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We will present later a geometrical view of certain classical methods, and other

new methods, some of which are non-polynomial in character. This presentation

is made to indicate the value of the general approach we have made. The parabolic

methods are special cases of what we have termed the parametric methods which

include certain methods of Adams, Milne, Moulton, Obrechkoff, Ritz, and

Galerkin, for example. Extension of results of this paper to higher order inte-

gration formulas is straightforward but would serve no useful purpose here as an

illustration of our new point of view.

The Advanced Numerical Analysis class of Mr. Hammer has recently carried

out rather extensive C.P.C. calculations to compare several methods for numerical

solution of the differential equation y' = x'1 + y2 with initial point (0, 1). For this

problem the third method here was superior to the simple trapezoidal method. It

is intended to publish these calculations separately. Mr. Orville Marlowe

carried out calculations on simple linear differential equations including y' = y

with initial point (0, 1) and concluded that here the third method was most

economical for a given accuracy, partly due to the fact that no iteration is needed

for linear equations.
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Solving Systems of Linear Equations with a
Positive Definite, Symmetric, but possibly

Ill-conditioned Matrix

Introduction. Often a system of linear equations to be solved has a matrix

which is known in advance to be positive definite and symmetric. The normal

equations for least squares fitting of a polynomial form such an example. However,

if the polynomial is of reasonably high degree, the matrix of the normal equations

is apt to be ill-conditioned. This may be seen by observing the origin of such

matrices. In general they are of the following form:

Ey.O ...  V r.N—1 V

i i i

Er.lV ...  V T .2JV-1 V v 3N

i i i

Here the superscripts are exponents, N is the degree of the polynomial, and the

Xi are the values of the argument at which the data is given. For sums of high
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powers the as< of largest magnitude tends to dominate and thus the last column

tends toward a multiple of the next to last column. Thus the determinant ap-

proaches zero as N increases, and the matrix becomes ill-conditioned. (See also

Herzberger [1].) It is well known that for a system of equations with an ill-

conditioned matrix, an erroneous solution can be obtained which seems to satisfy

the system quite well. (See e.g., Shaw [2], p. 23.)

Various measures of the ill-conditioning of a matrix have been proposed.

Perhaps the most common is the relative size of the determinant; those with the

smallest determinant being generally the most ill-conditioned. Other more precise

measures have been proposed, which assume knowledge of either the eigenvalues

or the inverse of the matrix. (See e.g., Taussky [3].) Among these are

(1) P{A) =
I A I min

and

(2) N(A) = - N(A)N(A~1).
n

Here A is the matrix of order n, X; its eigenvalues, and N(A) is the norm:

(3) N(A)

The larger P(A) or N(A), the more ill-conditioned is A.

The present paper describes a procedure for solving a system with a positive

definite, symmetric, matrix, which (especially when used in conjunction with the

Cholesky or square root method) involves little extra labor when the system is

well-conditioned, forewarns the solver if the system is ill-conditioned, and extends

somewhat the class of equations which can be satisfactorily solved without using

double precision in the computations. A measure for the condition of the system

of equations is proposed. Previous measures of condition have been only for the

matrix itself.

The Proposed Procedure. Let the system of equations to be solved be

(4) AX = B,

where A is assumed to be positive definite and symmetric. Let the eigenvalues

of A be

Xmin  = Xl < X2 <   - • *   < X« = Xmax

with corresponding eigencolumns Vi. The proposed procedure is to solve instead

the perturbed system

(5) {A + kl) Y = B

with matrix C = A + kl, where k is a small positive constant, and then compute

X from its series.expansion in Y. The matrix C will be shown in Appendix I to

be better conditioned than the matrix A. Present experience indicates that 102-s

and 103-8, where 5 is the number of decimal places being carried, are reasonable

values for k.
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08 SOLVING SYSTEMS OF LINEAR EQUATIONS

Since A = C — kl, then

(6) A-1 = O1 + kC~- + • • • + kmC-m~1 + • • • ;

i.e.,

(7) X m A~lB = C~lB + kC~2B + • • • + kmC~m~lB + ■■■

= Y+kC~lY+ ••• + (kC-^Y-r-

The eigenvalues of kC~~x are k/ (X,- + k), and 0 < k/ (X,- + k) < 1 for all i and for

k > 0, since all X,- > 0. Thus the series converges. If Xmi„ » k, then k/(X; + « 1

for all i, and the series converges rapidly.

An Easily Obtained Indication of the Condition of the System. The procedure

now is this: Using a value of k of one in the, say, next to last decimal place, Y is

computed by any method, such as the Cholesky or square root method, which

does most of the labor before the right member B is used. Then using Fas a new

right member, kC~l Y is computed. This again may be used as the right member

to compute the third term in the series. If at this point, it appears that further

terms would contribute nothing in the range of decimal places being carried, then

the implication is clear. The condition of the system must have been good, assum-

ing k was appropriately chosen. In other words, the perturbation of the diagonal

elements had small effect on the solution of the system. On the other hand, if

each term remains relatively large, then the system must have been quite ill-

conditioned, and probably no meaningful solution exists. If slow falling off of the

terms is observed, then the system is probably fairly ill-conditioned. Direct

application of Cholesky's method to the system would probably produce an

inaccurate solution. Even the accuracy of the Y computed is open to question.

