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Two algorithms are described here for the numerical solution of a system of nonlinear equations 

F(X) = 0, where 0 = (0, 0, . . . , 0) E Iw”, and F is a given continuous mapping of a region D in R” 

into R”. The first algorithm locates at least one root of the system within an n-dimensional 

polyhedron, using the nonzero value of the topological degree of F at 0 relative to the polyhedron; 

the second algorithm applies a new generalized bisection method in order to compute an approximate 

solution of the system. The size of the original n-dimensional polyhedron is arbitrary, and the method 

is globally convergent in a residual sense. 

These algorithms, in the various function evaluations, only make use of the algebraic sign of F 

and do not require computations of the topological degree. Moreover, they can be applied to 

nondifferentiable continuous functions F and do not involve derivatives of F or approximations of 

such derivatives. 

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations- 

systems of equutiom; G.4 [Mathematics of Computing]: Mathematical Software--algorithm an&y- 

sis 

General Terms: Algorithms, Theory 

Additional Key Words and Phrases: Existence of the solution, generalized method of bisection, 

isolation of a root, localization of a root, solution of nonlinear systems, topological degree of a 

mapping 

1. INTRODUCTION 

Several methods for the numerical solution of systems of nonlinear equations, 
based on the topological degree theory, have been proposed in the past few years 
[3, 6-8, 15, 171. According to these methods, one establishes the existence of at 
least one root of a system of nonlinear equations, 

F(X) = 0 = (0, 0, . . . ) O), (1.1) 

whereF=(fi,fi,...,fn) is a continuous mapping of a bounded region g in R” 
into R”, in a polyhedron P in 9 [l, 2, 17-211, by computing the topological 
degree of F at 0 relative to P, deg(F, P, 0) [l, 2, 7, 8, 17-25, 271; if a nonzero 
value of deg(F, P, 0) is obtained, then by Kronecker’s theorem [l, 2,141 at least 
one solution of system (1.1) is within P (provided that 0 4 F(b(P)), where b(P) 
indicates the oriented boundary of P [2,17-191). On the other hand, if deg(F, P, 
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Solving Systems of Nonlinear Equations 313 

0) = 0, no conclusions can be drawn because more information about F is needed 
[l, 2, 14, 211. 

However, although the nonzero value of deg(F, P, 0) plays an important role 
in the existence of a root, its exact value is useless, since it does not give any 
additional information about the existence of the roots of system (1.1). More- 
over, the computation of deg(F, P, 0) is a time-consuming procedure [8] and 
cannot be accurately achieved unless the modulus of continuity of F on P is 
known [18, 211. 

In this paper we implement the concept of the characteristic n-polyhedron, CP 
[22-241 (or admissible n-polygon [27]), by which we avoid all calculations 
concerning the topological degree. This is because, under suitable assumptions 
on its boundary, a characteristic n-polyhedron always contains at least one 
solution of system (1.1) since the absolute value of the topological degree of F at 
0 relative to the CP is equal to 1 [22, 271. 

In the literature several bisection methods exist [3,6-8,15,17,25] that require 
the computation of the topological degree in order to secure its nonzero value. In 
the bisection method described here, however, the computation of the topological 
degree is avoided by making sure that it retains a nonzero value at every iteration. 
More specifically, the method is applied to a characteristic n-polyhedron in such 
a way that the new refined n-polyhedron is also a characteristic one [24, 271. 

A general description of how a root is isolated and evaluated is presented in 
Sections 2 and 3. In Section 4 a detailed step-by-step description of the algorithms 
is given. Finally, in Section 5, the method is illustrated on some model problems. 

2. LOCALIZATION OF A ROOT 

Let Bn be the n-digit binary representation of the integer number (i - l), 
counting the leftmost digit first. Then, the n-binary matrix 

M,* = [CT;.] (2.1) 

is the 2” X n matrix whose entry in the i th row and j th column is the j th digit 
of Bn. Now, if we replace each zero element in the matrix MX by -1, we shall 
come up with a new 2” X n matrix 

Mn = [cijl, (2.2) 

which we call an n-complete matrix. For example, when n = 2, 3 we have, 
respectively, 

n=2 BT=OO 
B; = 01 
B: = 10 
B: = 11 

r0 01 r-1 -11 

n=3 Bf = 000 0 0 0 -1 -1 -1 
B; = 001 0 0 1 -1 -1 1 
B: = 010 Bi 0 1 0 -1 1 -1 
B: = 011 
B; = 1oo + MQ 

;; 0 1 1 -1 1 1 
‘= = = IBjl=l = 1 1 0 0 0 0 + Mx 1 -1 -1 

B: = 101 E 1 1 0 0 1 1 1 -1 1 
:1= = 111 110 -Bil- BG 1 -1 1 1 0 

1 
1 1 
1 

0 l- 
1 

-1 1 1 11 -1 
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NOW suppose that P is an n-dimensional polyhedron (n-polyhedron) with 2” 
vertices. Suppose further that F = ( fi, f2, . . . , fn): P C R” -+ R”. Then we define 

the vector of signs of F, relative to a vertex Xk of P, by 

sgn F(-%J = (so f~WJ, sgn fL=h), . . . . sgn fnWd), (2.3) 

where, for any real number a, 

i 

-1 if a<0 

sgna= 0 if a=O. (2.4) 
1 if a>0 

Moreover, we define the matrix of signs of F, relative to the vertices of P, by 

where 

S(F, P) = [uijl, (2.5) 

