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With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the cou-
pling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be 
excited accompanying a strong near field enhancement that decays in a subwavelength scale, which have potential applications in 
the surface-enhanced Raman scattering, biosensor, optical communication, solar cells, and nonlinear optical frequency mixing. In 
the present article, we review the Green’s matrix method for solving the surface plasmon resonances and near field in arbitrarily 
shaped nanostructures and in binary metallic nanostructures. Using this method, we design the plasmonic nanostructures whose 
resonances are tunable from the visible to near-infrared, study the interplay of plasmon resonances, and propose a new way to 
control plasmonic resonances in binary metallic nanostructures. 
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Near field concerns the evanescent wave bound to a nanos-
tructured material surface that decays exponentially within a 
subwavelength [1,2]. At the metallic-dielectric interface or 
in the isolated metallic nanostructure, due to the existence 
of collective oscillations of free electrons, surface plasmons 
[3–5] are excited and are accompanied with the enhance-
ment of optical near field. The large near field at the surface 
comes from the electric field carried by the metal 

(
d d m m
E Eε ε⊥ ⊥= ), which is optimized by a proper matching 

of the geometry, the incident light, the metallic electric 
permittivity and dielectric environment. Nanostructures of 
noble metals strongly scatter and absorb light when the sur-
face plasmon resonance (SPR) is excited [6]. The resonance 
frequency and intensity are dominated by the distribution of 
the polarization charge across the nanostructure [7]. This 
resonant enhancement has promoted many important appli-
cations, such as surface-enhanced Raman scattering [8],  
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biosensors and nanometer plasmonic waveguides [9–12], 
optical antennas [13], solar cells [14,15], nonlinear optical 
frequency mixing [16–18] and so on.  

Currently, we can see a rapidly expanding array of me-
tallic nanostructures. With the development of nanofabrica-
tion and nanolithography techniques, various metallic 
nanoparticles, such as nanospheres, nanoshells, nanorices, 
nanorings, nanostars, nanocages and nanotriangles, have 
been successfully fabricated [9]. For the nanostructures 
smaller than the electron mean-free path of the bulk metal, 
the dielectric permittivity becomes position-dependent. 
Generally, when the scale of nanostructure is larger than 10 
nm, dielectric permittivity is approximately looked as posi-
tion-independent. Nanorods and nanostrips have attracted 
particular attention because the longitudinal plasmon ab-
sorption bands are tunable with their aspect ratio changing 
from visible to near-infrared [19–21]. Xia and coworkers 
have managed to synthesize 100-nm-length nanobars and 
studied their scattering spectra [22]. Due to the adjustability 
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in geometry, metallic nanostrips can be used to assemble 
various plasmonic nanoparticle-based devices [13,21]. By 
controlling the core-shell ratios of nanoshells, resonances 
are tuned from the visible to infrared [9]. The nanocrescents 
have shown multiple, adjustable resonances and strong, 
enhanced near field due to their unique structure with tips 
and ring [23]. Simultaneously, based on the near field cou-
pling among nanoparticles, red and blue shifts of resonances 
have been reported [24–27] as well as the scaling rules of 
these shifts [28,29]. The interplay of SPRs within metallic 
nanoparticles with different material parameters has been 
studied [30]. In addition to using the geometry and ar-
rangement of nanostructures to adjust resonances, the use of 
their material parameters to control their plasmonic proper-
ties has also been proposed [31]. In particular, when both 
kinds of nanostructures are metallic, their plasmonic prop-
erties are greatly modified due to the existence of free elec-
trons in the neighboring metal.  

