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Abstract The 2-DISJOINT CONNECTED SUBGRAPHS problem, given a graph along
with two disjoint sets of terminals Z1,Z2, asks whether it is possible to find dis-
joint sets A1,A2, such that Z1 ⊆ A1, Z2 ⊆ A2 and A1,A2 induce connected sub-
graphs. While the naive algorithm runs in O(2nnO(1)) time, solutions with complex-
ity of form O((2 − ε)n) have been found only for special graph classes (van ’t Hof
et al. in Theor. Comput. Sci. 410(47–49):4834–4843, 2009; Paulusma and van Rooij
in Theor. Comput. Sci. 412(48):6761–6769, 2011). In this paper we present an
O(1.933n) algorithm for 2-DISJOINT CONNECTED SUBGRAPHS in general case,
thus breaking the 2n barrier. As a counterpoise of this result we show that if we pa-
rameterize the problem by the number of non-terminal vertices, it is hard both to
speed up the brute-force approach and to find a polynomial kernel.
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1 Introduction

It is commonly believed that no NP-complete problem is solvable in polynomial time.
However, while all NP-complete problems are equivalent with respect to polynomial
time reductions, they appear to be very different with respect to the best exponen-
tial time exact solutions. In particular, a number of NP-complete problems can be
solved much faster than the obvious algorithm that enumerates all possible solutions;
examples are INDEPENDENT SET [12], DOMINATING SET [12, 21], CHROMATIC

NUMBER [3] and BANDWIDTH [6]. The race for the fastest exact algorithm inspired
several very interesting tools and techniques such as Fast Subset Convolution [2] and
Measure&Conquer [12] (for an overview of the field we refer the reader to a recent
book by Fomin and Kratsch [11]).

For several problems, including TSP, CHROMATIC NUMBER, PERMANENT, SET

COVER, #HAMILTONIAN CYCLES and SAT, the currently best known time com-
plexity is of the form O(2nnO(1)), which is a result of applying dynamic program-
ming over subsets, the inclusion-exclusion principle or a brute force search. The ques-
tion remains, however, which of those problems are inherently so hard that it is not
possible to break the 2n barrier and which are just waiting for new tools and tech-
niques still to be discovered. In particular, the hardness of the k-SAT problem is the
starting point for the Strong Exponential Time Hypothesis of Impagliazzo and Pa-
turi [5, 15], which is used as an argument that other problems are hard [7, 9, 16,
17]. Recently, on the positive side, O(cn) time algorithms for a constant c < 2 have
been developed for SCHED [8], MAXIMUM INDUCED PLANAR SUBGRAPH [13] and
(a major breakthrough in the field) for the undirected version of the HAMILTONIAN

CYCLE problem [1]. In most cases breaking the 2n-barrier gives an O(cn)-time algo-
rithm with c significantly smaller than 2.

In this paper we study the 2-DISJOINT CONNECTED SUBGRAPHS problem:

2-DISJOINT CONNECTED SUBGRAPHS

Input: An undirected graph G = (V ,E) together with two disjoint subsets of ver-
tices Z1,Z2 ⊆ V .
Task: Is it possible to find two disjoint subsets A1 and A2 of V , such that Z1 ⊆ A1,
Z2 ⊆ A2 and G[A1], G[A2] are connected?

We call vertices from Z1 ∪ Z2 terminals and all other vertices non-terminals.
A general version of this problem (that is when we consider arbitrary number of
sets) was used as one of tools in the celebrated result of Robertson and Seymour [19],
that the MINOR CONTAINMENT problem can be solved in polynomial time for every
fixed pattern graph H. In literature, the solution (A1,A2) is sometimes required to
be a partition of V . Note that this does not simplify the problem: in our setting, if G

is connected, the superfluous vertices can always be attached to one of the sets A1
or A2, while otherwise the instance is trivial.