Uij = sgn fi(Xi)* (2.6) 

Of course, the matrix of signs S(F, P) is a 2” X n matrix such that the entries in 
its kth row are the corresponding coordinates of the vector sgn F(Xk). Now, 
an n-polyhedron CP in R” is called a characteristic n-polyhedron relative to F = 

(fi,f2, * * . , fn): CP + R”, iff the following relationship exists: 

S(F, CP) = M,,. (2.7) 

The ith vertex of CP is the vertex of CP for which the coordinates of the vector 
sgn F(Xi) are identical to the corresponding entries of the ith row of M,. Of 
course, each characteristic n-polyhedron has exactly 2” vertices. Now, a proper 

l-simplex of CP is an oriented l-simplex whose extreme points are vertices of 
CP, for example, (X,, X, ), for which the corresponding coordinates of the 
vectors sgn F(X,) and sgn F(X,) differ from each other only in one case. So, for 
each vertex of CP, for example, Xi, there are exactly n other vertices X, of CP 
such that the 1-simplexes (Xi, X, ) are proper 1-simplexes of CP. The subindexes 
k are given by 

k = i _ 2”-jc.. 
Y f j = 1,2 , . . . , n, (2.8) 

where C, are the corresponding entries of M, (see [27] for a proof). Finally, each 
characteristic n-polyhedron has exactly n2”-’ proper 1-simplexes. Now suppose 

thatF=(f,,f,,...,f,,):CP-+R n is continuous; then, under suitable assumptions 
on the boundary of CP, the topological degree of F at 0 relative to CP is given 

by 

(see [27] for a proof). 

deg(F, CP, 0) = +l (2.9) 

Next, we give a procedure for the construction of CP. This procedure starts 
with an arbitrary point x” in Iw”, 

x” =,(xC, x02, . . . , x0,), (2.10) 

and with arbitrary stepsizes in each coordinate direction, 

H = (hl, hz, . . . , h,). (2.11) 
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Solving Systems of Nonlinear Equations . 315 

On the basis of x” and H, we construct an initial n-polyhedron P, that is a scaled 

translation of the unit n-cube. More specifically, let G be the rank-l, n X n 
matrix, all of whose rows are equal to the row vector x”; thus, 

where 

G = [gijl, (2.12) 

gij = Xg 3 (2.13) 

and let B be the n X n diagonal matrix with elements hl, ha, . . . , h,. Thus, 

where 

B = [bj I, (2.14) 

bij = S:hj (2.15) 

and where S: is the well-known Kronecker’s delta. Then, the coordinates of the 
vertices of the initial n-polyhedron PO are given by the corresponding entries of 

the 2” X n matrix R, where 

R=G+M:.B. (2.16) 

The ith vertex of PO is the vertex of PO whose coordinates are identical to the 
corresponding entries of the ith row of the matrix R. Of course, PO has exactly 
2” vertices. An edge of PO is an oriented l-simplex whose extreme points are 
vertices of PO, for example, ( V,, V, ), for which the corresponding coordinates 
of V, and V, differ from each other only in one case. Of course, for each vertex 
of PO, for example, Vi, there are exactly n other vertices V, of PO such that the 
1-simplexes ( Vi, Vk) are edges of PO. Moreover, on the basis of the correlation 
we have determined among the elements of M,, and M,*, we easily observe that 
the subindexes k are also given by the relationship (2.8) and that each PO has 
exactly n2”-l edges. 

Now, to construct a characteristic n-polyhedron, we compare the matrix 
S(F, PO) with the matrix M,,. If they are identical, then PO is a characteristic 
n-polyhedron; otherwise, the procedure creates “suitable” points X* in R”, such 
that their vectors of signs of F relative to these points produce the rows of M,, 
that are missing in S(F, PO). The points X* lie in neighborhoods of the roots of 
the components of F lying on the edges of PO. More specifically, suppose A = 

(Vl, v2, * * * , Vp) is the ordered set of the vertices of PO, and let I: A + (1, 2, 

. . . , 2”) be the one-to-one function such that I(Vi) = i for all i E (1, 2, . . . , 2”); 

then, for the ith vertex of P,, using (2.8) we can find n other subindexes k such 
that the 1-simplexes (I-‘(i), I-‘(k)) are edges of P,,. Now, for each one of the 
above pair, for example, (i, 1), we assume the corresponding vertices 

Vi=(U1,U2,...,Um,...,U,) and &=(uI,u~,. . . ,u&,. . . ,u,J (2.17) 

of PO, which by construction of PO are determined to have corresponding coordi- 
nates that differ from each other only in one case, for example, in the mth. Next, 
by holding the ul, uz, . . . , u,,-~, u,,,+~, . . . , u,, fixed, we solve the equations 

fsbJ1,~2, * * * , urn--l, r,, um+l, . . . , un) = 0, s=l,2,...,n (2.18) 
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for r, in the interval (a, (Y + /3), where LY = min( ) u, 1, 1 r,tL ( ) and p = ] u, - 

UL 1, with an accuracy DELTA. Now, suppose that for some s there is a solution 
r, of equations (2.18) in (a, a! + /3); then, the following point 

