Solving systems of nonlinear matrix equations involving Lipshitzian mappings

Maher Berzig* and Bessem Samet

* Correspondence: maher. berzig@gmail.com Université de Tunis, Ecole Supérieure des Sciences et Techniques de Tunis, 5, Avenue Taha Hussein-Tunis, B.P. 56, 1008 Bab Menara, Tunisia

Abstract

In this study, both theoretical results and numerical methods are derived for solving different classes of systems of nonlinear matrix equations involving Lipshitzian mappings.

2000 Mathematics Subject Classifications: 15A24; 65H05.
Keywords: nonlinear matrix equations, Lipshitzian mappings, Banach contraction principle, iterative method, fixed point, Thompson metric

1 Introduction

Fixed point theory is a very attractive subject, which has recently drawn much attention from the communities of physics, engineering, mathematics, etc. The Banach contraction principle [1] is one of the most important theorems in fixed point theory. It has applications in many diverse areas.
Definition 1.1 Let M be a nonempty set and $f: M \rightarrow M$ be a given mapping. We say that $x^{*} \in M$ is a fixed point of f if $f x^{*}=x^{* *}$.
Theorem 1.1 (Banach contraction principle [1]). Let (M, d) be a complete metric space and $f: M \rightarrow M$ be a contractive mapping, i.e., there exists $\lambda \in[0,1)$ such that for all $x, y \in M$,

$$
\begin{equation*}
d(f x, f y) \leq \lambda d(x, y) . \tag{1}
\end{equation*}
$$

Then the mapping f has a unique fixed point $x^{*} \in M$. Moreover, for every $x_{0} \in M$, the sequence (x_{k}) defined by: $x_{k+1}=f x_{k}$ for all $k=0,1,2, \ldots$ converges to x^{*}, and the error estimate is given by:

$$
d\left(x_{k}, x^{*}\right) \leq \frac{\lambda^{k}}{1-\lambda} d\left(x_{0}, x_{1}\right), \quad \text { for all } k=0,1,2, \ldots
$$

Many generalizations of Banach contraction principle exists in the literature. For more details, we refer the reader to [2-4].
To apply the Banach fixed point theorem, the choice of the metric plays a crucial role. In this study, we use the Thompson metric introduced by Thompson [5] for the study of solutions to systems of nonlinear matrix equations involving contractive mappings.
We first review the Thompson metric on the open convex cone $P(n)(n \geq 2)$, the set of all $n \times n$ Hermitian positive definite matrices. We endow $P(n)$ with the Thompson
metric defined by:

$$
d(A, B)=\max \{\log M(A / B), \log M(B / A)\}
$$

where $M(A / B)=\inf \{\lambda>0: A \leq \lambda B\}=\lambda^{+}\left(B^{-1 / 2} A B^{-1 / 2}\right)$, the maximal eigenvalue of $B^{-1 /}$ ${ }^{2} A B^{-1 / 2}$. Here, $X \leq Y$ means that $Y-X$ is positive semidefinite and $X<Y$ means that Y - X is positive definite. Thompson [5] (cf. [6,7]) has proved that $P(n)$ is a complete metric space with respect to the Thompson metric d and $d(A, B)=\left\|\log \left(A^{-1 / 2} B A^{-1 / 2}\right)\right\|$, where $\|\cdot\|$ stands for the spectral norm. The Thompson metric exists on any open normal convex cones of real Banach spaces [5,6]; in particular, the open convex cone of positive definite operators of a Hilbert space. It is invariant under the matrix inversion and congruence transformations, that is,

$$
\begin{equation*}
d(A, B)=d\left(A^{-1}, B^{-1}\right)=d\left(M A M^{*}, M B M^{*}\right) \tag{2}
\end{equation*}
$$

for any nonsingular matrix M. The other useful result is the nonpositive curvature property of the Thompson metric, that is,

$$
\begin{equation*}
d\left(X^{r}, Y^{r}\right) \leq r d(X, Y), \quad r \in[0,1] \tag{3}
\end{equation*}
$$