Previous Work Gray et al. [14] show that the 2-DISJOINT CONNECTED SUB-
GRAPHS problem is NP-complete even for the class of planar graphs. The motiva-
tion for this variant comes from an application in computational geometry, namely



Algorithmica (2014) 70:195–207 197

finding a realization of an imprecise terrain that minimizes the total number of local
minima and local maxima. Furthermore, van ’t Hof et al. [22] proved that the problem
remains NP-complete even if |Z1| = 2.

From the exact exponential time algorithms perspective the authors in [22] show
that one can solve 2-DISJOINT CONNECTED SUBGRAPHS in O((2 − ε(�))n) time
for any n-vertex P�-free graph. This line of research was continued by Paulusma and
van Rooij [18], where the authors present an algorithm with O(1.2051n) running
time complexity for P6-free graphs and split graphs.

Our Results In [18] Paulusma and van Rooij ask whether it is possible to solve the
2-DISJOINT CONNECTED SUBGRAPHS problem in general graphs faster than using
the trivial O(2nnO(1)) algorithm. In this paper we answer this question affirmatively
and present an O(1.933n) time and polynomial space algorithm. Our approach is
based on the branch and reduce technique and a combinatorial study of the case when
the number of terminal vertices is small.

Theorem 1 One can solve the 2-DISJOINT CONNECTED SUBGRAPHS problem in
O(1.933n) running time and polynomial space.

To break the 2n barrier we heavily use the fact that in the instance size n we count
not only non-terminals but also terminal vertices. Observe that the naive brute-force
algorithm, which for every partition of V \(Z1 ∪Z2) checks whether A1 \Z1,A2 \Z2
can be found within its sides, runs in O(2knO(1)) time, where k is the number of
non-terminals. Therefore, it is natural to ask whether it is possible to obtain also
an O((2 − ε)knO(1)) algorithm. Using a recent hardness result (under the Strong
Exponential Time Hypothesis; see Sect. 2 for an exact statement) of Cygan et al. [9]
for the SET SPLITTING problem, we show that this is not the case: breaking the 2k

barrier is hard.

Theorem 2 There does not exist an epsilon ε > 0 and an algorithm running in
O((2 − ε)k|V |O(1)) time for the 2-DISJOINT CONNECTED SUBGRAPHS problem
unless the Strong Exponential Time Hypothesis is false.

We should note that the Strong Exponential Time Hypothesis is a very strong
assumption, and not widely believed, as it is the case of its weaker cousin, the Expo-
nential Time Hypothesis (which is still much stronger than the statement P �= NP).
However, as noted in [16], SETH-based lower bounds still make sense: one should
probably wait with trying to break a SETH-hard barrier until a faster SAT algorithm
is discovered.

Since the naive O(2knO(1)) time algorithm for 2-DISJOINT CONNECTED SUB-
GRAPHS shows that the problem is fixed-parameter tractable, a usual next step is
to investigate the kernelization possibilities for the problem (see Sect. 2 for respec-
tive definitions). Using the kernelization hardness result of Dom et al. [10] for the
COLOUR HITTING SET problem parameterized by the size of the universe we show
that 2-DISJOINT CONNECTED SUBGRAPHS parameterized by the number of non-
terminal vertices is unlikely to admit a polynomial kernel.
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Theorem 3 The 2-DISJOINT CONNECTED SUBGRAPHS problem parameterized
by the number of non-terminals does not admit a polynomial kernel unless NP ⊆
coNP/poly.

As a byproduct we prove a kernelization hardness result for SET SPLITTING

parameterized by the size of the universe, which is of independent interest.

SET SPLITTING

Input: A set system (F ,U), where F ⊆ 2U .
Task: Does there exist a subset X ⊆ U such that each set in F contains both an
element from X and from U \ X?

Theorem 4 The SET SPLITTING problem parameterized by the universe size does
not admit a polynomial kernel unless NP ⊆ coNP/poly.