There are several ways to solve the SPR of metallic 
nanostructure, including the finite-difference time domain 
method (FDTD) [32], discrete dipole approximation (DDA) 
[33], Mie theory [34], Green’s tensor method [35], the 
modified hybrid model [36] and spectral representation 
[37]. For FDTD, DDA and Green’s tensor method, with 
given geometrical and material parameters, the information 
concerning optical near field can be calculated. Next, by 
scanning a wide wavelength region, their absorption and 
extinction peaks can be obtained. Mie theory and the modi-
fied hybrid model are generally used to deal with the sphere 
and spherical symmetry structure. Finally, the spectral rep-
resentation is unlikely to spread over an arbitrarily shaped 
structure due to its quite complex integral form. By com-
bining the Green’s tensor method with Green’s function 
formalism in the quasistatic limit [38], we have developed 
the Green’s matrix method (GMM) to deal with the surface 
plasmon resonance and near field in the arbitrarily shaped 
subwavelength metallic structures and in binary metallic 
nanostructures [30,39]. The core of the Green’s matrix 
method is to solve the eigenvalues and eigenvectors of 
Green’s matrix, and these eigenvalues and eigenvectors 
correspond directly to the resonant properties of the system. 
The method provides a powerful tool for plasmonic optics. 
In the following, we will review the Green’s matrix method, 
and its applications in the plasmonic resonance control and 
functional nanostructure design.  

1  Green’s matrix method  

In this section, the salient properties of Green’s matrix 
method in an arbitrarily shaped metallic cluster and in bi-
nary metallic nanostrcutures are reviewed [30,39]. Consider 
an arbitrarily shaped subwavelength structure with the elec-

tric permittivity ε(r,ω) embedded in the homogeneous bulk 

material ε0(ω). These subwavelength clusters are not neces-

sarily inter-connected, but the tensor ε(r,ω)(= ε(r,ω)− ε0(ω)) 
vanishes outside the clusters. The electric permittivity 

ε(r,ω) is complex and frequency dependent in real metal. If 

a monochromatic incident field E
0(r) (with the usual e−iwt 

time dependence throughout this paper) impinges on the 
system, without any approximations in the Maxwell equa-
tions, the scattered field E(r) is a solution of the propagation 
equation:  
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0
( ) ( ) ( ) ( , ) ( ) 0,

s
E k E k Eε ω ε ω−∇×∇× + + =r r r r   (1) 

where k is the vacuum wavenumber. With Green’s tensor in 
a three dimensional system [40]  
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where R = R = r r′−  and k0
2= k

2ε0(ω), the field E(r) at 

any point r satisfies the Lippmann-Schwinger equation 
[35,41]:  

( ) ( ) ( )0 2 0( ) ( ) d , , , ,
s

V

E E k Eω ε ω′ ′ ′ ′= + ⋅∫r r r G r r r r    (3) 

where V denotes the clusters subspace. The replacement of 
the traditional boundary conditions with the self-consistent 
coupling of all source points makes the Green’s tensor 
method a powerful tool in dealing with various geometri-
cally complex and subwavelength materials [1].  

If the clusters subspace V is divided into N pieces of the 

volume δV (with δV <<V), eq. (3) becomes [39]  

( ) 0 0

,
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s r r
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with 0 2 0( , , ) ( , , )G Vk Gω δ ω′ ′=r r r r  and within the sub-

space  ( , ) ( , )
s s

ε ω ε ω′=r r . This may be rewritten as  
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           (5) 

where s=
0

1

( , ) ( )ε ω ε ω−r
. 0
G , a 3N×3N matrix, is called 

the Green’s matrix. Because 0
G  is symmetrical, mathe-

matically, there are 3N real eigenvalues. Physically, only 
those eigenvalues with the large residue of electric field 
correspond to the strong resonances, and the cooperation of 

positive permittivity (here ε0=1.0) and negative permittivity 
leads to the plasmonic resonances. 

In the clusters subspace, the electric field ( )E r , which is 

a 3N×1 matrix, has the general form of [39] 

3
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where Rn is the right eigenvector of the nth eigenvalue of 
0

G . By substituting eq. (6) into eq. (5) and multiplying by 

the left eigenvector Ln(=Rn
T), ( )E r  reads  

03

1
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n
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For any point r outside the nanoclusters, we have  
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Hence the near field as well as the far field can be analyti-
cally expressed.  