By the invariant properties of the metric, we then have

$$
\begin{equation*}
d\left(M X^{r} M^{*}, M Y^{r} M^{*}\right) \leq|r| d(X, Y), \quad r \in[-1,1] \tag{4}
\end{equation*}
$$

for any $X, Y \in P(n)$ and nonsingular matrix M.
Lemma 1.1 (see [8]). For all $A, B, C, D \in P(n)$, we have

$$
d(A+B, C+D) \leq \max \{d(A, C), d(B, D)\}
$$

In particular,

$$
d(A+B, A+C) \leq d(B, C)
$$

2 Main result

In the last few years, there has been a constantly increasing interest in developing the theory and numerical approaches for HPD (Hermitian positive definite) solutions to different classes of nonlinear matrix equations (see [8-21]). In this study, we consider the following problem: Find $\left(X_{1}, X_{2}, \ldots, X_{m}\right) \in(P(n))^{m}$ solution to the following system of nonlinear matrix equations:

$$
\begin{equation*}
X_{i}^{r_{i}}=Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}, \quad i=1,2, \ldots, m \tag{5}
\end{equation*}
$$

where $r_{i} \geq 1,0<\left|\alpha_{i j}\right| \leq 1, Q_{i} \geq 0, A_{i}$ are nonsingular matrices, and $F_{i j}: P(n) \rightarrow P(n)$ are Lipshitzian mappings, that is,

$$
\begin{equation*}
\sup _{X, Y \in P(n), X \neq Y} \frac{d\left(F_{i j}(X), F_{i j}(Y)\right)}{d(X, Y)}=k_{i j}<\infty . \tag{6}
\end{equation*}
$$

If $m=1$ and $\alpha_{11}=1$, then (5) reduces to find $X \in P(n)$ solution to $X^{r}=Q+A^{*} F(X)$ A. Such problem was studied by Liao et al. [15]. Now, we introduce the following definition.

Definition 2.1 We say that Problem (5) is Banach admissible if the following hypothesis is satisfied:

$$
\max _{1 \leq i \leq m}\left\{\max _{1 \leq j \leq m}\left\{\left|\alpha_{i j}\right| k_{i j} / r_{i}\right\}\right\}<1
$$

Our main result is the following.
Theorem 2.1 If Problem (5) is Banach admissible, then it has one and only one solution $\left(X_{1}^{*}, X_{2}^{*}, \ldots, X_{m}^{*}\right) \in(P(n))^{m}$. Moreover, for any $\left(X_{1}(0), X_{2}(0), \ldots, X_{m}(0)\right) \in(P(n))^{m}$, the sequences $\left(X_{i}(k)\right)_{k \geq 0}, 1 \leq i \leq m$, defined by:

$$
\begin{equation*}
X_{i}(k+1)=\left(Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}(k)\right) A_{j}\right)^{\alpha_{i j}}\right)^{1 / r_{i}} \tag{7}
\end{equation*}
$$

converge respectively to $X_{1}^{*}, X_{2}^{*}, \ldots, X_{m}^{*}$, and the error estimation is

$$
\begin{align*}
& \max \left\{d\left(X_{1}(k), X_{1}^{*}\right), d\left(X_{2}(k), X_{2}^{*}\right), \ldots, d\left(X_{m}(k), X_{m}^{*}\right)\right\} \\
& \quad \leq \frac{q_{m}^{k}}{1-q_{m}} \max \left\{d\left(X_{1}(1), X_{1}(0)\right), d\left(X_{2}(1), X_{2}(0)\right), \ldots, d\left(X_{m}(1), X_{m}(0)\right)\right\}, \tag{8}
\end{align*}
$$

where

$$
q_{m}=\max _{1 \leq i \leq m}\left\{\max _{1 \leq j \leq m}\left\{\left|\alpha_{i j}\right| k_{i j} / r_{i}\right\}\right\}
$$

Proof. Define the mapping G: $(P(n))^{m} \rightarrow(P(n))^{m}$ by:

$$
G\left(X_{1}, X_{2}, \ldots, X_{m}\right)=\left(G_{1}\left(X_{1}, X_{2}, \ldots, X_{m}\right), G_{2}\left(X_{1}, X_{2}, \ldots, X_{m}\right), \ldots, G_{m}\left(X_{1}, X_{2}, \ldots, X_{m}\right)\right)
$$

for all $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right) \in(P(n))^{m}$, where

$$
G_{i}(X)=\left(Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}\right)^{1 / r_{i}}
$$

for all $i=1,2, \ldots, m$. We endow $(P(n))^{m}$ with the metric d_{m} defined by:

$$
d_{m}\left(\left(X_{1}, X_{2}, \ldots, X_{m}\right),\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right)\right)=\max \left\{d\left(X_{1}, Y_{1}\right), d\left(X_{2}, Y_{2}\right), \ldots, d\left(X_{m}, Y_{m}\right)\right\}
$$

for all $X=\left(X_{1}, X_{2}, \ldots, X_{m}\right), Y=\left(Y_{1}, Y_{2}, \ldots, Y_{m}\right) \in(P(n))^{m}$. Obviously, $\left((P(n))^{m}, d_{m}\right)$ is a complete metric space.