Organization of the Paper In Sect. 2 we provide the reader with the necessary
definitions. Section 3 is devoted to the details of the O(1.933n) algorithm for 2-
DISJOINT CONNECTED SUBGRAPHS, while in Sect. 4 we present the negative re-
sults for the parameterization by the number of non-terminals. Concluding remarks
are gathered in Sect. 5.

2 Preliminaries

Notation For an undirected graph G = (V ,E) and a subset of vertices X ⊆ V by
G[X] we denote the subgraph induced by X. An articulation point in G is a vertex,
whose removal increases the number of connected components of G.

For a universe U and two subsets X,Y ⊆ U we say that X splits Y if Y ∩ X �= ∅
and Y ∩ (U \ X) �= ∅.

Parameterized Complexity In the parameterized complexity setting, an instance
comes with an integer parameter k—formally, a parameterized problem Q is a subset
of Σ∗ × N for some finite alphabet Σ . We say that the problem is fixed parame-
ter tractable (FPT) if there exists an algorithm solving any instance (x, k) in time
f (k)poly(|x|) for some (usually exponential) computable function f . It is known
that a problem is FPT iff it is kernelizable: a kernelization algorithm for a problem
Q takes an instance (x, k) and in time polynomial in |x| + k produces an equivalent
instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for some
computable function g. The function g is the size of the kernel, and if it is polynomial,
we say that Q admits a polynomial kernel.

The hardness of kernelization can be obtained in a reduction-like manner by
polynomial-time transformations from problems known to be hard to kernelize.

Definition 1 [4] Let P and Q be parameterized problems. We say that P is polyno-
mial parameter reducible to Q, written P ≤p Q, if there exists a polynomial time
computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that for
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all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff (x′, k′) = f (x, k) ∈ Q and
k′ ≤ p(k). The function f is called a polynomial parameter transformation.

Theorem 5 [4] Let P and Q be parameterized problems and P̃ and Q̃ be the unpa-
rameterized versions of P and Q respectively. Suppose that P̃ is NP-hard and Q̃ is
in NP. Assume there is a polynomial parameter transformation from P to Q. Then if
Q admits a polynomial kernel, so does P .

Exponential Time Hypothesis [5, 15] Let ck be the infimum of a set of reals c for
which there exists an algorithm solving the k-CNF-SAT problem in time O(cn),
where n is the number of variables in the input formula. The Exponential Time Hy-
pothesis (ETH) asserts that c3 > 1, whereas the Strong Exponential Time Hypothesis
(SETH) asserts that limk→∞ ck = 2. In particular, SETH implies that satisfiability of
an arbitrary boolean formula cannot be checked significantly faster than by trying all
possible assignments.

3 Algorithm

In this section we provide an algorithm solving the 2-DISJOINT CONNECTED SUB-
GRAPHS problem in O(1.933n) time, where n is the total number of vertices in the in-
put graph. Recall that in the 2-DISJOINT CONNECTED SUBGRAPHS problem the ver-
tices were divided into three groups—A1 , A2 and V \ (A1 ∪A2). The algorithm will
be simpler to present if we merge A2 with V \ (A1 ∪A2). This means that we drop the
condition that A2 is connected, requiring instead that all vertices from Z2 are in the
same connected component of G[A2]. Formally, we consider the following problem:

MODIFIED 2-DISJOINT CONNECTED SUBGRAPHS

Input: An undirected graph G = (V ,E) together with two disjoint subsets of ver-
tices Z1,Z2 ⊆ V .
Task: Is it possible to partition V into sets A1,A2, with Z1⊆A1 and Z2⊆A2, such
that G[A1] is connected and all the vertices of Z2 lie in the same connected com-
ponent of G[A2]?

First notice that if we fix A1, then checking the correctness of a partition is a
polynomial-time operation.