Without loss, when s approaches one of the eigenvalues 
sn, i.e. s→sn, the electric fields diverge to infinity. Those 
eigenstates (or resonances) with the strong near field are 
meaningful and have some applications [8,10–13,16,17,42]. 
To select those resonances, we define the resonance capac-
ity of each sn in view of the electric field energy inside the 
nanostructures as [39]  
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ε ε ω= + . The value of Cn quantitatively ex-

presses the ability of free electrons in metal to gather elec-
tromagnetic energy from the environment. By means of the 
resonance capacity, we can not only select those resonances 
with strong near fields, but also quantitatively compare the 
resonance abilities among various subwavelength structures. 
Conceptually, the extinction peaks of far fields correspond 
to those resonances with high resonance capacities.  

The GMM can be easily extended to a binary nanostruc-
ture system [30]. When an arbitrarily shaped binary struc-

ture with dielectric permittivities ε1(r,ω) and ε2(r,ω) is em-

bedded in a homogeneous bulk material ε0(ω), the tensors 

become εsi(r,ω) (=εi(r,ω)−ε0(r,ω) for i = 1 or 2) and vanish 
outside the structures. Via the same transformations, the 
Green’s matrix becomes [30]  
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When s approaches one of the eigenvalues sn, i.e. s→sn, in 
binary nanostructures, for each sn, the joint resonance ca-
pacity reads [30]  
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which has the same physical meaning as discussed in the 
one-component nanostructure. 

2  Plasmonic structure design  

Using Green’s matrix method and the resonance capacity, 
the experimental result of nanoantennas has been success-
fully reproduced [13,39]. The resonance capacity for a cer-
tain structure-type can be obtained, which makes it possible 
to tailor the plasmonic properties in the selected wave-
length. We have explored the rectangular-type subwave-

length metallic structures (l < λ/15) at the wavelength λ= 
632.8 nm [39]. Figure 1 displays the resonance capacity 
distributions of different rectangular structures and polar-
ized fields. For a 28 nm×28 nm×28 nm cube, there are 6 
main resonance peaks in Figure 1(b), roughly in line with 
the results of dipole-dipole approximation [43]. If there is a 
large spatial extension in the field polarized direction and 
squeezing in the perpendicular direction, resonance posi-

tions are then shifted to the region s∈ (−0.2, 0.0) (to which 
the dielectric constants of noble metals can have access) and 
only one main peak exists. The immunity of resonance ca-
pacity distribution to the wavelength in the sub-wavelength 
structures is also discussed. On the one hand, for a definite 
structure, its resonance capacity distribution does not vary 
with the volume zoomed in or out in a quasistatic situation l 

<< λ. On the other hand, resonance capacity distribution 
varies only slightly with increasing incident wavelength. 
These points are very helpful in designing plasmonic 
nanostructures.  

Great efforts have been made seeking plasmonic geome-
tries that are widely tunable at the resonance wavelength 
[9,19,44] and that have large near field enhancement 
[45,46]. When the size of nanostructure is large enough to 
break through the quasistatic limit, its resonance capacity 
will be greatly modified. The dependence of resonance 

wavelength λR on the geometry of cross section in gold  
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Figure 1  Resonance capacity of a set of rectangular subwavelength 
structures at 632.8 nm with Ex polarized field and Ez polarized field [39]. 
Here the fields propagate along the y axis. 

nanostrips indicates that the resonance wavelength of 
nanostrip is blue-shifted when the size perpendicular to the 
polarization direction becomes large. To understand this 
phenomenon, note that when a surface plasmon resonance 
happens, a thicker metallic nanostructure will draw more 
fields into the metallic part from the dielectric environment; 
then the resonance wavelength of a thicker nanostructure 
shifts to a shorter wavelength [47]. We consider a 
p-polarized plane wave (propagating in the x-y plane, polar-
ized along x-axis) to be incident at a nanostrip of l×w×h 
(length l along x-axis, width w along y-axis, and height h 
along z-axis) [21]. The dielectric permittivity parameters of 
noble metals are available from [48] and the dielectric con-
stant outside the nanostrip is 1. In Figure 2, a set of calcula-
tions are performed by changing the gold nanostrip length 
from 30 nm to about 120 nm. The dipolar resonance wave-
length of nanostrip is red-shifted when the length becomes 
large. Plasmon resonances can cover almost the entire visi-
ble to the near-infrared range. When the cross section is 
small, the resonance wavelength varies quickly as the length 
increases, especially in the infrared range. Therefore, to 
achieve a larger tunability, the nanostrips with smaller cross 
sections are preferred.  