We claim that

$$
\begin{equation*}
d_{m}(G(X), G(Y)) \leq q_{m} d_{m}(X, Y), \quad \text { for all } X, Y \in(P(n))^{m} \tag{9}
\end{equation*}
$$

For all $X, Y \in(P(n))^{m}$, We have

$$
\begin{equation*}
d_{m}(G(X), G(Y))=\max _{1 \leq i \leq m}\left\{d\left(G_{i}(X), G_{i}(Y)\right)\right\} \tag{10}
\end{equation*}
$$

On the other hand, using the properties of the Thompson metric (see Section 1), for all $i=1,2, \ldots$, m, we have

$$
\begin{aligned}
& d\left(G_{i}(X), G_{i}(Y)\right)=d\left(\left(Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}\right)^{1 / r_{i}},\left(Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(Y_{j}\right) A_{j}\right)^{\alpha_{i j}}\right)^{1 / r_{i}}\right) \\
& \quad \leq \frac{1}{r_{i}} d\left(Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}, Q_{i}+\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(Y_{j}\right) A_{j}\right)^{\alpha_{i j}}\right) \\
& \quad \leq \frac{1}{r_{i}} d\left(\sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}, \sum_{j=1}^{m}\left(A_{j}^{*} F_{i j}\left(Y_{j}\right) A_{j}\right)^{\alpha_{i j}}\right) \\
& \quad \leq \frac{1}{r_{i}} d\left(\left(A_{1}^{*} F_{i 1}\left(X_{1}\right) A_{1}\right)^{\alpha_{i 1}}+\sum_{j=2}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}},\left(A_{1}^{*} F_{i 1}\left(Y_{1}\right) A_{1}\right)^{\alpha_{i 1}}+\sum_{j=2}^{m}\left(A_{j}^{*} F_{i j}\left(Y_{j}\right) A_{j}\right)^{\alpha_{i j}}\right) \\
& \quad \leq \frac{1}{r_{i}} \max \left\{d\left(\left(A_{1}^{*} F_{i 1}\left(X_{1}\right) A_{1}\right)^{\alpha_{i 1}},\left(A_{1}^{*} F_{i 1}\left(Y_{1}\right) A_{1}\right)^{\alpha_{i 1}}\right), d\left(\sum_{j=2}^{m}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j},} \sum_{j=2}^{m}\left(A_{j}^{*} F_{i j}\left(Y_{j}\right) A_{j}\right)^{\alpha_{i j}}\right)\right\} \\
& \quad \leq \cdots \\
& \quad \leq \frac{1}{r_{i}} \max \left\{d\left(\left(A_{1}^{*} F_{i 1}\left(X_{1}\right) A_{1}\right)^{\alpha_{i 1}},\left(A_{1}^{*} F_{i 1}\left(Y_{1}\right) A_{1}\right)^{\alpha_{i 1}}\right), \ldots, d\left(\left(A_{m}^{*} F_{i m}\left(X_{m}\right) A_{m}\right)^{\left.\left.\alpha_{i m},\left(A_{m}^{*} F_{i m}\left(Y_{m}\right) A_{m}\right)^{\alpha_{i m}}\right)\right\}}\right.\right. \\
& \quad \leq \frac{1}{r_{i}} \max \left\{\left|\alpha_{i 1}\right| d\left(A_{1}^{*} F_{i 1}\left(X_{1}\right) A_{1}, A_{1}^{*} F_{i 1}\left(Y_{1}\right) A_{1}\right), \ldots,\left|\alpha_{i m}\right| d\left(A_{m}^{*} F_{i m}\left(X_{m}\right) A_{m}, A_{m}^{*} F_{i m}\left(Y_{m}\right) A_{m}\right)\right\} \\
& \quad \leq \frac{1}{r_{i}} \max \left\{\left|\alpha_{i 1}\right| d\left(F_{i 1}\left(X_{1}\right), F_{i 1}\left(Y_{1}\right)\right), \ldots,\left|\alpha_{i m}\right| d\left(F_{i m}\left(X_{m}\right), F_{i m}\left(Y_{m}\right)\right)\right\} \\
& \quad \leq \frac{1}{r_{i}} \max \left\{\left|\alpha_{i 1}\right| k_{i 1} d\left(X_{1}, Y_{1}\right), \ldots,\left|\alpha_{i m}\right| k_{i m} d\left(X_{m}, Y_{m}\right)\right\} \\
& \quad \leq \frac{\max }{1 \leq j \leq m\left\{\left|\alpha_{i j}\right| k_{i j}\right\}} r_{r_{i}} \max \left\{d\left(X_{1}, Y_{1}\right), \ldots, d\left(X_{m}, Y_{m}\right)\right\} \\
& \quad \leq \max _{1 \leq j \leq m}\left\{\left|\alpha_{i j}\right| k_{i j} / r_{i}\right\} d_{m}(X, Y) .
\end{aligned}
$$