Let ε = 0.0493. If |Z1| + |Z2| ≥ ε|V |, we can simply iterate over all pos-
sible choices of A1 \ Z1—this is a subset of V \ (Z1 ∪ Z2), so we have an
O(2|V |−|Z1|−|Z2|nO(1)) ⊆ O(2(1−ε)nnO(1)) ⊆ O(1.933n) algorithm solving the prob-
lem. From now on we assume |Z1| + |Z2| < εn. Additionally we assume that
|Z1| ≤ |Z2|, which means |Z1| < εn/2.

We will be looking for a set A1 which is minimal with respect to inclusion. Let
us fix one such set. Let G′ = G[A1]. Notice that any vertex r ∈ A1 \ Z1 has to be an
articulation point in G′, otherwise we could move it from A1 to A2 and still have a
valid solution. We will prove the following lemma:
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Lemma 1 Let H be any graph with at least 2 vertices. Let k be the number of vertices
of H that are not articulation points, and let l be the number of articulation points of
degree at least three. Then 3k − 6 ≥ l.

The proof has been postponed to Sect. 3.2.
Let us call all the vertices of Z1 and those vertices of A1 with degree larger than 2

in G′ jointly branching points. As |Z1| ≤ εn/2, by Lemma 1 applied to G′ we have
that G′ contains at most 2εn − 6 branching points.

Notice that we can assume that no vertex in A1 \ Z1 is of degree 0 or 1 in G[A1]
(because, again, we could remove it to achieve a smaller solution)—thus all the ver-
tices that are not branching points have to be of degree two in G[A1].

We now pursue a branch and reduce algorithm. A state of our algorithm is an
instance (G = (V ,E),Z1,Z2) of the MODIFIED 2-DISJOINT CONNECTED SUB-
GRAPHS problem, plus a set A2 ⊇ Z2 of vertices that we have already chosen to be
in A2 . The running time of our algorithm depends on two numbers:

– N = |V \ A2|—the number of vertices of the graph not yet chosen to A2;
– K—the upper limit on the number of branching points in the graph.

Formally, we describe a procedure solve(G,Z1,Z2,A2,K) that either:

1. reports a valid solution (A1
′,A2

′) to the MODIFIED 2-DISJOINT CONNECTED

SUBGRAPHS problem, such that A2 ⊆ A2
′, or

2. reports NO, correctly claiming that the MODIFIED 2-DISJOINT CONNECTED

SUBGRAPHS instance (G,Z1,Z2) has no solution (A1
′,A2

′), such that A2 ⊆ A2
′

and A1
′ has at most K branching points.

Note that the outcomes above are not exclusive: if the input MODIFIED 2-DISJOINT

CONNECTED SUBGRAPHS instance has a solution, but only with more than K

branching points, the algorithm can report any of the answers.
Let δ = (|Z1| + |Z2|)/|V |, recall we assume δ ≤ ε. The starting value of N is no

larger than (1− δ/2)|V |. Lemma 1 ensures us that solve(G,Z1,Z2,Z2,2δ|V |−6)

reports a solution if and only if the MODIFIED 2-DISJOINT CONNECTED SUB-
GRAPHS instance (G,Z1,Z2) is a YES-instance.

Let T (N,K) be the worst-case cost of executing our algorithm for given values of
N and K . We need to prove that T ((1 − δ/2)n,2δn − 6) ≤ 1.933n for any 0 ≤ δ ≤ ε.

We will also describe a similar procedure solve∗(G,Z1,Z2,A2,K,w), where
in addition to the input graph as in the original problem, we have a single vertex w,
adjacent to some t ∈ Z1, and we already decided that w ∈ A1 (we did not decide
whether w is a branching point or not). Let T ∗(N,K) denote the worst-case com-
plexity of executing our algorithm for given values of N and K in this case. We will
simultaneously prove the following two inequalities:

T (N,K) ≤ 1.5901N8.109K,

T ∗(N,K) ≤ 0.3711 · 1.5901N8.109K.

It is easy to check this suffices to prove Theorem 1. As all the inequalities presented
further are not tight within very small constants, the obtained bound on the running
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time is in fact slightly better; therefore, we can suppress all the polynomial factors
using this error.