The nanostrip dimensions can vary from several tens of 
nanometers to several hundred nanometers, so we use the 
nomenclature 30×10×10 series to refer to the nanostrips  

 

Figure 2  Calculated resonance wavelengths of gold nanostrips as a func-
tion of length and for different cross sections. Here the fields propagate 
perpendicular to the long edge l of nanostrips and are polarized parallel to 
this edge [21]. 

with l:w:h = 30:10:10. We find a linear tunability of the reso-
nance wavelength by zooming in or out on one nanostrip, as 
shown in Figure 3(a) [21]. When the nanostrip size is much 

smaller than the resonance wavelength, λR varies slowly due 
to the quasistatic limit [39]. Beyond this limit, with the size 

increasing proportionally, λR shifts to longer wavelength 
quickly. In prticular, a good linear tunability is achieved from 

about λR= 900 nm to λR= 1800 nm with the length ranging 
from l=210 nm to l=600 nm, where the relationship between 

λR and l can be fitted in a linear way: λR=a+b×l. Roughly 
speaking, we can conclude that a 1 nm change in the nanos-
trip length produces a shift of 2.6 nm in the resonance wave-
length after R= 900 nm. In addition to gold, the linear rela-
tions can also apply to silver and copper materials, as shown 
in Figure 3(b). This linear relation can be intuitively ex-
plained as follows. Beyond the electrostatic limit, the real part 
of dielectric constants meets the SPR changes as the nanos-
trip size increases; meanwhile, the real part of dielectric con-
stants for real metals changes with incident wavelength, as 
shown in the inset of Figure 3(b). The accordance of these 
two change rates results in a linear relationship.  

3  Plasmon control through binary metallic 

nanostrcutures  

The SPR properties of two closely packed metallic nanopar-
ticles with the same geometry and the same dielectric per-
mittivity have been widely investigated [24–29]. When the 
central line of both particles is parallel to the polarization of 
the electric field, the resonance wavelength red shifts and 
when the central line of both particles is perpendicular to 
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Figure 3  Calculated resonance wavelengths of gold nanostrips with three aspect ratios (the solid lines are linear fits to the data points from l = 210 nm to l 
= 600 nm) (a) and the 30×10×10 nanostrip series for gold, silver, and copper (b). The insets show the real parts of the dielectric constants [21]. 

the polarization of the electric field, a blue-shift occurs. It is 
known that the resonance occurs at the matching conditions 
of the geometry, incident light, metallic permittivity and 
dielectric environment. Thus, the position and intensity of 
the resonances can be affected by neighboring nanoparti-
cles. By introducing the difference permittivity ratio 

η= (ε2−ε0)/(ε1−ε0), the GMM for computing surface plas-
mon resonances is extended to binary nanostructures [30]. 
Based on the near field coupling, the interplay of plasmon 
resonances between two closely packed nanostrips is inves-

tigated. At a fixed wavelength, with the varying η, the 
resonances exhibit different regions: the dielectric effect 
region, the resonance chaos region, the collective resonance 
region, the resonance flat region, and the new branches re-
gion [30]. Simultaneously, the avoiding crossing and mode 
transfer phenomena between the resonance branches are 
observed. These findings are helpful to controlling the 
plasmonic resonances of subwavelength structures.  