X* = h, u2, . . . , b-1, r,, u~+~, . . . , u,) 

lies on the edge ( Vi, Vl) of P,. Next, we create the points 

(2.19) 

and 

XT = (ul, u2, . . . , umel, r, + DSTAR, ZI~+~, . . . , u,) 

X% = (ul, u2, . . . , umel, r, - DSTAR, umfl, . . . , u,), 
(2.20) 

where DSTAR is a small positive real number such that DELTA 5 DSTAR < 
mini (rs - a), (a + fl - rs)). Finally, if the sgn F(XZ) for some u = 1, 2 coincides 
with any row of M,,, for example, the Xth one, which was not present before in 
S(F, P,), the vertex VA of P, is replaced by the X:. Now, since F and P, are 
arbitrary, we do not know a priori for which edge of P, and for which component 
of F we must search for the points X*. So, we search along all the edges of P, 
and all the components of F until a characteristic n-polyhedron emerges. An 
order of the edges of P,, which are going to be searched using the above process, 
can be easily found (see Lemma 4.2). 

The construction of a characteristic n-polyhedron fails if either the topological 
degree of F at 0 relative to the initial n-polyhedron is zero, or the roots of (2.18) 
cannot be obtained. Of course, we can use any one of the well-known one- 
dimensional methods [14] to solve equations (2.18). Here, we use the traditional 
one-dimensional bisection method (see [3] and [16] for a discussion of usefulness), 
since frequently the edges of P, are very long and, also, since a few significant 
digits for the computation of the roots of equations (2.18) are required. So, to 
solve an equation of the form 

‘P(t) = 0, (2.21) 

where Cp : [ yl, y2 ] C Iw -+ [w is continuous, we recommend the following iterative 
scheme [5, 24, 26, 271 (which is a simplified version of the bisection method): 

t n+l = t, + sgn ‘P(to) . sgn cP(t,) . h/2n+1, n = 0, 1, . . . , (2.22) 

with to = y1 and h = y2 - yl. Of course, it converges to a root t * in (rl, 72) if, 
for some t,, n = 1, 2, . . . holds that 

sgn cP(to) . sgn P(t,) = -1. (2.23) 

Also, the minimum number of iterations p, which are required in obtaining an 
approximate root t ’ such that ] t ’ - t * I 5 E, for some E E (0, l), is given by 

p = riog,(h . c*)i, (2.24) 

where the notation ral refers to the smallest integer not less than the real 
number a. 

3. EVALUATION OF A ROOT 

The generalized method of bisection, which we describe in this section, bisects a 
characteristic n-polyhedron, CP, in such a way that the new refined n-polyhedron 
is also a characteristic one. To do this, we bisect a proper l-simplex of CP in the 
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following way: Let (Xi, X; ) be a proper l-simplex of CP, and let 

B 
_ Xi + xj 

2 

be its midpoint. We then distinguish the following three cases: 

(3.1) 

(1) If the vectors sign F(B) and sign F(Xi) are identical, then we replace Xi by 
B, and the process continues with the next proper l-simplex. 

(2) If the vectors sign F(B) and sign F(Xj) are identical, then we replace Xj by 
B, and the process continues with the next proper l-simplex. 

(3) Otherwise, the process continues with the next proper l-simplex. 

Where the above function sign a, a E !I% is the known sign function with values 

sign a = -I -1 if a<0 
1 if a 2 0. (3.2) 

The above bisection process will be called characteristic bisection. Now, it is not 
difficult to show that, when the characteristic bisection is applied to a proper 
l-simplex of CP, the new refined n-polyhedron is also a characteristic one (see 
[27] for a proof). Of course, an order of the proper 1-simplexes of CP that are 
going to be bisected using the characteristic bisection can be easily found using 
relationship (2.8) (see Lemma 4.2). Now, if for the midpoint B of a proper l- 
simplex of CP, for example, (Xi, Xi), sign F(B) # sign F(Xi) and sign F(B) # 
sign F(Xj) exist, then we apply the relaxation process [24, 271, which is briefly 
described below. So, since sign F(B) does not coincide with sign F(Xi) and 
sign F(Xj), of course, it coincides with sign F(X,) for some vertex X, of CP such 
that X, # Xi and X, # Xj . Now, the relaxation process creates the point 

x: = 2B - X, (3.3) 

and applies the characteristic bisection using XL instead of B. This process is 
applied repeatedly until, for the point XL, it obtains one of the following: 

(1) sign F(XI) = sign F(Xi), 

(2) sign F(X:) = sign F(Xj); 
(3.4) 

otherwise, it terminates when the number of its iterations becomes 2; this number 
is heuristically chosen and very difficult to determine a priori in the general class 
of problems to which the method is applied. 

Now suppose that (X1, X,, . . . , Xzn ) is the ordered set of vertices of a 
characteristic n-polyhedron CP; then a diagonal of CP is a l-simplex, say, (Xk, 
Xl), such that all the corresponding components of the vectors sgn F(Xk) and 
sgn F(XJ are different from each other [24, 271. Now, for each vertex of CP, 
for example, Xk, there is exactly one other vertex Xl such that the l-simplex 
(X,, XL) is a diagonal of CP, where the subindex 1 is given by 

1=2”+1-k (3.5) 

(see [27] for a proof). Of course, each characteristic n-polyhedron has exactly 
2”-’ diagonals. Moreover, we define the diameter of CP as the length of the 
longest proper l-simplex of CP (where the distances are measured in Euclidean 
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norms) and denote it by A(CP), while the length of the longest l-simplex of CP 
is called the mesh of CP and is denoted by m (CP). Finally, we define the midpoint 

of the longest diagonal of CP as an estimate of the solution of the system (l.l), 
and we denote it by AS. 