3.1 Reduction Rules

We provide a set of reduction rules. The algorithm at each point finds the lowest-
number reduction rule applicable and applies it. Finding and applying a single reduc-
tion rule will trivially be a polynomial-time operation.

During the algorithm we will assign vertices both to A1 and A2. A feature of our
algorithm is that a vertex v can be assigned to A1 only if there is some w ∈ Z1 adja-
cent to it. When we assign v to A1, we will represent this by contracting the edge vw.
Note that the resultant instance is fully equivalent to the original—if (A1,A2) is
a valid solution in the reduced graph, then (A1 ∪ {v},A2) is a valid solution in the
original graph, and conversely if (A1,A2) is a valid solution in the original graph,
and v ∈ A1, then (A1 \ v,A2) is a valid solution in the reduced graph.

If we find a solution in any of the branches, we return it as the witness of the
positive answer for the problem. If we find no solution, we return NO.

3.1.1 Reduction Rules for solve(G,Z1,Z2,A2,K)

Reduction Rule 1 If there are two vertices from Z1 in different components of
G[V \ A2], return NO from this branch.

Reduction Rule 2 If |Z1| = 1, we check whether all the vertices of Z2 lie in the same
connected component of G[V \ Z1]. If yes, we report a solution (Z1,V \ Z1). If no,
we return NO from this branch.

Reduction Rule 3 If K < |Z1|, we return NO from this branch.

Reduction Rule 4 If there are two adjacent vertices t, t ′ ∈ Z1, contract the edge t t ′
and reduce K by one.

Reduction Rule 5 If there is a vertex w adjacent to some t ∈ Z1 (necessarily
w /∈ Z1), we branch. We will either put it in A2 in the solution, or choose it to be
a part of A1 and proceed to the second variant of the problem.

To check the complexity assumptions in this case, we verify that the running time
after applying the reduction rule is at most the claimed bound on T (N,K):

T (N − 1,K) + T ∗(N,K) ≤ 1.5901N−18.109K + 0.3711 · 1.5901N8.109K

≤ 1.5901N8.109K.

The correctness of all the above rules is trivial.
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3.1.2 Reduction Rules for solve∗(G,Z1,Z2,A2,K,w)

Recall that now we have a vertex w which we already know to be in A1, and which
is adjacent to some t ∈ Z1.

Reduction Rule 6 If w is adjacent to some vertex t ′ ∈ Z1 other than t , we contract
the edges tw and t ′w, and decrease K by one.

Notice that as we contracted two vertices from Z1 into a single vertex in this case,
we have at least one branching point less in the reduced graph than in the original. To
check the complexity assumptions in this case, we verify that the running time after
applying the reduction rule is at most the claimed bound on T ∗(N,K):

T (N − 2,K − 1) ≤ 1.5901N−28.109K−1 ≤ 0.3711 · 1.5901N8.109K.

Reduction Rule 7 If w has no neighbours outside Z1 ∪ A2, return NO from this
branch.

This can be justified as follows: for any solution A1 containing w, the set A1 \ w is
also a valid solution, and we are looking only for inclusion-minimal sets A1.

Reduction Rule 8 If w has only a single neighbour w′ outside Z1 ∪A2, contract the
edge tw and proceed treating w′ as the new w.

The justification of this is that again, if w′ were not to be a part of the solution, we
could also remove w from the solution.

Reduction Rule 9 If w has more than one neighbour outside Z1 ∪A2, we branch. We
either decide w is a branching point (in which case we contract tw, reduce the limit
on the number of branching points by one, and return to the original problem), or that
it is not. In the latter case, exactly one of the neighbours of w is in the solution—thus
we branch on which one is it, contract the edge tw, put the remaining neighbours of
w in A2 and proceed treating the selected neighbour as the new w.