Thus, we proved that for all $i=1,2, \ldots, m$, we have

$$
\begin{equation*}
d\left(G_{i}(X), G_{i}(Y)\right) \leq \max _{1 \leq j \leq m}\left\{\left|\alpha_{i j}\right| k_{i j} / r_{i}\right\} d_{m}(X, Y) \tag{11}
\end{equation*}
$$

Now, (9) holds immediately from (10) and (11). Applying the Banach contraction principle (see Theorem 1.1) to the mapping G, we get the desired result. \square

3 Examples and numerical results

3.1 The matrix equation: $\mathrm{X}=\left(\left(\left(\mathrm{X}^{1 / 2}+\mathrm{B}_{1}\right)^{-1 / 2}+\mathrm{B}_{2}\right)^{1 / 3}+\mathrm{B}_{3}\right)^{1 / 2}$

We consider the problem: Find $X \in P(n)$ solution to

$$
\begin{equation*}
\left.X=\left(\left(\left(X^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2}\right)\right)^{1 / 3}+B_{3}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

where $B_{i} \geq 0$ for all $i=1,2,3$.
Problem (12) is equivalent to: Find $X_{1} \in P(n)$ solution to

$$
\begin{equation*}
X_{1}^{r_{1}}=Q_{1}+\left(A_{1}^{*} F_{11}\left(X_{1}\right) A_{1}\right)^{\alpha_{11}} \tag{13}
\end{equation*}
$$

where $r_{1}=2, Q_{1}=B_{3}, A_{1}=I_{n}$ (the identity matrix), $\alpha_{11}=1 / 3$ and $F_{11}: P(n) \rightarrow P(n)$ is given by:

$$
F_{11}(X)=\left(X^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2} .
$$

Proposition 3.1 F_{11} is a Lipshitzian mapping with $k_{11} \leq 1 / 4$.

Proof. Using the properties of the Thompson metric, for all $X, Y \in P(n)$, we have

$$
\begin{aligned}
d\left(F_{11}(X), F_{11}(Y)\right) & =d\left(\left(X^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2},\left(Y^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2}\right) \\
& \leq d\left(\left(X^{1 / 2}+B_{1}\right)^{-1 / 2},\left(Y^{1 / 2}+B_{1}\right)^{-1 / 2}\right) \\
& \leq \frac{1}{2} d\left(X^{1 / 2}+B_{1}, Y^{1 / 2}+B_{1}\right) \\
& \leq \frac{1}{2} d\left(X^{1 / 2}, Y^{1 / 2}\right) \leq \frac{1}{4} d(X, Y) .
\end{aligned}
$$

Thus, we have $k_{11} \leq 1 / 4$. \square
Proposition 3.2 Problem (13) is Banach admissible.
Proof. We have

$$
\frac{\left|\alpha_{11}\right| k_{11}}{r_{1}} \leq \frac{\frac{1}{3} \frac{1}{4}}{2}=\frac{1}{24}<1 .
$$

This implies that Problem (13) is Banach admissible.
Theorem 3.1 Problem (13) has one and only one solution $X_{1}^{*} \in P(n)$. Moreover, for any $X_{1}(0) \in P(n)$, the sequence $\left(X_{1}(k)\right)_{k \geq 0}$ defined by:

$$
\begin{equation*}
X_{1}(k+1)=\left(\left(\left(X_{1}(k)^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2}\right)^{1 / 3}+B_{3}\right)^{1 / 2} \tag{14}
\end{equation*}
$$

converges to X_{1}^{*}, and the error estimation is

$$
\begin{equation*}
d\left(X_{1}(k), X_{1}^{*}\right) \leq \frac{q_{1}^{k}}{1-q_{1}} d\left(X_{1}(1), X_{1}(0)\right) \tag{15}
\end{equation*}
$$

where $q_{1}=1 / 4$.
Proof. Follows from Propositions 3.1, 3.2 and Theorem 2.1.
Now, we give a numerical example to illustrate our result given by Theorem 3.1.
We consider the 5×5 positive matrices B_{1}, B_{2}, and B_{3} given by:

$$
B_{1}=\left(\begin{array}{cccccc}
1.0000 & 0.5000 & 0.3333 & 0.2500 & 0 \\
0.5000 & 1.0000 & 0.6667 & 0.5000 & 0 \\
0.3333 & 0.6667 & 1.0000 & 0.7500 & 0 \\
0.2500 & 0.5000 & 0.7500 & 1.0000 \\
0 & 0 & 0 & 0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{cccccc}
1.4236 & 1.3472 & 1.1875 & 1.0000 & 0 \\
1.3472 & 1.9444 & 1.8750 & 1.6250 & 0 \\
1.1875 & 1.8750 & 2.1181 & 1.9167 & 0 \\
1.0000 & 1.6250 & 1.9167 & 1.8750 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

and

$$
B_{3}=\left(\begin{array}{ccccc}
2.7431 & 3.3507 & 3.3102 & 2.9201 & 0 \\
3.3507 & 4.6806 & 4.8391 & 4.3403 & 0 \\
3.3102 & 4.8391 & 5.2014 & 4.7396 & 0 \\
2.9201 & 4.3403 & 4.7396 & 4.3750 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

We use the iterative algorithm (14) to solve (12) for different values of $X_{1}(0)$:

$$
X_{1}(0)=M_{1}=\left(\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right), \quad X_{1}(0)=M_{2}=\left(\begin{array}{ccccc}
0.02 & 0.01 & 0 & 0 & 0 \\
0.01 & 0.02 & 0.01 & 0 & 0 \\
0 & 0.01 & 0.02 & 0.01 & 0 \\
0 & 0 & 0.01 & 0.02 & 0.01 \\
0 & 0 & 0 & 0.01 & 0.02
\end{array}\right)
$$

and

$$
X_{1}(0)=M_{3}=\left(\begin{array}{ccccc}
30 & 15 & 10 & 7.5 & 6 \\
15 & 30 & 20 & 15 & 12 \\
10 & 20 & 30 & 22.5 & 18 \\
7.5 & 15 & 22.5 & 30 & 24 \\
6 & 12 & 18 & 24 & 30
\end{array}\right)
$$

For $X_{1}(0)=M_{1}$, after 9 iterations, we get the unique positive definite solution

$$
X_{1}(9)=\left(\begin{array}{ccccc}
1.6819 & 0.69442 & 0.61478 & 0.51591 & 0 \\
0.69442 & 1.9552 & 0.96059 & 0.84385 & 0 \\
0.61478 & 0.96059 & 2.0567 & 0.9785 & 0 \\
0.51591 & 0.84385 & 0.9785 & 1.9227 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and its residual error

$$
R\left(X_{1}(9)\right)=\left\|X_{1}(9)-\left(\left(\left(X_{1}(9)^{1 / 2}+B_{1}\right)^{-1 / 2}+B_{2}\right)^{1 / 3}+B_{3}\right)^{1 / 2}\right\|=6.346 \times 10^{-13}
$$

For $X_{1}(0)=M_{2}$, after 9 iterations, the residual error

$$
R\left(X_{1}(9)\right)=1.5884 \times 10^{-12} .
$$

For $X_{1}(0)=M_{3}$, after 9 iterations, the residual error

$$
R\left(X_{1}(9)\right)=1.1123 \times 10^{-12}
$$

The convergence history of the algorithm for different values of $X_{1}(0)$ is given by Figure 1 , where c_{1} corresponds to $X_{1}(0)=M_{1}, c_{2}$ corresponds to $X_{1}(0)=M_{2}$, and c_{3} corresponds to $X_{1}(0)=M_{3}$.

Figure 1 Convergence history for Eq. (12).

3.2 System of three nonlinear matrix equations

We consider the problem: Find $\left(X_{1}, X_{2}, X_{3}\right) \in(P(n))^{3}$ solution to

$$
\left\{\begin{array}{l}
X_{1}=I_{n}+A_{1}^{*}\left(X_{1}^{1 / 3}+B_{1}\right)^{1 / 2} A_{1}+A_{2}^{*}\left(X_{2}^{1 / 4}+B_{2}\right)^{1 / 3} A_{2}+A_{3}^{*}\left(X_{3}^{1 / 5}+B_{3}\right)^{1 / 4} A_{3} \tag{16}\\
X_{2}=I_{n}+A_{1}^{*}\left(X_{1}^{1 / 5}+B_{1}\right)^{1 / 4} A_{1}+A_{2}^{*}\left(X_{2}^{1 / 3}+B_{2}\right)^{1 / 2} A_{2}+A_{3}^{*}\left(X_{3}^{1 / 4}+B_{3}\right)^{1 / 3} A_{3} \\
X_{3}=I_{n}+A_{1}^{*}\left(X_{1}^{1 / 4}+B_{1}\right)^{1 / 3} A_{1}+A_{2}^{*}\left(X_{2}^{1 / 5}+B_{2}\right)^{1 / 4} A_{2}+A_{3}^{*}\left(X_{3}^{1 / 3}+B_{3}\right)^{1 / 2} A_{3}
\end{array}\right.
$$

