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Abstract

In this paper we give an explicit description of an algorithm for finding all solutions
of a system of algebraic equations which is solvable and has finitely many solutions. This
algorithm is an improved version of a method which was deviced by B. Buchberger. By
a theorem proven in this paper, gcd-computations occuring in Buchberger’s method can
be avoided in our algorithm.

1 Introduction

The method of Gröbner bases was introduced by B. Buchberger in his 1965 Ph.D.thesis.
This work is accessible in [1]. His method, as its central objective, solves the simplification
problem for polynomial ideals and, on this basis, gives easy solutions to a large number of
other algorithmic problems.

In the present paper we use Gröbner bases for the solution of systems of algebraic equa-
tions. In particular, we deal with the following problem:

Given: F , a finite set of polynomials in the indeterminates x1, . . . , xn over a field K such that
F is solvable and has finitely many solutions. (A solution of F is an element b of K̄n

such that f(b) = 0 for all f ∈ F , where K̄ is the algebraic closure of K.)

Find: all solutions of the system F .

A first algorithm for reducing this multivariate problem to a univariate one by using
Gröbner bases appears in [1].

A second algorithm (see [2], Method 6.10) makes use of the fact that if the purely lexi-
cographical ordering is used every Gröbner basis G of a zero-dimensional ideal I consists of
finitely many polynomials
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G1,1 ∈ K[x1],

G2,1 ∈ K[x1, x2],

. . . . . .

G2,car2 ∈ K[x1, x2],

. . . . . .

Gn,1 ∈ K[x1, . . . , xn],

. . . . . .

Gn,carn ∈ K[x1, . . . , xn],

where car2 ≥ 1, . . . , carn ≥ 1, and the i-th elimination ideal of I is the ideal generated by
{G1,1, G2,1, . . . , Gi,cari

} (see [4]). Method 6.10 finds a solution (b1, . . . , bi, c) of the i + 1-th
elimination ideal by adjoining a zero c of the polynomial

gcd(Gi+1,1(b1, . . . , bi, xi+1), . . . , Gi+1,cari+1
(b1, . . . , bi, xi+1))

to the solution (b1, . . . , bi) of the i-th elimination ideal.
In this paper we prove a theorem which states that there exists a d ∈ K̄ and an r ∈

{1, . . . , cari+1} such that

d ·Gi+1,r(b1, . . . , bi, xi+1) = gcd(Gi+1,1(b1, . . . , bi, xi+1), . . . , Gi+1,cari+1
(b1, . . . , bi, xi+1))

and that the polynomial Gi+1,r can be easily found by a test for zero in an extension field
of K. Therefore, this theorem leads to an improved version of Method 6.10, in which the
gcd-computation is avoided.

In section 2 we introduce a few definitions. In section 3 a specification of the problem
and the explicit descriptions of the algorithm in [2] and of our improved version are given.
Furthermore, the theorem on which our method is based is presented. In section 4 we prove
this theorem.

2 Definitions

Throughout the paper K denotes an arbitrary field and K̄ the algebraic closure of K.
Let n be a natural number. By K[x1, . . . , xn] we denote the ring of all polynomials over

K in n indeterminates.
Let f be an element of K[x1, . . . , xn] and r an element of {1, . . . , n}.
We denote the degree of f in the variable xr by deg(f, r). For a non-constant f , there is a

first s such that f ∈ K[x1, . . . , xs]. Considering f as a polynomial in xs, we denote the leading
coefficient by lc(f).

Let H be a finite subset of K[x1, . . . , xn] and I an ideal in K[x1, . . . , xn].
By Ideal(H) we denote the ideal generated by H. The set

V (I) = { a ∈ K̄n | f(a) = 0 for all f ∈ I }

is called the variety of I. We denote the radical of I by
√

I and the set I ∩K[x1, . . . , xr] by
I/xr .



Let n be greater than 1 and b an element of K̄n−1.
By I(b, xn) we denote the set

{h(b, xn) ∈ K(b)[xn] | h ∈ I }.

By Hilbert’s basis theorem, we can choose a finite subset F = {f1, . . . , fm} of K[x1, . . . , xn]
such that Ideal(F ) = I. Clearly,

I(b, xn) = Ideal({f1(b, xn), . . . , fm(b, xn)}),

where the ideal on the right-hand side is formed in K(b)[xn].