To check the complexity assumptions we verify that for any d ≥ 3 the running time
after applying the reduction rule is at most the claimed bound on T ∗(N,K):

T (N − 1,K − 1) + (d − 1)T ∗(N − (d − 1),K)

≤ 1.5901N−18.109K−1 + (d − 1)0.3711 · 1.5901N−(d−1)8.109K

≤ 0.3711 · 1.5901N8.109K.

As d/(d − 1) ≤ 1.5 < 1.5901 for d ≥ 3, the above inequality may be verified only
for d = 3.
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3.2 Proof of Lemma 1

Lemma 2 (Lemma 1, Restated) Let H be any graph with at least 2 vertices. Let k be
the number of vertices of H that are not articulation points, and let l be the number
of articulation points of degree at least three. Then 3k − 6 ≥ l.

Proof Let us denote m = 3k − l, our goal is to prove that for any graph H we have
m ≥ 6. Let us assume the contrary: there exist graphs for which m < 6. Let H0 be the
one with minimum number of vertices, a minimal counterexample. We now examine
the structure of H0 in order to find a contradiction.

We first claim that H0 is connected. If H0 is edgeless, k ≥ 2, l = 0 and 3k − l ≥ 6.
If H0 contains an isolated vertex v, H0 has at least three vertices, and by deleting
v we obtain a smaller counterexample, as we decrease k and keep the value of l.
Otherwise, we note that m is additive with respect to connected components, so in
case of disconnectedness one of its components would be a smaller counterexample
with at least two vertices.

Observe that H0 cannot have an articulation point of degree 2. In such a situation
we could contract one of the incident edges; this operation changes neither k nor l,
so m stays the same and we obtain a smaller counterexample.

Now assume that H0 contains an articulation point v, such that we can partition
the connected components of H0[V \ {v}] into two parts with vertex sets V1,V2, for
which |V1|, |V2| > 1. Note that H0[V1 ∪ {v}] and H0[V2 ∪ {v}] are connected. As the
degree of v is at least 3, let us assume without losing generality that the degree of v

in H0[V1 ∪ {v}] is at least 2. Consider two graphs:

– H1, being H0[V1 ∪ {v}] with a pendant (a degree-1 vertex) attached to v;
– H2 := H0[V2 ∪ {v}].
Both H1 and H2 have less vertices than H0, so if for i = 1,2 we denote by ki, li the
numbers of non-articulation points and articulation points of degree at least 3 in Hi

respectively, then mi := 3ki − li ≥ 6.
Observe that k ≥ k1 + k2 − 2, as every vertex from V \ {v} that was a non-

articulation point in a corresponding Hi is also a non-articulation point in H0, while
v is an articulation point in H1. Moreover, l ≤ l1 + l2, as every articulation point of
degree at least 3 in H0 is also an articulation point of degree at least 3 in either H1

or H2. Hence,

m = 3k − l ≥ 3(k1 + k2 − 2) − (l1 + l2) = m1 + m2 − 6 ≥ 6,

a contradiction with H0 being a counterexample.
Take any articulation point v in H0. As the partition described above is not possi-

ble, removing v from the graph results in H0 being split into exactly two connected
components: one of size |V (H)| − 2 and one of size 1. Therefore, every articulation
point in H0 has a neighbour of degree 1, which obviously is not an articulation point.
Hence, l ≤ k and, consequently, 6 > 3k − l ≥ 2k, which leads to l ≤ k ≤ 2. Now
observe that
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– if l = 0, then k ≥ 2 as H0 has at least two vertices, so m ≥ 6, a contradiction;
– if l = 1, then the only articulation point must have at least three neighbours, so

k ≥ 3, a contradiction;
– otherwise l = 2 and the graph is isomorphic to P4, a contradiction as well.

In each case we obtained a contradiction, which finishes the proof. �

Remark 1 One might wonder whether the constants obtained in the proof are optimal,
and whether we could strengthen the bound to achieve a better complexity of the
algorithm. In fact, this is not the case: there exists an infinite family of graphs with
unbounded k, l, for which the inequality from Lemma 1 is tight. An example of such
a graph is one constructed from a set of disjoint triangles by connecting them in a
tree-like manner by bridges, and by adding a degree-1 neighbours to some of the
vertices of the triangles, such that each vertex of the triangles has degree exactly
three.

