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Recommender systems use data on past user preferences to predict
possible future likes and interests. A key challenge is that while the
most useful individual recommendations are to be found among
diverse niche objects, the most reliably accurate results are ob-
tained bymethods that recommend objects based on user or object
similarity. In this paperwe introduce a new algorithm specifically to
address the challenge of diversity and show how it can be used to
resolve this apparent dilemma when combined in an elegant
hybrid with an accuracy-focused algorithm. By tuning the hybrid
appropriately we are able to obtain, without relying on any seman-
tic or context-specific information, simultaneous gains in both
accuracy and diversity of recommendations.

hybrid algorithms ∣ information filtering ∣ heat diffusion ∣
bipartite networks ∣ personalization

Getting what you want, as the saying goes, is easy; the hard part
is working out what it is that you want in the first place (1).

Whereas information filtering tools like search engines typically
require the user to specify in advance what they are looking for
(2–5), this challenge of identifying user needs is the domain of
recommender systems (5–8), which attempt to anticipate future
likes and interests by mining data on past user activities.

Many diverse recommendation techniques have been devel-
oped, including collaborative filtering (6, 9), content-based
analysis (10), spectral analysis (11, 12), latent semantic models
and Dirichlet allocation (13, 14), and iterative self-consistent re-
finement (15–17). What most have in common is that they are
based on similarity, either of users or objects or both: for example,
e-commerce sites such as Amazon.com use the overlap between
customers’ past purchases and browsing activity to recommend
products (18, 19), while the TiVo digital video system recom-
mends TV shows and movies on the basis of correlations in users’
viewing patterns and ratings (20). The risk of such an approach is
that, with recommendations based on overlap rather than differ-
ence, more and more users will be exposed to a narrowing band of
popular objects, while niche items that might be very relevant will
be overlooked.

The focus on similarity is compounded by the metrics used to
assess recommendation performance. A typical method of com-
parison is to consider an algorithm’s accuracy in reproducing
known user opinions that have been removed from a test dataset.
An accurate recommendation, however, is not necessarily a useful
one: real value is found in the ability to suggest objects users
would not readily discover for themselves, that is, in the novelty
and diversity of recommendation (21). Despite this, most studies
of recommender systems focus overwhelmingly on accuracy as the
only important factor [for example, the Netflix Prize (22) chal-
lenged researchers to increase accuracy without any reference
to novelty or personalization of results]. Where diversification is
addressed, it is typically as an adjunct to themain recommendation
process, based on restrictive features such as semantic or other
context-specific information (23, 24).

The clear concern is that an algorithm that focuses too strongly
on diversity rather than similarity is putting accuracy at risk. Our
main focus in this paper is to show that this apparent dilemma can
in fact be resolved by an appropriate combination of accuracy-
and diversity-focused methods. We begin by introducing a
“heat-spreading” algorithm designed specifically to address the
challenge of diversity, with high success both at seeking out novel
items and at enhancing the personalization of individual user rec-
ommendations. We show how this algorithm can be coupled in a
highly efficient hybrid with a diffusion-based recommendation
method recently introduced by our group (25). Using three differ-
ent datasets from three distinct communities, we employ a com-
bination of accuracy- and diversity-related metrics to perform a
detailed study of recommendation performance and a compari-
son to well-known methods. We show that not only does the
hybrid algorithm outperform other methods but that, without
relying on any semantic or context-specific information, it can
be tuned to obtain significant and simultaneous gains in both
accuracy and diversity of recommendations.

Methods
Recommendation Procedure. Since explicit ratings are not always available
(26), the algorithms studied in this paper are selected to work with very
simple input data: u users, o objects, and a set of links between the two cor-
responding to the objects collected by particular users (more explicit prefer-
ence indicators can be easily mapped to this “unary” form, albeit losing
information in the process, whereas the converse is not so). These links
can be represented by an o × u adjacency matrix A where aαi ¼ 1 if object
α is collected by user i and aαi ¼ 0 otherwise (throughout this paper we
use Greek and Latin letters, respectively, for object- and user-related indices).
Alternatively we can visualize the data as a bipartite user-object network
with uþ o nodes, where the degrees of object and user nodes, kα and ki ,
represent respectively the number of users who have collected object α

and the number of objects collected by user i.
Recommendation scores are calculated for each user and each of their

uncollected objects, enabling the construction of a sorted recommendation
list with the most-recommended items at the top. Different algorithms
generate different object scores and thus different rankings.