Use of the Method to Improve an Approximate Solution. It should be noted

that, since

Ttl A\        ^max ,      t>//-"\        Xmax "4" k
P(A) = -—   and   P(C) =-—-

Am in Am in T

k must be approximately as large as Xmi„ or larger in order to appreciably improve

the condition of C over that of A ; while on the other hand, since k/(X,- + k) are

the eigenvalues which determine the convergence rate of the series, a k much

larger than Xmin will cause slow convergence. Thus only when A is fairly well-

conditioned is k Y accurate enough to be used as a new right member to compute

the second term in the series without computing instead B — AY, which equals

£Fby (5).
However, there exists a class of matrices A which cannot be successfully

inverted carrying a given number of decimal places, but for which the correspond-

ing matrices C can be successfully inverted. The latter can be used to improve

any approximate solution of (4). To see this, let Xo be an approximate solution

of (4). Compute B — AX0 accurately, and use this as a right member in the

system.

CZo = B - AX0.
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Let X be the true solution of (4). Then

C[_X - (X0 + Zo)] = CX - CXo - CZo = AX + kX- AX0 - kX0 - CZo
= B + kX - AXo - kX0 - CZo = k(X - Xo)

or

X - (Xo + Zo) = kC~l(X - Xo).

Since the eigenvalues of kC~l are all less than one, if A^i = X0 + Zo, and the

process is continued, then X, —> X. Since a significant inverse of C is available,

an approximate solution can be improved without limit. (In this connection, see

polachek [4].)

If Xo = Y, the above processes are formally equivalent, but the second one

does not have to contend with inaccurate right hand sides.

In computing B — AXi more decimal places than previously carried are of

course necessary. A desk machine is ideally suited to this purpose, as mulitplica-

tion is not rounded off. However, those automatic calculators which can select

the digits retained can also make this computation. Intermediate overflow will

not in general invalidate the computation, since B — AXi is a residual vector

and will be expected to be small.

For accelerating the convergence of the sequence Xi the 52-process of Aitken

[5, 6] and its extensions by Shanks £7] are especially appropriate. (See For-

sythe [8], p. 309-310).

A Measure of the Condition of the System. If the elements of A are scaled

for use by an automatic computer, then Xmax has certain well-known bounds, so

that P(A) can be large only if Xm;n is small. The significance of this is also seen if

B is expanded in terms of the eigencolumns Vi:

n

(8) B = £ biVi.

n

Then X = A~lB = 2~L biVi/\i. Since B is rounded off to a fixed number, say s,

of decimal places, the biVt are known to only s decimal places. If Xmin = 10~9,

then X can be determined to at most s — q decimal places. If the exact solution

of the given approximate system has no significant digits in this range, then no

significant solution is determined by the approximate system.

Moreover, the vanishing of bx will not eliminate completely the effect of a

small Xi = Xmin, since small changes in the elements of A and B will cause changes

in the X;, Vi, and

Thus for a properly scaled set of coefficients, it is the size of Xm;n which is the

essential criterion.

The foregoing analysis suggests that P(A) is a satisfactory measure of the

condition of the matrix A ; while on the other hand, the measure of the condition

of the system of equations AX = B could be taken as, say

P-(A,B) = mm

zZ\h\
+ P(A).
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100 solving systems of linear equations

Here the eigencolumns Vi are assumed to have been normalized. The purpose of

the denominator is of course to remove the effect of scaling the system.

Appendix I. Proof that C is better conditioned than A.

1. det 4 < det C
n n

This is clear, since det A — Yl \i and det C = ü (X* + k).

2. P(C) < P{A)

This is also clear, since P(C) = ^max       ancj P(A) =
max

Am in + k

3. ff(C) < ft (A)
The proof of this requires some of the properties of the norm given, e.g., in von

Neumann and Goldstine [9]. For a positive definite, symmetric matrix

N(A) = [ £ X,2J.

Thus
IT"       i* rn i

and

By Minkowski's inequality (Hardy, Littlewood, and Pölya [10], p. 31),

for n > 1,

and

or

[ E (X» + k)^ < [ E x/|* + kn*

[ E (X< + -fe)-2]"* > [ E Xr2]~* + kn-'*

\i 1 T<-_1

Therefore

, r e x/i1+
#(C) < - J

r « n
+ ä

!#^<iffvTr£i|-)f<4).+* "L"' J u' , J

Appendix II. | Y\ < \X\, where \X\ is the length of the vector X. This is a

property which is useful if the elements of the solution represent physical quan-

tities which have definite fixed bounds. (See also Levenberg [11].) The proof
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numerical solution of elliptic difference equations 101

requires some properties of the upper bound of a matrix A, denoted by \A\.

These properties are also available in von Neumann and Goldstine [9].

For a definite matrix A

\A\   = \max»

For any matrix A and a vector B

\AB\<\A\ \B\.
Then, since

Y = C~lB = (A + kI)~^B = (/ + kA-^A-'B = (I + kA~l)~lX

it follows that

I Y\ < I (/ + kA-l)~l\\X\ = max
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On the Numerical Solution of Elliptic
Difference Equations

1. Introduction. In recent years a considerable amount of progress has been

made in improving rates of convergence of iterative methods for the solution of

elliptic difference equations. The numerical solution of Laplace's equation in

rectangular coordinates in a unit square may be obtained by replacing the

differential system by a difference system over a rectangular network with mesh

spacing h, and then solving the resulting difference equations by an iterative

method. This problem is usually taken as a "model problem" in elliptic difference

1 +
hi

\X\
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