Now, the number of characteristic bisections of the proper 1-simplexes of a 
CP that are required in obtaining a new refined characteristic n-polyhedron CP’, 
such that A(CP’) P EPSILO for some EPSILO E (0, l), is given by 

u = ~lo&(EadscpL)o)~ (3.6) 

(see [27] for a proof). Furthermore, if A(C!P) 5 EPSILO exists for some CP, 
then the following relationships are true: 

m(CP) 5 n EPSILO, (3.7) 

)~AS-S~~,~nEp~lLo (3.8) 

(see [24] and [27]), where S in CP is such that F(S) = 0. 
The above generalized method of bisection can become more efficient when 

the characteristic bisection is repeatedly applied to the diagonals, starting with 
(X,, Xl), for example, until sign F((Xk + X,)/2) becomes different from 
sign F(Xk) and from sign F(XJ. One such order, in which the diagonals can be 
considered, is easily derived from the result of Lemma 4.3. 

4. THE ALGORITHMS AND THEIR DESCRIPTION 

In this section we give a detailed step-by-step description of the algorithms. To 
do this we need to construct the n-complete matrix, as well as specify the order 
in which the edges of the initial n-polyhedron will be considered for the construc- 
tion of a characteristic n-polyhedron. The following lemmas will facilitate this 
whole procedure: 

LEMMA 4.1. The entries C: of the n-binary matrix M,* are given by 

(4.1) 

where the notation LaJ refers to the largest integer that is not greater than the real 
number a. 

PROOF. It is easy to see that the above formula is a slight modification of the 
radix conversion scheme described by Knuth [ll, p. 2811. Consequently, since 

Cz is the jth digit of the n-digit binary representation of the number (i - l), 
counting the leftmost digit first, then the relationship (4.1) is true. Cl 

LEMMA4.2. L&A= (V,, V2 ,..., VY ) be the ordered set of the vertices of an 
initial n-polyhedron PO, and let I: A + (1, 2, . . . , 2”) be the one-to-one function 
such that I( V,) = p, p = 1, 2, . . . , 2”. Then the 1-simplexes (I-l(i), I-‘(k)), 
where 

i = (t - 1)2”-j + m, (4.2) 
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for all j = 1, 2, . . . , n, t = 1, 3, . . . , 2’ - 1, and m = 1, 2, . . . , 2”-‘, determine all 
the n2n-1 edges of I’,. 

PROOF. First, we observe that 

1 5 i < 2”, 
1 < k 5 2”. 

Next, by combining (4.1) and (4.2) it follows that 

c;= 
L 
t-1++ -2F+lnz_ 

J L 

t-1 1 

J 
y-J+1 - 

Now, since 0 5 (m - 1)/2”-’ < 1, we obtain 

-1 
c; = (t - 1) - 2 + . 

I 1 

Finally, since (t - 1) is an even number, we have 

c; = (t - 1) - 2 
at - 1) = o 

. 

(4.3) 

(4.4) 

(4.5) 

Consequently, the corresponding entry Cij of the n-complete matrix M,, is given 

by 

Cij = -1. (4.7) 

From (2.8), using the above relationship and on the basis of the correlation we 
have determined among the elements of MZ and M,, we observe that the 
corresponding coordinates of the vertices Vi and V, of PO (where the indexes i 
and k are given by (4.2)) differ from each other only in one case. Thus, the lemma 
is proven. Cl 

Moreover, using (4.2), we can also find an order for the proper 1-simplexes of 
a characteristic n-polyhedron that are going to be bisected using the process 
described in Section 3. 

’ 

Finally, we give an analogous result for the diagonals of a characteristic n- 
polyhedron. 

LEMMA 4.3. Let X = (XI, X,, . . . , Xzn ) be the ordered set of the vertices of a 
characteristic n-polyhedron CP, and let T: X 4 (1, 2, . . . , 2”) be the one-to-one 
function such that T(X,) = p, p = 1, 2, . . . , 2”. Then, the 1-simplexes ( T-‘(k), 
T-‘(l)), where 

1=2”+1-k, for all k = 1, 2, . . . , 2n-1, (4.8) 

determine all the 2”-’ diagonals of CP. 

PROOF. It follows directly from relationship (3.5). Cl 

Now we can proceed with a detailed step-by-step description of the algorithms: 

Algorithm 4.1. Construction of a characteristic n-polyhedron. 

(1) Input {n, F, x”, H, DELTA, EPSILO). 

ACM Transactions on Mathematical Software, Vol. 14, No. 4, December 1988. 



320 - Michael N. Vrahatis 

(2) Compute the machine precision EPSMCH [4, 121. 
(2.1) Check whether DELTA < EPSMCH. 

(Yes): Set DELTA = -. 
16 

(No): Go to (2.2). 

(2.2) Check whether EPSILO < EPSMCH. 
(Yes): Set EPSILO = EPSMCH. 

(No): Go to (2.3). 
(2.3) Set DSTAR = DELTA + BEPSMCH. 