As shown in Figure 4(a), when the central line of both 
nanostrips is parallel to the polarization of the external elec-
tric field, we call it the parallel case, whereas when the cen-
tral line is perpendicular to the polarization of the electric 
field, we call it the perpendicular case. Here the input 

wavelength is λ = 632.8 nm, the size of each nanostrip is 60 
nm× 20 nm× 20 nm, and both gaps are 10 nm with a 5 nm 
discretization mesh. The incident electric field is propagat-
ing along the z direction and polarized along the x direction. 
With calculations of the near field distributions associated 
with resonances, we have selected the xy plane 10 nm above 
the nanostrips and included imaginary parts of dielectric 
constants of 0.15i in the parallel case and 0.05i in the per-

pendicular case. At λ= 632.8 nm, for a single 60 nm × 20 

nm × 20 nm nanostrip, there is only one resonance at ε1(ω) 
≈ −11.7, which corresponds to the gold material [39].  

Now let us outline the main results of the parallel case 
[30], and clarify the mode classification and the nomination 

of resonance branches in the s-η diagrams in Figure 4. Four 
main branches represent 4 types of resonances associated 
with nanostrip 1, whose intensities are expressed as C1. 

When η < 0, i.e. nanostrip 2 is a dielectric being closely 
located to the resonant nanostrip 1, resonances are slightly 
affected by the dielectric nanoparticle. Thus, this is the di-
electric effect region, flagged as branch 1. However, when 

nanostrip 2 is metallic, i.e. η > 0, there will be a large in-
fluence on the resonant properties of metallic nanostrip 1 
due to the existence of free electrons in metallic nanostrip 2. 

When η∈ [0, 0.95], the resonance capacity of nanostrip 1 is 

very sensitive to η, which is called the resonance chaos re-

gion, marked as subbranch 21. For η∈ [0.65, 1.3], i.e. when 
two metallic nanostrips have comparable dielectric permit-
tivities, collective resonances occur and this is called the 
collective resonance region, marked as subbranch 22. When 

η > 1.5, the resonance capacity becomes large and stable, 
called the resonance flat region and marked as subbranch 

23. Finally, when η> 3.0, the new branches 3 and 4 appear, 
called new branch region. The details of each region are 
given below [30].  

Dielectric effect region.  In this region, resonances are 
dominated by nanostrip 1 and only marginally affected by the 
dielectric nanostrip 2 because the electromagnetic wave can 

penetrate the dielectric. At approximately η = −1.56, there is 
an avoiding crossing between subbranches 11 and 12 in Fig-
ure 4(b) and we observe a minimum resonance capacity in 

Figure 4(c). Simultaneously, near η = −1.56, when the branch 
11 is transferred to branch 12, the splitting of SPR is also 

found, i.e. for one η, there are two close large resonances. 
Near field distributions around the area A are illustrated in 

Figure 5(a). With η decreasing from −1.5 to −1.6, there ap-

pears a depression in the intensity of near fields at η = −1.56 
and the near fields are localized around the nanostrip 1.  

Resonance chaos region.  It is flagged as subbranch 21. 
Now the resonance capacity of nanostrip 1 is very sensitive 
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Figure 4  (a) Scheme of two 60 nm×20 nm×20 nm nanostrips for parallel and perpendicular cases. Resonance combination for the parallel case with vary-

ing η: (b) resonance branches s, (c) resonance capacity for nanostrip 1 and (d) resonance capacity for nanostrip 2 [30]. 

to η; although we could not find explicit features, the reso-
nances are clearly dominated by nanostrip 1 under the con-

dition |ε1|> |ε2|. This “chaotic” phenomenon may result from 
the very high density of branches. It is not easy to classify 
each resonance subbranch and we have only selected those 
with the strongest resonances. Figure 5(b) illustrates the 

near field distributions near the area B at η = −0.30, 0.36, 

and 0.40, and the near field sensitivity to η is clearly shown.  
Collective resonance region.  When the dielectric per-

mittivities of two nanostrips have comparable values, the 
following characterization of the collective resonances can 

be made. That is subbranch 22. When η = 1, ε1 = ε2 = 
−15.32, if the permittivity region is mapped to the wave-
length region, compared with the result of a single nanos-
trip, there is a large red-shift in the resonance frequency 
[24–27]. The detailed near field distributions around area C 

are illustrated in Figure 5(c). It is noted that for η = 1 the 
strong near fields are distributed outside of the two nanos-
trips, rather than in the center of them. If we choose the XY 
plane within the metal, the electric field is enhanced within 
the gap, in line with the nanoantenna results [13].  