4 The 2-DISJOINT CONNECTED SUBGRAPHS Problem Parameterized by the
Number of Non-terminals

In this section we consider the 2-DISJOINT CONNECTED SUBGRAPHS problem pa-
rameterized by the number of non-terminals and prove Theorems 2 and 3.

First we prove that the SET SPLITTING problem parameterized by the size of
the universe does not admit a polynomial kernel unless NP ⊆ coNP/poly (that is,
prove Theorem 4), which we later use for the kernelization hardness of 2-DISJOINT

CONNECTED SUBGRAPHS. As the starting point we use the following result of Dom
et al. [10].

COLOUR HITTING SET

Input: A set system (F ,U), where F ⊆ 2U , an integer k ≤ |U | and a colour func-
tion c : U → {0, . . . , k − 1}.
Task: Does there exists a subset X ⊆ U , which contains at most one element of
each of the k colours, such that each set in F contains an element from X?

Theorem 6 [10] The COLOUR HITTING SET problem parameterized by the size of
the universe does not have a polynomial kernel unless NP ⊆ coNP/poly.

Lemma 3 There exists a polynomial time algorithm which given an instance I =
(F ,U) of COLOUR HITTING SET creates an instance I ′ = (F ′,U ′) of SET SPLIT-
TING, where |U ′| = |U | + 2, such that I is a YES-instance iff I ′ is a YES-instance.

Proof Let I = (F ,U, k, c) be an instance of COLOUR HITTING SET. We cre-
ate the following instance I ′ = (F ′,U ′) of SET SPLITTING. As the universe U ′
we take U ′ = U ∪ {uin, uout}. As the family F ′ we set F ′ = {{uout} ∪ S : S ∈
F } ∪ {{uin, uout}} ∪ {{uin, u1, u2} : u1, u2 ∈ U ∧ u1 �= u2 ∧ c(u1) = c(u2)}. We want
to prove that I is a YES-instance of COLOUR HITTING SET iff I ′ is a YES-instance
of SET SPLITTING.
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First assume that I is a YES-instance of COLOUR HITTING SET and let X ⊆ U

be any solution. We claim that X′ = X ∪ {uin} is a solution to SET SPLITTING. Ob-
viously we split the set {uin, uout}. Since each set in F contains an element of X and
uout /∈ X′ we infer that each set of {{uout} ∪ S : S ∈ F } is split by X′. Finally, X

contains at most one element of each colour, therefore each set {uin, u1, u2} is split,
because uin ∈ X′ and at least one element of {u1, u2} belongs to U ′ \ X′.

Now let us assume that I ′ is a YES-instance of SET SPLITTING and let X′ ⊆ U ′
be any solution. Since by symmetry U ′ \ X′ is also a solution for I ′, and there
exists a set {uin, uout} in I ′, w.l.o.g. we assume that uin ∈ X′ and uout /∈ X′. Let
X = X′ \ {uin} ⊆ U . We prove that X is a solution for the instance I . Since each
set in {{uout} ∪ S : S ∈ F } is split by X′ and uout /∈ X′ we infer that X contains at
least one vertex from each set in F . Moreover, since each set of the form {uin, u1, u2}
is split and uin ∈ X′, we know that X contains at most one element of each colour
and, consequently, I is a YES-instance. �

Theorem 4 follows from pipelining Theorems 5 and 6 and Lemma 3. Note that
here we use the fact that COLOUR HITTING SET is NP-hard and SET SPLITTING is
in NP. Now we show a reduction from SET SPLITTING to 2-DISJOINT CONNECTED

SUBGRAPHS.