(3) Construct the n-binary matrix M,* = [Cc] and the n-complete ma 
M, = [C,]. TO do this, execute Steps (3.1)-(3.3). 
(3.1) Repeat Steps (3.2)-(3.3) in sequence for i = 1 to 2”. 
(3.2) Repeat Step (3.3) in sequence forj = 1 to n. 

(3.3) Set C; = L(i - 1)/2”+ J - 2L(i - 1)/2”-j+ll, 

Cij = 2Ci*i - 1. 

.trix 

(4) Construct the initial n-polyhedron P,. Thus, on the basis of X” and H, using 
relationships (2.12)-(2.16), construct P, and store the coordinates of its 
vertices in the corresponding entries of a 2” X n matrix R = [Uij 1. 

(5) Set all the entries of a 2” X n matrix X = [Xii] equal to the corresponding 
entries of the matrix R. 

(6) Construct the indexing array W = [wi] with length 2” and entries wi = i. 
Also, set all the entries of an array AS with length n, equal to zero. 

(7) Check whether the initial n-polyhedron is a characteristic one. To do this, 
execute Steps (7.1)-(7.8). 

(7.1) Set i = 0, 
m = 0. 

(7.2) If i = 2” go to (8); otherwise, replace i by i + 1 and continue. 
(7.3) Compute the function value at the entries of the ith row, Ri, of R. 
(7.4) Check whether ]] F(R;) ]] m 5 EPSILO. 

(Yes): AS t Ri (the symbol “t” reads “is replaced by”). 
Go to (21). 

(No): Go to (7.5). 
(7.5) If m = 2” go to (7.2); otherwise, replace m by m + 1 and continue. 
(7.6) Test whether sgn F(Ri) coincides with the mth row of M,. 

(Yes): Go to (7.7). 
(No): Return to (7.5). 

(7.7) Check whether w,,, = 0. 
(Yes): Go to (7.2). 
(NO): Store Ri in the mth row of X, 

Set wm = 0, 
Go to (7.2). 

(7.8) Check whether there is any entry of W other than zero. 
(Yes): Go to (8). 
(No): Go to (22). 
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(8) Find the order in which the extreme points of the edges of P, occur. To do 
this, set all the entires of an n2n-1 x 2 matrix 0 = [oij] equal to zero, and 

execute Steps (8.1H8.6). 
(8.1) Set i = 0. 
(8.2) Repeat Steps (8.3)-(8.6) in sequence forj = 1 to n. 
(8.3) Repeat Steps (8.4)-(8.6) in sequence for t = 1, 3, 5, . . . , 2’ - 1. 
(8.4) Repeat Steps (8.5)-(8.6) in sequence for m = 1 to 2”-‘. 

03.5) ici+1 
(8.6) Set oil = (t - 1)2”-j + m, 

Oi2 = Oil + 2”-‘. 

(9) Set i = 0. 

(10) If i = n2n-1 go to (19); otherwise, replace i by i + 1 and continue. 

(11) Setp = oil, 

9 = Oi2, 

j = 0. 

(12) If j = n go to (10); otherwise, replace j by j + 1 and continue. 

(13) Check whether Upj # U,j and upk = uqk for all k = 1, 2, . . . , j - 1, j + 1, 
. . . , n. 
(Yes): Go to (14). 
(No): Return to (12). 

(14) Set all the entries of an array Y = [yl] with length n equal to zero. 

(15) Set /? = ] Upj - Uqj 1, 

a = mid I upj I, I uqj I I, 
yk = upk, for all k = 1, 2, . . . , j - 1, j + 1, . . . ) n, 

Yj = ff. 

(16) Set all the entries of an n X 2 matrix 2 = [zj,] equal to zero. Also, 
set s = 0, 

k = 0. 

(17) Ifs = n go to (18); otherwise, replace s by s + 1 and continue. 
(17.1) Solve the equation fs( yl, y2, . . . , yj-1, r,, yj+j+1, . . . , yn) = 0 for r,, 

within the interval (a, a! + /3), using formula (2.22) with accuracy 
DELTA. 

(17.2) Check whether (Y + DSTAR I r, I OL + p - DSTAR. 
(Yes): Set zsl = r, + DSTAR, 

Z,Z = r, - DSTAR, 
Return to (17). 

(No): Return to (17). 

(18) If k = 2 go to (19); otherwise, replace k by k + 1 and continue. 
(18.1) Sets = 0, 

m= 0. 
(18.2) Ifs = n go to (18); otherwise, replace s by s + 1 and continue. 
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(18.3) Check whether z,k = 0. 
(Yes): Return to (18.2). 
(NO): set J’j = Z,k, 

Go to (18.4). 
(18.4) Check whether ]] F(Y) ]] m 5 EPSILO. 

(Yes): AS t Y, 

Go to (21). 
(No): Go to (18.5). 

(18.5) If m = 2” go to (18); otherwise, replace m by m + 1 and continue. 
(18.6) Test whether sgn F(Y) is identical to the mth row of M,. 

(Yes): Go to (18.7). 
(No): Return to (18.5). 

(18.7) Check whether wm = 0. 
(Yes): Return to (18.2). 
(No): Store Yin the mth row of X. 

Set wm = 0. 
Check whether there is any entry of W other than zero. 
(Yes): Return to (18). 
(No): Go to (22). 