Resonance flat region.  Following the collective reso-
nance region, the resonance enters the resonance flat region, 

marked as branch 23. We have found that, though |ε1| < |ε2|, 
the resonances of nanostrip 1 dominate the system. This is 

different from what was found in branch 21, where |ε1| > |ε2| 

and the nanostrip 1 dominates. Figure 5(d) illustrates the 
near field distributions around the area D.  

New resonance branches.  When η > 3.0, near branch 
23, the new branches 3 and 4 emerge. Branch 23 disappears 
and the main resonant behavior is determined by branches 3 

and 4. In particular, at η = 3.4, the resonance capacities of 
surface plasmon in branch 23, branch 3 and branch 4 have 
almost the same values, exhibiting resonance splitting or 
multiple resonance phenomena. Previously, the multiple 
resonance of surface plasmon has been reported in the 
nanocrescent and C-type structures [49,50]. It is found that 

near η = 2.8 the avoiding crossing and mode transfer phe-
nomena between branch 41 and branch 42 appear. We note 
as well that within the quasistatic limit the same phenome-
non of dielectric resonance occurs [51,52].  

Except for the disordered subbranch 21, for one sub-
branch, there is always a smooth curve of resonance capac-
ity that starts from zero, passes the maximum value, and 
finally reaches to zero again; and typically one branch is up 
and another branch down, as shown in Figure 4(c). For a 
large difference between both permittivities, we observe 
that generally one particle dominates the resonance. How-
ever, it is not always the metallic particle with the largest 
permittivity that determines the resonances. Sometimes, the 
nanoparicle with the smallest permittivity dominates. While, 
in the perpendicular case, there are about 4 main branches, 
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Figure 5  Near field distributions above 10 nm of nanostrips around area A (a), area B (b), area C (c), and area D (d) [30]. 

but it is very difficult to distinguish those subbranches. 
Branch 1 is still the dielectric effect region, branch 2 
roughly includes the resonance chaos region, collective 
resonance region, and resonance flat region, and branches 3 
and 4 belong to the new branches regions. Compared with 
the parallel case, the resonance behavior of the perpendicu-
lar case is more complicated [30].  

Investigation on the interplay of plasmonic resonances 
reveals that plasmonic resonances can be controlled by ma-

terial parameters ε1 and ε2. For binary three-strip nanos-
tructures, near fields within the gaps and at the ends of 
nanostrips are greatly enhanced as a result of the influence 
of neighboring metallic material. Then, along each reso-
nance branch, resonances in the dielectric permittivity re-
gion are mapped to the wavelength region of gold [31]. By 

adjusting material parameters ε1 and ε2, the resonance 

wavelength is tuned from λR = 500 nm to λR = 1500 nm; 

whereas for a single nanostrip it is only at λR = 630 nm. We 

also find that comparable permittivity parameters ε1 (or ε2) 

and εau(ω) can do a good job of controlling the resonance 
wavelength and intensity, whereas the high dielectric per-
mittivity of neighboring metal has an advantage of produc-
ing a giant enhancement of the near field. These findings 
will provide new insights into hybrid plasmonic device de-
signs such as for plasmonic sensors.  

For binary three-strip nanostructures, gold is used in two 

cases: (i) Au is used in two outer nanostrips and ε2 in the 
middle strip, and (ii) Au is used in the middle nanostrip and 

ε1 in the two outer strips, the results of which are shown in 

Figures 6 and 7. Then by adjusting ε2 in case (i) and ε1 in 
case (ii), plasmonic resonances can be well controlled [31]. 
We first consider the situation where a dielectric material is 
used to control the resonances of the metallic material. It is 
seen in branch 1 of Figures 6(a) and 7(a) and in branch 2 of 
Figures 6(b) and 7(b) that the resonance wavelength is al- 
most unchanged and the resonance capacity only has a very 
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Figure 6  Plasmonic resonances of Au in a parallel binary three-strip nanostructure as a function of ε2 in the middle strip (a) and of ε1 in both outer strips (b) 
[31]. 

small modulation with the varying ε1(ε2). Because the elec-
tromagnetic wave can penetrate a dielectric, it is not suitable 
to adjust the plasmonic resonances.  