For h, an element of K(b)[xn], the following conditions are equivalent:

1. h = gcd({f1(b, xn), . . . , fm(b, xn)}),

2. I(b, xn) = Ideal({h}) and h is normed.

We denote the uniquely determined h ∈ K(b)[xn] which satiesfies these conditions by
gcd(I, b).

Throughout the paper we fix the “purely lexicographical ordering” of the power products
of x1, . . . , xn. We denote it by �. Furthermore, we assume

x1 � x2 � . . .� xn.

We refer to [2] for the definitions of LeadingPowerProduct, SPolynomial, Gröbner basis, and
reduced Gröbner basis.

Let G be a reduced Gröbner basis.
Let Gr,1, . . . , Gr,carr be the polynomials in G that belong to K[x1, . . . , xr] but not to

K[x1, . . . , xr−1]. We suppose the order chosen in such a way that

LeadingPowerProduct(Gr,j)� LeadingPowerProduct(Gr,k) for j < k.

3 Solving Systems of Algebraic Equations by Using Gröbner

Bases

Throughout the following sections n is a natural number greater than 1.
In this paper we want to solve the following problem:

Given: F , a finite subset of K[x1, . . . , xn] such that I is zero-dimensional, where
I := Ideal(F ).

Find: V (I).

In [2] B. Buchberger presents the following algorithm for this problem:



Algorithm 1

input: F , a finite subset of K[x1, . . . , xn] such that I is a zero-dimensional ideal in
K[x1, . . . , xn], where I := Ideal(F ).

output: Xn, a finite subset of K̄n such that Xn = V (I).

G:=GB(F), where GB(F ) is the uniquely determined reduced Gröbner basis such
that Ideal(GB(F )) = Ideal(F ).

Comment: It is proven in [4] that Ideal(G)∩K[x1, . . . , xr] = Ideal(G∩K[x1, . . . , xr])
(for r = 1, . . . , n), where the ideal on the right-hand side is formed in K[x1, . . . , xr].
Therefore, the polynomials in G have their variables “separated”. G contains ex-
actly one polynomial in K[x1] (actually, it is the polynomial in Ideal(G) ∩K[x1]
with smallest degree). According to the definition in section 2 we denote it by G1,1.

The successive elimination can, then, be carried out by the following process:

X1 := { c | c ∈ K̄ and G1,1(c) = 0 }
for r := 1 to n− 1 do

Xr+1 := ∅
for all b ∈ Xr do

H := {Gr+1,s(b, xr+1) | s ∈ {1, . . . , carr+1} }
q:= greatest common divisor of the polynomials in H
Xr+1 := Xr+1 ∪ { (b, c) | c ∈ K̄ and q(c) = 0 }

Upon termination, Xn will contain all the solutions.

The improved version of this algorithm is based on the following new theorem which we
prove in the next section.

Theorem 1 Let l be an element of {2, . . . , n}, I a zero-dimensional ideal in K[x1, . . . , xn], G
the reduced Gröbner basis in K[x1, . . . , xn] such that Ideal(G) = I, and b ∈ V (I/xl−1

).
Then there exists a d ∈ K̄ such that

d ·Gl,minb
(b, xl) = gcd({Gl,1(b, xl), . . . , Gl,carl

(b, xl)}),

where minb denotes the minimum of the set

{ r | r ∈ {1, . . . , carl} and lc(Gl,r)(b) 6= 0 }.

Therefore, we can replace the instructions

H := {Gr+1,s(b, xr+1) | s ∈ {1, . . . , carr+1} }
q:= greatest common divisor of the polynomials in H

in Algorithm 1 by the instruction

q := Gr+1,minb
(b, xr+1)

and obtain the following algorithm:



Algorithm 2

input: F , a finite subset of K[x1, . . . , xn] such that I is a zero-dimensional ideal in
K[x1, . . . , xn], where I := Ideal(F ).

output: Xn, a finite subset of K̄n such that Xn = V (I).

G := GB(F )
X1 := { c | c ∈ K̄ and G1,1(c) = 0 }
for r := 1 to n− 1 do

Xr+1 := ∅
for all b ∈ Xr do

q := Gr+1,minb
(b, xr+1)

Xr+1 := Xr+1 ∪ { (b, c) | c ∈ K̄ and q(c) = 0 }

Note that for computing minb, where b ∈ V (I/xr−1), one has to check only whether

(lc(Gr,1))(b) = 0,

(lc(Gr,2))(b) = 0,

. . . . .

till the first s is found such that

(lc(Gr,s))(b) 6= 0.