(Steps (19) and (20), which follow, are based on numerical experience gathered 
in the process of testing this algorithm in accordance with the bisection portion 
of the method. The idea behind these steps is to construct a new characteristic 
n-polyhedron that is a scaled translation of the unit n-cube in such a way that 
not more than two of its vertices lie on the same edge of the initial n-polyhedron). 

(19) Reconstruct a characteristic n-polyhedron in such a way that its vertices 
are of a scaled translation of the unit n-cube. To do this, execute Steps 
(19.1)~(19.11). 

(19.1) Set all the entries of the arrays E = [ej 1, U = [Uj] of length n equal 
to zero. 

(19.2) Set i = 0, 
m = 0. 

(19.3) Repeat Steps (19.4H19.5) in sequence for j = 1 to n. 
(19.4) ej = IIliIlj (Xij, for all i = 1, 2, . . . , 2”]. 
(19.5) Uj = IlMXj (Xij, for all i = 1, 2, . , . , 2”) - f?j. 

(19.6) Construct the matrix R using relationships (2.12)-(2.16) and vectors 
E and U, instead of x” and H, respectively. 

(19.7) If i = 2” go to (20); otherwise, replace i by i + 1 and continue. 
(19.8) Compute F(Ri) for the ith row Ri of R. 
(19.9) Check whether ]I F(Ri) (I m I EPSILO. 

(Yes): AS t Ri, 
Go to (21). 

(No): Go to (19.10). 

(19.10) If m = 2” go to (19.7); otherwise, replace m by m + 1 and continue. 
(19.11) Test whether sgn F(Ri) coincides with the mth row of M,. 

(Yes): Store Ri in the mth row of X. 
Go to (19.7). 

(No): Return to (19.10). 
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(20) Reconstruct a characteristic n-polyhedron in such a way that not more than 
two of its vertices lie on the same edge of the initial n-polyhedron. To do 
this, execute Steps (20.1)-(20.11). 
(20.1) 

(20.2) 
(20.3) 
(20.4) 
(20.5) 

(20.6) 
(20.7) 

(20.8) 

(20.9) 
(20.10) 

(20.11) 

Set i = 0, 
j = 0, 
m = 0. 

If i = 2R-’ go to (22); otherwise, replace i by i + 1 and continue. 
Set 1= 1 - i + 2”. 
If j = n go to (20.2); otherwise, replace j by j + 1 and continue. 

Check whether xij = xlj. 
(Yes): Go to (20.6). 
(No): Return to (20.4). 
Execute Steps (20.7)-(20.10) in sequence for 12 = i and k = 1. 
Check whether xkj = $‘. 
(Yes): Set Xkj = ~9 + hj. 

Go to (20.8). 

(No): Xkj + xkj - hj . 
Go to (20.8). 

Check whether 11 F(Xk) IIrn 5 EPSILO, where Xk = (xkl, &z, 
. . . ) Xkn). 

(Yes): AS + Xk. 
Go to (21). 

(No): Go to (20.9). 
If m = 2” go to (20.2); otherwise, replace m by m + 1 and continue. 
Check whether sgn F(Xk) is identical to the mth row of M,,. 
(Yes): Check whether k = m. 

(Yes): Store Xk in the mth row of X. 
Return to (20.2). 

(No): Return to (20.6). 
(No): Return to (20.9). 
Go to (22). 

(21) Take AS as an approximate solution of system (1.1) and terminate. 

(22) Take the characteristic n-polyhedron CP so that the coordinates of its 
vertices are the corresponding entries of the matrix X, and terminate. 

Algorithm 4.2 A generalized method of bisection. 

(1) Input (n, F, EPSILO, M,, 0, and X). 

(1.1) Set ZETA = 2n EPSILO 

(2) Compute the number of iterations. To do this, execute Steps (2.1)-(2.5). 
(2.1) Repeat Steps (2.2)-(2.3) in sequence for i = 1 to n2”-l. 
(2.2) Setp = Oil, 

q = oiz. 

(2.3) Compute D; = 11 X, - X, 11 2. 

(2.4) Compute D = maxi (D; ). 
(2.5) Compute IJ = Tlog,(D(n EPSILO/B)-*)l. 
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(3) Set all the entries of an array AS, with length n, equal to zero. Also, set 
t = 0. 

(4) If t = u go to (11); otherwise, replace t by t + 1 and continue. 

(5) Bisect the diagonals. To do this, execute Steps (5.1)-(5.6). 
(5.1) Set i = 0, 

m = 0. 
(5.2) If i = 2n-’ go to (6); otherwise, replace i by i + 1 and continue. 
(5.3) Setj = 1 - i + 2”, 

B = (Xi + Xj )/2. 
(5.4) Check whether 11 F(B) 11 m I EPSILO. 

(Yes): AS c B. 
Go to (12). 

(No): Go to (5.5). 
(5.5) If m = 2” go to (5.2); otherwise, replace m by m + 1 and continue. 
(5.6) Check whether sign F(B) is identical to the mth row of M,,. 

(Yes): X,,, t B, 
Check whether (m = i or m = j ). 
(Yes): Go to (5.3). 
(No): Go to (5.2). 

(No): Return to (5.5). 

(6) Check whether the length of the longest diagonal of the characteristic 
n-polyhedron is smaller than ZETA. 
(Yes): Go to (11). 
(No): Go to (7). 

(7) Bisect the proper 1-simplexes. To do this, execute Steps (7.1)-(7.8). 