Algorithms. The heat-spreading (HeatS) algorithm introduced here employs
a process analogous to heat diffusion across the user-object network. This
can be related to earlier work using a “heat conduction” algorithm to gen-
erate recommendations (27, 28), but with some key differences. The earlier
algorithm operates on an object-object network derived from an explicit
ratings structure, which washes out information about novelty or popular-
ity of objects and consequently limits the algorithm to considering
questions of accuracy and not diversity. The algorithm also requires
multiple iterations to converge to a steady state. By contrast HeatS re-
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quires no more than unary data and generates effective recommendations
in a single pass.

HeatS works by assigning objects an initial level of “resource” denoted
by the vector f (where fβ is the resource possessed by object β), and then
redistributing it via the transformation ~f ¼ WHf , where

WH
αβ ¼

1

kα ∑
u

j¼1

aαj aβj
kj

[1]

is a row-normalized o × o matrix representing a discrete analogy of a heat
diffusion process. Recommendations for a given user i are obtained by set-
ting the initial resource vector f i in accordance with the objects the user has
already collected, that is, by setting f iβ ¼ aβi . The resulting recommendation
list of uncollected objects is then sorted according to ~f iα in descending order.

HeatS is a variant on an earlier probabilistic spreading (ProbS) algorithm
introduced by our group (25), which redistributes resources in a manner
akin to a random-walk process. Whereas HeatS employs a row-normalized
transition matrix, that of ProbS is column-normalized,

WP
αβ ¼

1

kβ ∑
u

j¼1

aαj aβj
kj

; [2]

with the resource redistribution and resulting object scores then being given
by ~f ¼ WPf ¼ ðWHÞT f.

A visual representation of the resource spreading processes of HeatS and
ProbS is given in Fig. 1: in HeatS (A–C) resource is redistributed via an aver-
aging procedure, with users receiving a level of resource equal to the mean
amount possessed by their neighboring objects, and objects then receiving
back the mean of their neighboring users’ resource levels. By contrast, in
ProbS (D–F) the initial resource placed on objects is first evenly distributed
among neighboring users and then evenly redistributed back to those users’
neighboring objects. (Note that in ProbS total resource levels remain con-
stant, whereas in HeatS this is not so.) Due to the sparsity of real datasets,
these “physical” descriptions of the algorithms turn out to be more compu-
tationally efficient in practice than constructing and using the transition
matrices WP and WH.

To provide a point of comparison, we also employ two methods well
known in the recommender systems literature. Global ranking (GRank) re-
commends objects according to their overall popularity, sorting them by their
degree kα in descending order. While computationally cheap, GRank is not
personalized (apart from the exclusion of different objects already collected)
and in most cases it performs poorly.

A much more effective method is user similarity (USim), a well-known and
widely used technique that recommends items frequently collected by a
given user’s “taste mates” (8). The taste overlap between users i and j is
measured by the cosine similarity,

sij ¼ ∑
o

α¼1
aαi aαjffiffiffiffiffiffiffiffi
kikj

p ; [3]

and if user i has not yet collected object α, its recommendation score is given
by

vαi ¼ ∑
u

j¼1
sij aαj

∑
u

j¼1
sij

; [4]

with the final recommendation list for user i being sorted according to
vαi in descending order.

Hybrid Methods. A basic but very general means of creating hybrid algorithms
is to use weighted linear aggregation (23) if methods X and Y report scores of
xα and yα respectively, then a hybrid score for object α can be given by

zα ¼ ð1 − λÞ
�

xα
max
β

xβ

�
þ λ

�
yα

max
β

yβ

�
; [5]

where the normalizations address the fact that different methods may
produce scores on very different scales. By varying the parameter λ ∈ ½0; 1�,
we can tune the hybrid Xþ Y to favor the characteristics of one method
or the other.

Though easy to implement, this approach has the disadvantage of
requiring two independent recommendation calculations, thus increasing
computational cost. HeatS and ProbS, however, are already fundamentally
linked, with their recommendation processes being determined by different
normalizations of the same underlying matrix (in fact, their transition
matrices are the transpose of each other). A much more elegant hybrid
can thus be achieved by incorporating the hybridization parameter λ into
the transition matrix normalization:

WHþP
αβ ¼ 1

k1−λα kλβ ∑
u

j¼1

aαj aβj
kj

; [6]

where λ ¼ 0 gives us the pure HeatS algorithm, and λ ¼ 1 gives us pure ProbS
(other hybrid forms are possible but give inferior performance: Fig. S1 pro-
vides a comparison of the different alternatives). In contrast to Eq. 5, this
HeatSþ ProbS hybrid has a computational complexity of order no greater
than ProbS or HeatS alone. Note that while in the present work λ takes a
universal value, there is no reason in principle why we cannot use different
values for each individual target user.

