can be reduced into the standard form of the
stochastic optimization problem discussed in the paper, namely,

min
u∈U

E [h(u,W )] , (85)

where
h(u,W ) = Φ(u, ξ(u,W )). (86)

The integral form of the expected cost and its surrogate with N quadrature
points are ∫

Rd

Φ(u, ξ(u,w))p(w) dW ≈
N∑
j=1

ciΦ(u, ξ(u,wj))p(wj). (87)

In order to illustrate the computational performance of our approach, we con-
sider a classical example with linear dynamic system

X = AX +Bu+ CW + x0e0. (88)
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and the quadratic objective function Φ

Φ(u,X) = uTPu+ xTQx (89)

where A, B, C, P and Q are given d×d matrices and x0 is the given initial value.
By solving (88), we get ξ(u,W ) = (I − A)−1(Bu + CW + x0e0). Combining
the expression of ξ(u,W ) with (89), we know that h(u,W ) is again a quadratic
function.

The exact solution can be derived by using the certainty equivalence princi-
ple [1]. According to the principle, the solution of the stochastic control problem
is the same as that of a corresponding deterministic problem when the objec-
tive function is quadratic and the constraints are linear. That means we can
get the reference solution by numerically solving the deterministic problem(see
appendix).
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Figure 6: Compute the additive example with d = 50.

We test a 7 dimensional problem. We use an asymmetric distribution beta(2, 3)
here. We will get the exact solution with only rounding errors if we use a sym-
metric distribution. This is because the symmetric construction of the sparse
grid will lead to the cancellation of the quadrature points pairs. We still use
BFGS method as our optimization solver. The computational results are shown
in the Figure 7.2. We compare the errors of the 9 different methods. They
are product trapezoidal rule, the average of 10 runs Monte Carlo, three sparse
grid method and three dimension adaptive sparse grid. We only record the data
when sparse grid method and dimension adaptive sparse grid method start to
converge. As can be seen from the figure, the dimension adaptive sparse grid
methods converge faster than classical sparse grid methods for all three univari-
ate rules. The results of sparse gird methods are much better than trapezoidal
product rule and Monte Carlo method.

In Figure 7, we test our stopping criterion for the stochastic control problem
with quadratic cost function and linear dynamic system. For both 6D and 7D
examples, our method successfully predicts that we should stop at 7th iteration
for 6D problem and 5th iteration for 7D problem.
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(a) Clenshaw Curtis with d = 6 (b) Clenshaw Curtis with d = 7

Figure 7: Solve the stochastic control problem.
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8 Conclusions

We apply the Newton-type methods in solving the stochastic optimisation prob-
lem and the dimension-adaptive sparse grid quadrature is used in approximating
the integrals involved. In fact we can use more flexible discretisation scheme
during the computation if we apply the OTDM. The dimension-adaptive sparse
grid quadrature can effectively reduce the computational cost when we use it to
compute an integral of which the dimensions are not equally important. When
we applied it to solve the stochastic optimisation problem, we find it is more
suitable to be used in the OTDM compared with the DTOM. This is because the
OTDM allows us to choose ’best’ downset in the dimension-adaptive sparse grid
formula at each iteration and thus fully exploit the potential of the dimension-
adaptive approach. The convergence of the OTDM can be make sure under the
condition of Theorem (5.1). We give the condition when the convergence of our
method might break down which leads to a rough stopping criterion. A good
stopping criterion is crucial for reducing the computational cost when we solve
high dimensional stochastic optimisation problems. We provide another more
accurate and practical stopping criterion which only needs reasonable additional
computation. We focus on the convex objective function in this paper. For non-
convex problems, our approach can only find an approximated local minimizer.
In order to solve more general stochastic optimisation problems, other solvers
will be taken into consideration in the future research.
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