4 Proof of Theorem 1

For proving Theorem 1 we first show a stronger result for reduced Gröbner bases of zero-
dimensional primary ideals:

Theorem 2 Let l be an element of {2, . . . , n}, Q a zero-dimensional primary ideal in
K[x1, . . . , xn], and G the reduced Gröbner basis in K[x1, . . . , xn] such that Ideal(G) = Q. Then

Gl,1(b, xl) = . . . = Gl,carl−1(b, xl) = 0 (1)

for all b ∈ V (Q/xl−1
).

Proof:
We first show that (1) holds for some b ∈ V (Q/xl−1

):

We assume, to the contrary, that

for every b ∈ V (Q/xl−1
)

there exists an r ∈ {1, . . . , carl − 1} with Gl,r(b, xl) 6= 0. (2)

In this proof we denote (G ∩K[x1, . . . , xl]) \ {Gl,carl
} by F .

Let f1, f2 ∈ F .
By Method 6.9 in [2], there exists a natural number s such that

LeadingPowerProduct(Gl,carl
) = xs

l .



Therefore,
deg(f1, l) < deg(Gl,carl

, l) and deg(f2, l) < deg(Gl,carl
, l).

From this and the definition of the S-polynomial we obtain

deg(SPolynomial(f1, f2), l) ≤ max{deg(f1, l), deg(f2, l)} < deg(Gl,carl
, l).

Thus, SPolynomial(f1, f2) reduces to zero modulo F . By Theorem 6.2 in [2],

F is a Gröbner basis. (3)

Obviously,
F is reduced. (4)

G ∩ K[x1, . . . , xl−1] is a reduced Gröbner basis because SPolynomial(g1, g2) reduces to
zero modulo G ∩K[x1, . . . , xl−1] for all g1, g2 ∈ G ∩K[x1, . . . , xl−1]. By Lemma 6.8 in [2],

Ideal(G ∩K[x1, . . . , xl−1]) = Q/xl−1
.

Thus, by Method 6.9 in [2],
V (Q/xl−1

) is finite. (5)

Let (c1, . . . , cl) ∈ V (Ideal(F )). Then

f(c1, . . . , cl−1) = 0 for every f ∈ G ∩K[x1, . . . , xl−1].

So, by Lemma 6.8 in [2],
(c1, . . . , cl−1) ∈ V (Q/xl−1

).

From assumption (2) we know that there exists an r ∈ {1, . . . , carl − 1} with

Gl,r(c1, . . . , cl−1, xl) 6= 0.

Thus,
{ a | a ∈ K̄ and (c1, . . . , cl−1, a) ∈ V (Ideal(F )) } is finite.

By this fact and (5),
V (Ideal(F )) is finite. (6)

Thus, by (3), (4), and (6), F is a reduced Gröbner basis and V (Ideal(F )) is finite.
On the other hand, there exists no polynomial f in F such that

LeadingPowerProduct(f) ∈ K[xl].

This is a contradiction to Method 6.9 in [2].

Thus, in contrast to assumption (2), there exists a b′ ∈ V (Q/xl−1
) with

Gl,1(b
′, xl) = . . . = Gl,carl−1(b

′, xl) = 0.

From this we now deduce that (1) holds for all b ∈ V (Q/xl−1
):

Let b′′ ∈ V (Q/xl−1
).



It is easy to prove that Q/xl−1
is a zero-dimensional primary ideal in K[x1, . . . , xl−1].

Hence, √
Q/xl−1

is a zero-dimensional prime ideal.

Let k ∈ {1, . . . , carl−1}.
We write Gl,k in the form

pj(x1, . . . , xl−1)x
j
l + . . . + p0(x1, . . . , xl−1),

where j := deg(Gl,k, l). As

V (Q/xl−1
) = V (

√
Q/xl−1

)

(see [5], section 131, p. 167), b′ and b′′ are elements of V (
√

Q/xl−1
). Thus,

ps(b
′) = 0 iff ps ∈

√
Q/xl−1

iff ps(b
′′) = 0 for all s ∈ {0, . . . , j}

(see [5], section 129, p. 162). Hence,

Gl,1(b
′′, xl) = . . . = Gl,carl−1(b

′′, xl) = 0. •

Corollary 1 is an easy consequence of the previous theorem.