Datasets. Three different datasets (Table 1) were used to test the above
algorithms, differing both in subject matter (movies, music, and Internet
bookmarks) and in quantitative aspects such as user/object ratios and link
sparsity. The first (Netflix) is a randomly selected subset of the huge dataset
provided for the Netflix Prize (22) while the other two (RYM and Delicious)
were obtained by downloading publicly available data from the music
ratings Web site RateYourMusic.com and the social bookmarking Web site
Delicious.com (taking care to anonymize user identity in the process).

While the Delicious data is inherently unary (a user has either collected a
Web link or not), the raw Netflix and RYM data contain explicit ratings on a
five- and ten-star scale, respectively. A coarse-graining procedure was there-
fore used to transform these into unary form: an object is considered to be
collected by a user only if the given rating is three or more (for Netflix) or six
or more (RYM). Sparseness of the datasets (defined as the number of links

Table 1. Properties of the tested datasets

Dataset Users Objects Links Sparsity

Netflix 10,000 6,000 701,947 1.17 · 10−2

RYM 33,786 5,381 613,387 3.37 · 10−3

Delicious 10,000 232,657 1,233,997 5.30 · 10−4
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Fig. 1. The HeatS (A, B, C) and ProbS (D, E, F) algorithms (Eqs. 1 and 2) at
work on the bipartite user-object network. Objects are shown as squares,
users as circles, with the target user indicated by the shaded circle. While
the HeatS algorithm redistributes resource via a nearest-neighbor averaging
process, the ProbS algorithm works by an equal distribution of resource
among nearest neighbors.
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divided by the total number of possible user-object pairs) is measured relative
to these coarse-grained connections.

Recommendation Performance Metrics. To test a recommendation method on
a dataset, we remove at random 10% of the links and apply the algorithm to
the remainder to produce a recommendation list for each user. We then
employ four different metrics, two to measure accuracy in recovery of
deleted links (A) and two to measure recommendation diversity (D):

(A1) Recovery of deleted links, r. An accurate method will clearly rank
preferable objects more highly than disliked ones. Assuming that users’ col-
lected objects are indeed preferred, deleted links should be ranked higher on
average than the other uncollected objects. So, if uncollected object α is listed
in place p for user i, the relative rank rαi ¼ p∕ðo − kiÞ should be smaller if α is a
deleted link (where objects from places p1 to p2 have the same score, which
happens often in practice, we give them all the same relative ranking,
1
2 ½p1 þ p2�∕½o − ki �). Averaging over all deleted links we obtain a quantity,
r, such that the smaller its value, the higher the method’s ability to recover
deleted links.

(A2) Precision and recall enhancement, ePðLÞ and eRðLÞ. Since real users
usually consider only the top part of the recommendation list, a more prac-
tical measure may be to consider diðLÞ, the number of user i’s deleted links
contained in the top L places. Depending on our concerns, we may be inter-
ested either in how many of these top L places are occupied by deleted links,
or how many of the user’s Di deleted links have been recovered in this way.
Averaging these ratios diðLÞ∕L and diðLÞ∕Di over all users with at least one
deleted link, we obtain the mean precision and recall, PðLÞ and RðLÞ, of the
recommendation process (21, 29).

A still better perspective may be given by considering these values relative
to the precision and recall of random recommendations, PrandðLÞ and RrandðLÞ.
If user i has a total ofDi deleted links, then Pi

randðLÞ ¼ Di∕ðo − kiÞ ≈ Di∕o (since
in general o ≫ ki) and hence averaging over all users, PrandðLÞ ¼ D∕ðouÞ,
where D is the total number of deleted links. By contrast the mean number
of deleted links in the top L places is given by LDi∕ðo − kiÞ ≈ LDi∕o and so
RrandðLÞ ¼ L∕o. From this we can define the precision and recall enhance-
ment,

ePðLÞ≔
PðLÞ

PrandðLÞ
¼ PðLÞ · ou

D
; [7a]

eRðLÞ≔
RðLÞ

RrandðLÞ
¼ RðLÞ · o

L
: [7b]

Results for recall are given in Figs. S2 and S3 but are similar in character to
those shown here for precision.

(D1) Personalization, hðLÞ. Our first measure of diversity considers the
uniqueness of different users’ recommendation lists—that is, inter-user diver-
sity. Given two users i and j, the difference between their recommendation
lists can be measured by the inter-list distance,

hijðLÞ≔1 −
qijðLÞ
L

; [8]

where qijðLÞ is the number of common items in the top L places of both lists:
identical lists thus have hijðLÞ ¼ 0 whereas completely different lists have
hijðLÞ ¼ 1. Averaging hijðLÞ over all pairs of users with at least one deleted
link we obtain the mean distance hðLÞ, for which greater or lesser values
mean, respectively, greater or lesser personalization of users’ recommenda-
tion lists.