(7.1) Construct the indexing array W = [zui ] with length 2” and entries 
Wi = i. 

(7.2) Set i= 0, 
m = 0, 
r 

(7.3) If i =‘nF2”’ go to (8); otherwise, replace i by i + 1 and continue. 

(7.4) Setp = oil, 

4 = Oi29 

r = 0, 
B = (X, + X,)/2. 

(7.5) Check whether 11 F(B) 11 m I EPSILO. 
(Yes): AS t B. 

Go to (12). 
(No): Go to (7.6). 

(7.6) If m = 2” go to (7.3); otherwise, replace m by m + 1 and continue. 
(7.7) Check whether sign F(B) is identical to the mth row of M,. 

(Yes): G t X,, 

Xm+B, 

0, 
EgeIk whether (m # p and m # q). 
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(Yes): r t r + 1, 

r’ = 1. 

Go to (7.8). 

(No): Go to (7.3). 

(No): Return to (7.6). 

(7.8) Test whether r > 2. 
(Yes): Return to (7.3). 
(No): B t 2X, - G. 

Go to (7.5). 

(8) Check whether there is any entry of W other than zero. 
(Yes): Check whether r’ = 0. 

(Yes): Go to (4). 

(No): Go to (9). 

(No): Go to (4). 

(9) Execute Step (19) of Algorithm 4.1. If a point AS is obtained so that 
11 F(AS) llm c. EPSILO, then go to (12). 

(10) Go to (4). 

(11) Find the longest diagonal of the characteristic n-polyhedron; take its mid- 
point as the final approximate solution and terminate. 

(12) Take AS as the final approximate solution and terminate. 

5. EXAMPLES 

The algorithms described in Section 4 have been implemented using the new 
FORTRAN program CHABIS (CHAracteristic BISection). CHABIS was tested 
on the University of Patras UNIVAC 1100/60 system, and on the Cornell 
University IBM 3090-6003 (supercomputer mainframe), IBM 4381, VAX 8530, 
as well as on a SPERRY IT IBM PC compatible, with random problems of 
varying dimensions. Our experience is that the procedures behaved predictably 
and reliably, and the results were quite satisfactory. Some typical computational 
results are given below. For the following problems, the reported parameters are 

-n dimension, 
--x” = (~7, xi, . . . , x”,) starting point, 
-H=(h1,hz,..., h,) stepsizes in each coordinate direction, 
-CP characteristic n-polyhedron obtained using DELTA = &, 
-AS approximate solution computed so that 11 F(AS) 11 m I EPSILO = 10v8, and 
-NFCALL number of function evaluations on an IBM 4381. 

Problem 5.1. STENGER function (1975) [3, 6, 10, 171. This example gives the 
solution of system (1.1) for 

F(x1, x2) = (37:: - 4x2, x; - 2x1 + 4x2). 

As our starting values, we utilized x” = (0.1, 0.1) and H = (4000, 4000). We 
obtained a CP and AS = (1.6954152, 0.71860817), after NFCALL = 107. By 
changing x” to X” = (-2000, -2000) and H to H = (2000$, 4000), we obtained a 
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CP and AS = (0, 0), after NFCALL = 94. Finally, starting with x” = (-1, -0.4) 

and H = (2, 0.8), we obtained a CP and AS = (0, 0), after NFCALL = 5. 

Problem 5.2. ROSENBROCK function (1960) [3, 10, 131. In this case, F is 

given by 

F(xl, x2) = (1 - xl, lO(rz - rf)). 

Starting with the point X” = (-2000, -2000) and taking H = (4000, 4000) after 
NFCALL = 113, we obtained a CP and AS = (1, 1). Then, by changing x” to 
x” = (-2, -10) and H to H = (4, 16), we obtained a CP and AS = (1, l), 

after NFCALL = 24. 

Problem 5.3. Here we have the solution of system (1.1) for 

LO if (xl, x2) = (0, 0). 

Starting with the point x” = (-100, -1000) and stepsizes H = (120, 1020), we 
obtained the corresponding CP and AS = (0, 0), utilizing NFCALL = 115. Then 
for X” = (-100, -100) and H = (200, 200), we obtained the corresponding CP 
and AS = (0, 0), utilizing NFCALL = 38. 

Problem 5.4. IDENTITY function [3, lo]. In this case, F is defined by 

F(X) = X, where X E R3. 

Starting with X” = (-2000, -2000, -2000) and stepsizes H = (3000,3000,3000), 
we obtained the corresponding CP and AS = (0, 0, 0), utilizing NFCALL = 45. 

Problem 5.5. Extended EIGER-SIKORSKY-STENGER function (1984) [3, 
lo]. In this case, F is defined by 

fi(Xl9 X29 * * * 9 X,) = (Xi - 0.1)’ + Xi+1 - O-1, for all i = 1, 2, . . . , n - 1, 

fn(x1, x2, * * *, x,) = (x, - 0.1y + x1 - 0.1. 

We utilized n = 2, 3, . . . , 9, the corresponding starting points x” = (-2000, 
-2000, . . . , -2OOO), and the corresponding stepsizes H = (2000,2000,. . . ,200O). 
Then we obtained the corresponding CP and AS = (-0.9, -0.9, . . . , -0.9), 
utilizing NFCALL = 41, 45, 53, 69, 101, 165, 293, and 549, respectively. 