Corollary 1 Let l be an element of {2, . . . , n}, Q a zero-dimensional primary ideal in K[x1, . . . , xn].
Then there exists an f ∈ Q/xl

such that

f ∈ K[x1, . . . , xl]\K[x1, . . . , xl−1], lc(f) = 1, and gcd(Q/xl
, b) = f(b, xl) for all b ∈ V (Q/xl−1

).

Proof: Let G be the reduced Gröbner basis in K[x1, . . . , xn] such that

Ideal(G) = Q.

By definition,
Gl,carl

∈ K[x1, . . . , xl] \K[x1, . . . , xl−1].

We have proven that
lc(Gl,carl

) = 1.

Furthermore, by Lemma 6.8 in [2] and Theorem 2,

gcd(Q/xl
, b) = gcd({G1,1(b1), . . . , Gl,carl

(b, xl)}) = Gl,carl
(b, xl) for all b ∈ V (Q/xl−1

). •

A generalization of Corollary 1 is the next theorem.

Theorem 3 Let l be an element of {2, . . . , n}, I a zero-dimensional ideal in K[x1, . . . , xn],
and b ∈ V (I/xl−1

).
Then there exists an f ∈ I/xl

such that

f ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], (lc(f))(b) 6= 0, and gcd(I/xl
, b) = f(b, xl).



Before we give a proof of Theorem 3 we show the following lemma, which is required in
this proof.

Lemma 1 Let m be a natural number, J a zero-dimensional ideal in K[x1, . . . , xm], and

J = Q1 ∩ . . . ∩Qr

a reduced primary decomposition of J. Then

V (Qs) ∩ V (Qs′) = ∅ for s 6= s′.

Proof: We assume that there exists a

b ∈ V (Qs) ∩ V (Qs′) for some s, s′ ∈ {1, . . . , r}.

As V (Qs) = V (
√

Qs) and V (Qs′) = V (
√

Qs′),

b ∈ V (
√

Qs) ∩ V (
√

Qs′).

As
√

Qs and
√

Qs′ are zero-dimensional, b is a generic zero of
√

Qs and
√

Qs′ .
Let f ∈ K[x1, . . . , xm]. From

f ∈
√

Qs iff f(b) = 0 iff f ∈
√

Qs′

we obtain √
Qs =

√
Qs′ .

Hence,
s = s′,

because we assumed the primary decomposition to be reduced. •

Proof of Theorem 3:

Let Q1, . . . , Qr be zero-dimensional primary ideals in K[x1, . . . , xn] such that I/xl
= Q1/xl

∩
. . . ∩Qr/xl

is a reduced primary decomposition of I/xl
. From

I/xl−1
= Q1/xl−1

∩ . . . ∩Qr/xl−1
,

we have
V (I/xl−1

) = V (Q1/xl−1
) ∪ . . . ∪ V (Qr/xl−1

).

Without loss of generality, we assume that the primary ideals Q1, . . . , Qr are ordered in
such a way that there exists an s ∈ {1, . . . , r} with

b ∈ V (Q1/xl−1
), . . . , b ∈ V (Qs/xl−1

), b /∈ V (Qs+1/xl−1
), . . . , b /∈ V (Qr/xl−1

).

We define ht ∈ Q1/xl
∩ . . . ∩Qt/xl

such that ht ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1],
ht(b, xl) = gcd(Q1/xl

∩ . . . ∩Qt/xl
, b), and lc(ht) = 1 for every t ∈ {1, . . . , s} :



By Corollary 1, there exists an f ∈ Q1/xl
with

f ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], lc(f) = 1, and f(b, xl) = gcd(Q1/xl
, b).

Set h1 := f .

We assume that t ∈ {1, . . . , s− 1} and that ht is already defined.

Let f ∈ Qt+1/xl
such that

f ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], lc(f) = 1, and f(b, xl) = gcd(Qt+1/xl
, b).

Set ht+1 := ht · f .

From
gcd(Q1/xl

∩ . . . ∩Qt+1/xl
, b) ∈ (Q1/xl

∩ . . . ∩Qt/xl
)(b, xl) and

gcd(Q1/xl
∩ . . . ∩Qt+1/xl

, b) ∈ Qt+1/xl
(b, xl)

we obtain
ht(b, xl) divides gcd(Q1/xl

∩ . . . ∩Qt+1/xl
, b) and

f(b, xl) divides gcd(Q1/xl
∩ . . . ∩Qt+1/xl

, b).

Assume that there exists a c ∈ K̄ such that

ht(b, c) = f(b, c) = 0.