where A_{i} are $n \times n$ singular matrices.
Problem (16) is equivalent to: Find $\left(X_{1}, X_{2}, X_{3}\right) \in(P(n))^{3}$ solution to

$$
\begin{equation*}
X_{i}^{r_{i}}=Q_{i}+\sum_{j=1}^{3}\left(A_{j}^{*} F_{i j}\left(X_{j}\right) A_{j}\right)^{\alpha_{i j}}, \quad i=1,2,3, \tag{17}
\end{equation*}
$$

where $r_{1}=r_{2}=r_{3}=1, Q_{1}=Q_{2}=Q_{3}=I_{n}$ and for all $i, j \in\{1,2,3\}, \alpha_{i j}=1$,

$$
F_{i j}\left(X_{j}\right)=\left(X_{j}^{\theta_{i j}}+B_{j}\right)^{\gamma_{i j}}, \quad \theta=\left(\theta_{i j}\right)=\left(\begin{array}{lll}
1 / 3 & 1 / 4 & 1 / 5 \\
1 / 5 & 1 / 3 & 1 / 4 \\
1 / 4 & 1 / 5 & 1 / 3
\end{array}\right), \quad \gamma=\left(\gamma_{i j}\right)=\left(\begin{array}{lll}
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 3 \\
1 / 3 & 1 / 4 & 1 / 2
\end{array}\right) .
$$

Proposition 3.3 For all $i, j \in\{1,2,3\}, F_{i j}: P(n) \rightarrow P(n)$ is a Lipshitzian mapping with $k_{i j} \leq \gamma_{i j} \theta_{i j}$.

Proof. For all $X, Y \in P(n)$, since $\theta_{i j}, \gamma_{i j} \in(0,1)$, we have

$$
\begin{aligned}
d\left(F_{i j}(X), F_{i j}(Y)\right) & =d\left(\left(X^{\theta_{i j}}+B_{j}\right)^{\gamma_{i j}},\left(Y^{\theta_{i j}}+B_{j}\right)^{\gamma_{i j}}\right) \\
& \leq \gamma_{i j} d\left(X^{\theta_{i j}}+B_{j}, Y^{\theta_{i j}}+B_{j}\right) \\
& \leq \gamma_{i j} d\left(X^{\theta_{i j}}, Y^{\theta_{i j}}\right) \\
& \leq \gamma_{i j} \theta_{i j} d(X, Y) .
\end{aligned}
$$

Then, $F_{i j}$ is a Lipshitzian mapping with $k_{i j} \leq \gamma_{i j} \theta_{i j}$. \square
Proposition 3.4 Problem (17) is Banach admissible.
Proof. We have

$$
\begin{aligned}
\max _{1 \leq i \leq 3}\left\{\max _{1 \leq j \leq 3}\left\{\left|\alpha_{i j}\right| k_{i j} / r_{i}\right\}\right\} & =\max _{1 \leq i, j \leq 3} k_{i j} \\
& \leq \max _{1 \leq i, j \leq 3} \gamma_{i j} \theta_{i j} \\
& =1 / 6<1
\end{aligned}
$$

This implies that Problem (17) is Banach admissible.
Theorem 3.2 Problem (16) has one and only one solution $\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}\right) \in(P(n))^{3}$. Moreover, for any $\left(X_{1}(0), X_{2}(0), X_{3}(0)\right) \in(P(n))^{3}$, the sequences $\left(X_{i}(k)\right)_{k \geq 0}, 1 \leq i \leq 3$, defined by:

$$
\begin{equation*}
X_{i}(k+1)=I_{n}+\sum_{j=1}^{3} A_{j}^{*} F_{i j}\left(X_{j}(k)\right) A_{j} \tag{18}
\end{equation*}
$$

converge respectively to $X_{1}^{*}, X_{2}^{*}, X_{3}^{*}$, and the error estimation is