Problem 5.6. Extended KEARFOTT function (1977) [7, 81. Here we have the 
solution of system (1.1) for 

fi(Xl9 X29 * * * 2 -%) = X’ - Xi+19 for all i = 1, 2, . . . , n - 1, 

fn(x1, x2, * f * , x,) = xi - Xl. 
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Table I. Comparison of ESS Bisection Method with Our New Generalized Bisection Method 

Characteristic bisection 

ESS bisection method method 

Problem n A(=‘) min NFCALL max NFCALL AV’o) m(Pd NFCALL 

5.1 2 0.75 45 65 4,000 5,656.85 107 

4,000 4,472.28 94 

2 2.15 5 

5.2 2 7.50 58 70 4,000 5,656.85 113 

16 16.49 24 

5.4 3 0.61 66 106 3,000 5,196.15 45 

5.5 4 0.53 106 132 2,000 4,ooo.oo 53 

We took n = 2, 3, . . . , 9, the corresponding starting points x” = (0.1, 0.1, . . . , 

O.l), and the corresponding stepsizes H = (2000, 2000, . . . , 2000). Then we 
obtained the corresponding CP and AS = (1, 1, . . . , I), after NFCALL = 41,45, 
53,69, 101, 165, 293, and 549, respectively. 

In Table I we compare the numerical results obtained by the Eiger-Sikorski- 
Stenger (ESS) bisection method [3] with the corresponding numerical results of 

the method presented in this paper, obtained on the Cornell University IBM 
4381. The reported parameters of Table I indicate: 

n: dimension; 
A(%): the length of the longest edge of the starting n-simplex, SS, of the 

ESS method; 

W’o): the length of the longest edge of our initial n-polyhedron PO; 

m(Po): the length of the longest l-simplex of PO ; and 
NFCALL: the total number of evaluations of F that are required in localizing 

and evaluating a root with accuracy 10e8. 

We now compare the numerical results obtained by the Kearfott nontopological 
degree-based bisection method [9, lo] with the corresponding numerical results 
obtained by the method used in this paper. The goal of Kearfott’s method is to 
find all roots within a specified region reliably, though this requires Jacobian 
matrix evaluations. So, for comparison purposes, we use Kearfott’s “equivalent 
function evaluations” [lo], defined as 5 X (NFCALL + n x NJCALL), where 
NFCALL and NJCALL are the number of function evaluations and the number 
of Jacobian matrix evaluations, respectively. Computational results of Problems 
5.1, 5.2, 5.4, and 5.5 are reported in [lo], where a domain-stopping tolerance of 
c = 10e5 and a range-stopping tolerance &F = lo-” are used. In this comparison, 
we utilized initial n-polyhedrons with the same size of initial boxes as in [lo]. 
In Table II we present Kearfott’s equivalent NFCALL and our number of func- 
tion evaluations NFCALL required for the construction of a characteristic n- 
polyhedron, and the evaluation of an approximate solution with accuracy 

EPSILO = 10-l’. In Problem 5.1 the value of the topological degree relative to 
the initial 2-polyhedron [-4, 41’ is zero, causing the nonconstruction of a 
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Table II. Comparison of Kearfott’s Bisection Method with Our New Generalized Bisection 

Method 

Problem n 

Kearfott’s bisection method 

Equivalent 

Initial box NFCALL 

Characteristic bisection 

method 

Initial 

n-polyhedron NFCALL 

5.1 2 [-4,4Y 695 L-4, 412 21 

5.2 2 i-4, 412 30 i-4, 412 19 

5.4 3 [-.25, .2513 20 [-.25, .2513 9 

5.5 4 [-.2, .2]4 100 [-.2, .214 18 

characteristic 2-polyhedron. Nevertheless, when using this nonconstructed 
polyhedron, the bisection portion of the algorithm converges to an approxi- 
mate solution within the required accuracy. 

6. CONCLUDING REMARKS 

This paper describes two algorithms for the numerical solution of a system of n 
nonlinear equations in n variables (n L 2). The first algorithm locates at least 
one root of system (1.1) within the n-polyhedron; the second applies a generalized 
bisection method in order to compute an approximate solution of the system. 
These algorithms are primarily useful for small dimensions (n I lo), since they 
cannot avoid a generic attribute of all n-dimensional bisection methods, that is, 
the significant amount of computational work needed for large dimensions (cf. 

[3, 7, 81). 
However, the algorithms in this paper avoid all computations concerning 

topological degree. They require only that the algebraic signs of the function 
evaluations be correct, so that they can be applied to problems with imprecise 
function values. Moreover, they can be applied to nondifferentiable continuous 
functions and do not involve calculations of derivatives or approximations of 
such derivatives. Furthermore, their analysis is such that its generalization to a 
higher dimension is quite straightforward, since they are fully automated and 
handle the dimensionality of the problem just as a parameter (cf. [6,15]). 

In addition, the bisection algorithm has the advantages of the traditional one- 
dimensional bisection method; that is, we can find out the number of iterations 
that are needed for the attainment of an approximate root to a predetermined 
accuracy beforehand. Also, the starting estimate of the root does not have to be 
near the root. 

Furthermore, the algorithm for the localization of the root can be used as a 
starting procedure for obtaining good initial estimations of the root for other 
methods, for which good initial approximations are a condition sine qua non. 
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