From the fact that ht(b, xl) divides every element of (Q1/xl
∩ . . . ∩Qt/xl

)(b, xl) and that f(b, xl)
divides every element of Qt+1/xl

(b, xl) we obtain

(b1, . . . , bl−1, c) ∈ V (Q1/xl
∩ . . . ∩Qt/xl

) ∩ V (Qt+1/xl
).

As
V (Q1/xl

) ∪ . . . ∪ V (Qt/xl
) = V (Q1/xl

∩ . . . ∩Qt/xl
),

we have a contradiction to Lemma 1.

Therefore, ht(b, xl) and f(b, xl) are relatively prime. Thus,

ht+1(b, xl) divides gcd(Q1/xl
∩ . . . ∩Qt+1/xl

, b).

Furthermore,
ht+1 ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1] and lc(ht+1) = 1.

From this and ht+1(b, xl) ∈ (Q1/xl
∩ . . . ∩Qt+1/xl

)(b, xl), it follows

ht+1(b, xl) = gcd(Q1/xl
∩ . . . ∩Qt+1/xl

, b).

We define q ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1] such that there exists an e ∈ K̄
with e · q(b, xl) = gcd(I/xl

, b) and deg(q, l) = deg(q(b, xl), l) :

We choose a pt ∈ Qt/xl−1
for every t ∈ {s + 1, . . . , r} such that

pt(b) 6= 0.

This is always possible, because b /∈ V (Qt/xl−1
) for all t ∈ {s + 1, . . . , r}.



Set q := ps+1 · . . . · pr · hs.

Obviously, q ∈ I/xl
. As

q(b, xl) = ps+1(b) · . . . · pr(b) · gcd(Q1/xl
∩ . . . ∩Qs/xl

, b) and ps+1(b) · . . . · pr(b) ∈ K̄ \ {0},

we know that
q(b, xl) divides gcd(Q1/xl

∩ . . . ∩Qs/xl
, b).

From hs ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1] and lc(hs) = 1 we obtain

deg(q, l) = deg(hs, l) = deg(hs(b, xl), l) = deg(q(b, xl), l). (7)

As I/xl
is a subset of Q1/xl

∩ . . . ∩Qs/xl
,

gcd(Q1/xl
∩ . . . ∩Qs/xl

, b) divides gcd(I/xl
, b).

Thus,
q(b, xl) divides gcd(I/xl

, b) and q ∈ I/xl
.

Hence, there exists an e ∈ K̄ such that

e · q(b, xl) = gcd(I/xl
, b). (8)

From q ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], (7), and (8) we obtain that

e · q ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], lc(e · q)(b) 6= 0, and (e · q)(b, xl) = gcd(I/xl
, b). •

By means of this theorem it is relatively easy to prove Theorem 1:

Proof of Theorem 1: Let q ∈ I/xl
such that

q ∈ K[x1, . . . , xl] \K[x1, . . . , xl−1], (lc(q))(b) 6= 0, and gcd(I/xl
, b) = q(b, xl).

We know that
g(b) = 0 for all g ∈ G ∩K[x1, . . . , xl−1],

q(b, xl) 6= 0, and

q reduces to zero modulo G.

Thus, there exists an f ∈ G ∩K[x1, . . . , xl] \K[x1, . . . , xl−1] such that

f(b, xl) 6= 0 and deg(f, l) ≤ deg(q, l).

Therefore,
deg(f(b, xl), l) ≤ deg(f, l) ≤ deg(q, l) = deg(q(b, xl), l).

As q(b, xl) divides f(b, xl), there exists an e ∈ K̄ such that

e · f(b, xl) = q(b, xl) = gcd(I/xl
, b).

From
deg(f(b, xl), l) = deg(q(b, xl), l) = deg(q, l) ≥ deg(f, l).



we obtain
lc(f)(b) 6= 0.

Thus,
deg(Gl,minb

(b, xl), l) ≤ deg(Gl,minb
, l) ≤ deg(f, l) = deg(f(b, xl), l).

On the other hand, f(b, xl) divides Gl,minb
(b, xl). Hence, there exists a d ∈ K̄ such that

d ·Gl,minb
(b, xl) = e · f(b, xl) = gcd(I/xl

, b).

From Lemma 6.8 in [2],

d ·Gl,minb
(b, xl) = gcd({Gl,1(b, xl), . . . , Gl,carl

(b, xl)}). •

In the case of two variables this result can be easily deduced from Lazard’s structure
theorem (see [3]).
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