$$
\begin{align*}
& \max \left\{d\left(X_{1}(k), X_{1}^{*}\right), d\left(X_{2}(k), X_{2}^{*}\right), d\left(X_{3}(k), X_{3}^{*}\right)\right\} \\
& \quad \leq \frac{q_{3}^{k}}{1-q_{3}} \max \left\{d\left(X_{1}(1), X_{1}(0)\right), d\left(X_{2}(1), X_{2}(0)\right), d\left(X_{3}(1), X_{3}(0)\right)\right\}, \tag{19}
\end{align*}
$$

where $q_{3}=1 / 6$.
Proof. Follows from Propositions 3.3, 3.4 and Theorem 2.1. \square
Now, we give a numerical example to illustrate our obtained result given by Theorem 3.2.
We consider the 3×3 positive matrices B_{1}, B_{2} and B_{3} given by:

$$
B_{1}=\left(\begin{array}{ccc}
1 . & 0.5 & 0 \\
0.5 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B_{2}=\left(\begin{array}{ccc}
1.25 & 1 & 0 \\
1 & 1.25 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B_{3}=\left(\begin{array}{ccc}
1.75 & 1.625 & 0 \\
1.625 & 1.75 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

We consider the 3×3 nonsingular matrices A_{1}, A_{2} and A_{3} given by:

$$
A_{1}=\left(\begin{array}{ccc}
0.3107 & -0.5972 & 0.7395 \\
0.9505 & 0.1952 & -0.2417 \\
0 & -0.7780 & -0.6282
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccc}
1.5 & -2 & 0.5 \\
0.5 & 0 & -0.5 \\
-0.5 & 2 & -1.5
\end{array}\right)
$$

and

$$
A_{3}=\left(\begin{array}{ccc}
-1 & -1 & 1 \\
1 & -1 & 1 \\
-1 & -1 & -1
\end{array}\right)
$$

We use the iterative algorithm (18) to solve Problem (16) for different values of (X_{1} (0), $\left.X_{2}(0), X_{3}(0)\right)$:

$$
\begin{aligned}
& X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right), \\
& X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{2}=\left(\begin{array}{ccc}
0.02 & 0.01 & 0 \\
0.01 & 0.02 & 0.01 \\
0 & 0.01 & 0.02
\end{array}\right)
\end{aligned}
$$

and

$$
X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{3}=\left(\begin{array}{lll}
30 & 15 & 10 \\
15 & 30 & 20 \\
10 & 20 & 30
\end{array}\right) .
$$

The error at the iteration k is given by:

$$
R\left(X_{1}(k), X_{2}(k), X_{3}(k)\right)=\max _{1 \leq i \leq 3}\left\|X_{i}(k)-I_{3}-\sum_{j=1}^{3} A_{j}^{*} F_{i j}\left(X_{j}(k)\right) A_{j}\right\|
$$

For $X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{1}$, after 15 iterations, we obtain

$$
X_{1}(15)=\left(\begin{array}{ccc}
10.565 & -4.4081 & 2.7937 \\
-4.4081 & 16.883 & -6.6118 \\
2.7937 & -6.6118 & 9.7152
\end{array}\right), \quad X_{2}(15)=\left(\begin{array}{ccc}
11.512 & -5.8429 & 3.1922 \\
-5.8429 & 19.485 & -7.9308 \\
3.1922 & -7.9308 & 10.68
\end{array}\right)
$$

and

$$
X_{3}(15)=\left(\begin{array}{ccc}
11.235 & -3.5241 & 3.2712 \\
-3.5241 & 17.839 & -7.8035 \\
3.2712 & -7.8035 & 11.618
\end{array}\right)
$$

Figure 2 Convergence history for Sys. (16)

The residual error is given by:

$$
R\left(X_{1}(15), X_{2}(15), X_{3}(15)\right)=4.722 \times 10^{-15}
$$

For $X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{2}$, after 15 iterations, the residual error is given by:

$$
R\left(X_{1}(15), X_{2}(15), X_{3}(15)\right)=4.911 \times 10^{-15}
$$

For $X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{3}$, after 15 iterations, the residual error is given by:

$$
R\left(X_{1}(15), X_{2}(15), X_{3}(15)\right)=8.869 \times 10^{-15}
$$

The convergence history of the algorithm for different values of $X_{1}(0), X_{2}(0)$, and X_{3} (0) is given by Figure 2, where c_{1} corresponds to $X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{1}, c_{2}$ corresponds to $X_{1}(0)=X_{2}(0)=X_{3}(0)=M_{2}$ and c_{3} corresponds to $X_{1}(0)=X_{2}(0)=X_{3}(0)=$ M_{3}.

Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 6 August 2011 Accepted: 28 November 2011 Published: 28 November 2011

References

1. Banach, S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math. 3, 133-181 (1922)
2. Agarwal, R, Meehan, M, O'Regan, D: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, UK. 141 (2001)
3. Ćirić, L: A generalization of Banach's contraction principle. Proc Am Math Soc. 45(2), 273-273 (2)
4. Kirk, W, Sims, B: Handbook of Metric Fixed Point Theory. Kluwer, Dordrecht (2001)
5. Thompson, A: On certain contraction mappings in a partially ordered vector space. Proc Am Math Soc. 14, 438-443 (1963)
6. Nussbaum, R: Hilbert's projective metric and iterated nonlinear maps. Mem Amer Math Soc. 75(391), 1-137 (1988)
7. Nussbaum, R: Finsler structures for the part metric and Hilbert' projective metric and applications to ordinary differential equations. Differ Integral Equ. 7, 1649-1707 (1994)
8. Lim, Y: Solving the nonlinear matrix equation $X=Q+\sum_{i=1}^{m} M_{i} X^{\delta_{i}} M_{i}^{*}$ via a contraction principle. Linear Algebra Appl. 430, 1380-1383 (2009). doi:10.1016/j.laa.2008.10.034
9. Duan, X, Liao, A: On Hermitian positive definite solution of the matrix equation $X-\sum_{i=1}^{m} A_{i}^{*} X^{r} A_{i}=Q$. J Comput Appl Math. 229, 27-36 (2009). doi:10.1016/j.cam.2008.10.018
10. Duan, X, Liao, A, Tang, B: On the nonlinear matrix equation $X-\sum_{i=1}^{m} A_{i}^{*} X^{\delta_{i}} A_{i}=Q$. Linear Algebra Appl. 429, 110-121 (2008). doi:10.1016/j.laa.2008.02.014
11. Duan, X, Peng, Z, Duan, F: Positive defined solution of two kinds of nonlinear matrix equations. Surv Math Appl. 4, 179-190 (2009)
12. Hasanov, V: Positive definite solutions of the matrix equations $X \pm A^{*} X^{-9} A=Q$. Linear Algebra Appl. 404, 166-182 (2005)
13. Ivanov, I, Hasanov, V, Uhilg, F: Improved methods and starting values to solve the matrix equations $X \pm A^{*} X^{-1} A=I$ iteratively. Math Comput. 74, 263-278 (2004). doi:10.1090/S0025-5718-04-01636-9
14. Ivanov, I, Minchev, B, Hasanov, V: Positive definite solutions of the equation $X-A^{*} \sqrt{X^{-1}} A=I$. In: Heron Press S (ed.) Application of Mathematics in Engineering'24, Proceedings of the XXIV Summer School Sozopol'98.113-116 (1999)
15. Liao, A, Yao, G, Duan, X: Thompson metric method for solving a class of nonlinear matrix equation. Appl Math Comput. 216, 1831-1836 (2010). doi:10.1016/j.amc.2009.12.022
16. Liu, $X, G a o, H$: On the positive definite solutions of the matrix equations $X^{s} \pm A^{\top} X^{t} A=I_{n}$. Linear Algebra Appl. 368, 83-97 (2003)
17. Ran, A, Reurings, M, Rodman, A: A perturbation analysis for nonlinear selfadjoint operators. SIAM J Matrix Anal Appl. 28, 89-104 (2006). doi:10.1137/05062873
18. Shi, X, Liu, F, Umoh, H, Gibson, F: Two kinds of nonlinear matrix equations and their corresponding matrix sequences. Linear Multilinear Algebra. 52, 1-15 (2004). doi:10.1080/0308108031000112606
19. Zhan, X, Xie, J: On the matrix equation $X+A^{\top} X^{-1} A=I$. Linear Algebra Appl. 247, 337-345 (1996)
20. Dehgham, M, Hajarian, M : An efficient algorithm for solving general coupled matrix equations and its application. Math Comput Modeling. 51, 1118-1134 (2010). doi:10.1016/j.mcm.2009.12.022
21. Zhoua, B, Duana, G, Li, Z: Gradient based iterative algorithm for solving coupled matrix equations. Syst Control Lett. 58, 327-333 (2009). doi:10.1016/j.sysconle.2008.12.004
[^0]
Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

[^0]: doi:10.1186/1687-1812-2011-89
 Cite this article as: Berzig and Samet: Solving systems of nonlinear matrix equations involving Lipshitzian mappings. Fixed Point Theory and Applications 2011 2011:89.