Comparing to εau (632.8 nm) = −11.78, an excessively 

large value of ε1 (or ε2) or an excessively small value of 

ε1(or ε2) has little effect on the resonance wavelength, but 
has a large effect on the resonance capacity. In the parallel 

case, as shown in Figure 6, when ε2 (or ε1) belongs to the  

region [−40, −20], the resonance wavelengths are changed 

from λR = 700 nm to λR = 725 nm (or around λR = 650 nm), 
and the resonance capacity can be modified greatly under 

the condition |ε2| (or |ε1|) > εau. For ε1 (or ε2) ∈ [−10, 0], the 
resonance wavelength of Au and the resonance capacity 
almost present no visible changes; in Figure 6(b), we cannot 
find strong resonances in the region. Then the perpendicular 
case is explored. The same things happen in Figure 7, only 

 

Figure 7  Plasmonic resonances of Au in a perpendicularl binary three-strip nanostructure as a function of ε2 in the middle strip (a) and ε1 in both outer 
strips (b) [31]. 



2616 GU Ying, et al.   Chinese Sci Bull   August (2010) Vol.55 No.24 

with different parameter regions. When ε2 (or ε1) ∈ [−40, 

−15], the resonance wavelength is changed around λR = 630 

nm (or from λR = 650 nm to λR = 675 nm), and there is a 
comparable small resonance capacity under the condition 

|ε2| (or |ε1|) > |εau|. Finally, for ε1 (or ε2) ∈ [−5, 0], the reso-
nance wavelength and resonance capacity almost present no 

change. The region where the permittivity parameter ε1 (or 

ε2) is comparable with εau(ω) is discussed. In the parallel 

case as shown in Figure 6, when ε1 (or ε2) ∈[−20, −10], the 
resonance wavelength of Au can be tuned in a wide spectral 

region from λR = 650 nm to λR = 1000 nm, and multi-branch 
resonances coexist due to a strong interplay between two 
different materials. This multi-resonance phenomenon has 
some applications in the plasmonic device design [49,50]. 

In the perpendicular case, at about ε1 (or ε2) ∈ [−15, −5], 
and almost the same features of resonance branches are 
found, namely, the resonance wavelength can be tuned from 

λR = 500 nm to λR = 1500 nm, the resonance capacity has a 
large increment, and multi-branch resonances coexist. It is 
noted in Figure 7 that the resonance wavelength of Au can 

reach to λR = 1500 nm. Therefore we may conclude that, for 
this kind of binary three-strip nanostructure, the resonance 
wavelength and intensity can be well modulated in the re-

gion where the permittivity parameter ε1 (or ε2) can be 

competitive with εau(ω). 

4  Summary  

We have reviewed the Green’s matrix method of solving the 
plasmonic resonances and its applications to the plasmonic 
structure design and control. The well-designed nanostrips 
have realized a tunability from the visible to near-infrared in 
spectrum. In particular, a linear relation has been found be-
tween the nanostrip size and the dipolar resonance wave-
length. When both nanostructures are metal, the resonance 
properties are generally dominated by one of the metals or 
exhibited as a collective resonance of both metals. Through 
adjusting the material parameters, both the resonance 
wavelength and the resonance intensity can be well con-
trolled. In principle, the above phenomena could be probed 
by the scanning near-field optical microscope technique 
[53–56]. The method provides a powerful tool for plasmonic 
optics, such as for the design of subwavelength plasmonic 
structures, the guidelines for nanostructure-assisted fluores-
cence, SERS, and sensing, and the foundation of the design 
of hybrid plasmonic devices.  
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