Lemma 4 There exists a polynomial time algorithm which given an instance (F ,U)

of SET SPLITTING creates an instance (G = (V ,E),Z1,Z2) of 2-DISJOINT CON-
NECTED SUBGRAPHS, where |V | − |Z1| − |Z2| = |U |, such that (F ,U) is a YES-
instance iff (G,Z1,Z2) is a YES-instance.

Proof Let (F ,U) be an instance of the SET SPLITTING problem. We construct the
following graph G = (V ,E), where V = {z1, z2} ∪ U ∪ {vS

1 , vS
2 : S ∈ F }, that is as

the vertex set we take two special vertices z1,z2, one vertex for each element of the
universe U and two vertices for each set of the family F . We define the set of edges
of the graph G as E = {z1u, z2u : u ∈ U} ∪ {vS

1 u,vS
2 u : S ∈ F ∧ u ∈ S}. Finally

we define Z1 = {z1} ∪ {vS
1 : S ∈ F } and Z2 = {z2} ∪ {vS

2 : S ∈ F }, hence the only
non-terminal vertices in G are vertices of U .

Now we prove that (F ,U) is a YES-instance of SET SPLITTING iff (G =
(V ,E),Z1,Z2) is a YES-instance of 2-DISJOINT CONNECTED SUBGRAPHS. First
assume that X ⊆ U is a solution for (F ,U). We set A1 = Z1 ∪ X and A2 =
Z2 ∪ (U \X). Since each set in S ∈ F contains both an element of X and of U \X, all
the vertices from A1 are connected to z1 and all the vertices from A2 are connected
to z2. Therefore, the subgraphs G[A1] and G[A2] are connected and, consequently,
(G,Z1,Z2) is a YES-instance.

In the other direction assume that (G = (V ,E),Z1,Z2) is a YES-instance and let
(A1,A2) be a solution. We claim that X = A1 ∩ U is a solution to (F ,U). Indeed,
since both G[A1] and G[A2] are connected, we infer that each set S ∈ F contains
both an element of X and of U \ X; otherwise either vertices z1, v

S
1 or z2, v

S
2 would

be disconnected in G[A1] and G[A2] respectively. �

Similarly as in the case of Theorem 4, also Theorem 3 follows from pipelining
Theorems 5 and 6 and Lemmas 3 and 4. Again, we use here the fact that COLOUR



206 Algorithmica (2014) 70:195–207

HITTING SET is NP-hard and 2-DISJOINT CONNECTED SUBGRAPHS is in NP. To
prove Theorem 2 we pipeline Lemma 4 with the following recent result:

Theorem 7 [9] There does not exist an epsilon ε > 0 and an algorithm running in
(2 − ε)|U |(|U | + |F |)O(1) time for the SET SPLITTING problem unless the Strong
Exponential Time Hypothesis is false.

Remark 2 The proof of Theorem 7 in [9] reduces a κ-CNF-SAT instance (for any κ)
to a SET SPLITTING instance with a number of sets linear in the number of clauses
in the input. If we pipeline this reduction with Lemma 4, we obtain an instance with
much more terminals than non-terminals: k non-terminals yields roughly kκ termi-
nals. Therefore there is much space for improvement between the instances produced
by this reduction and the ones where our O(1.933n)-time algorithm does not fall back
to the brute-force solution.

5 Conclusions

In this paper we studied the general case of 2-DISJOINT CONNECTED SUBGRAPHS

problem and showed an algorithm achieving running time O(1.933n), thus breaking
the 2n barrier. For the natural parameterization by the number of non-terminals we
have shown a matching lower bound for the naive O(2knO(1)) upper bound. More-
over, the existence of a polynomial kernel is unlikely.

Recently, Telle and Villanger announced an even faster exact algorithm for the 2-
DISJOINT CONNECTED SUBGRAPHS problem, with running time O(1.7804n) [20].
The work of Telle and Villanger uses a similar approach, and provides a deeper com-
binatorial study of the problem of connecting a set of terminals with a small number
of vertices, considered from the perspective of exact algorithms.
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