(D2) Surprisal/novelty, IðLÞ. The second type of diversity concerns the
capacity of the recommender system to generate novel and unexpected re-
sults—to suggest objects a user is unlikely to know about already. To measure
this we use the self-information or “surprisal” (30) of recommended objects,
which measures the unexpectedness of an object relative to its global popu-
larity. Given an object α, the chance a randomly selected user has collected it
is given by kα∕u and thus its self-information is Iα ¼ log2ðu∕kαÞ. From this we
can calculate the mean self-information IiðLÞ of each user’s top L objects, and
averaging over all users with at least one deleted link we obtain the mean
top-L surprisal IðLÞ.

Note that unlike the metrics for accuracy, the diversity-related measures
could be averaged over all users regardless of whether they have deleted
links or not, but the final results do not differ significantly. Where metrics
depend on L, different choices result in shifts in the precise numbers but re-
lative performance differences between methods remain unchanged so long
as L ≪ o. Extended results are available in Figs. S4 and S5; a value of L ¼ 20

was chosen for the results displayed here in order to reflect the likely length
of a practical recommendation list.

Results
Individual Algorithms. A summary of the principal results for all
algorithms, metrics, and datasets is given in Table 2.

ProbS is consistently the strongest performer with respect to
accuracy, with USim a close second, while both GRank and
HeatS perform significantly worse (the latter reporting particu-
larly bad performance with respect to precision enhancement).
By contrast, with respect to the diversity metrics HeatS is by
far the strongest performer. ProbS has some success with respect
to personalization, but along with USim and GRank performs
weakly where surprisal (novelty) is concerned.

That GRank has any personalization at all [hðLÞ > 0] stems
only from the fact that it does not recommend items already
collected, and different users have collected different items.
The difference in GRank’s performance between Netflix,
RYM, and Delicious can be ascribed to the “blockbuster” phe-
nomenon common in movies, far less so with music and Web
links: the 20 most popular objects in Netflix are each collected
by, on average, 31.7% of users, while for RYM the figure is
7.2% and for Delicious only 5.6%.

The opposing performances of ProbS and HeatS—the former
favoring accuracy, the latter personalization and novelty—can be
related to their different treatment of popular objects. The ran-
dom-walk procedure of ProbS favors highly connected objects,
whereas the averaging process of HeatS favors objects with
few links: for example, in the Delicious dataset the average de-
gree of users’ top 20 objects as returned by ProbS is 346, while
with HeatS it is only 2.2. Obviously the latter will result in high
surprisal values, and also greater personalization, as low-degree
objects are more numerous and a method that favors them has a
better chance of producing different recommendation lists for
different users. On the other hand, randomly deleted links are
clearly more likely to point to popular objects, and methods that
favor low-degree objects will therefore do worse; hence the indis-
criminate but populist GRank is able to outperform the novelty-
favoring HeatS.

If we deliberately delete only links to low-degree objects, the
situation is reversed, with HeatS providing better accuracy,
although overall performance of all algorithms deteriorates

Table 2. Performance of the recommendation algorithms according to each of the four metrics: recovery of deleted
links, precision enhancement, personalization, and surprisal

Netflix RYM Delicious

Method r ePð20Þ hð20Þ Ið20Þ r ePð20Þ hð20Þ Ið20Þ r ePð20Þ hð20Þ Ið20Þ
GRank 0.057 58.7 0.450 1.79 0.119 57.3 0.178 4.64 0.314 147 0.097 4.23
USim 0.051 68.5 0.516 1.82 0.087 150 0.721 5.17 0.223 249 0.522 4.49
ProbS 0.045 70.4 0.557 1.85 0.071 185 0.758 5.32 0.210 254 0.783 5.81
HeatS 0.102 0.11 0.821 12.9 0.085 121 0.939 10.1 0.271 30.8 0.975 12.6
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(Table 3 and Fig. S6). Hence, while populism can be a cheap and
easy way to get superficially accurate results, it is limited in scope:
the most appropriate method can be determined only in the con-
text of a given task or user need. The result also highlights the
very distinct and unusual character of HeatS compared to other
recommendation methods.

Hybrid Methods. Given that different algorithms serve different
purposes and needs, is it possible to combine two (or more) in
such a way as to obtain the best features of both? With HeatS
favoring diversity and ProbS accuracy, their hybrid combination
(Eq. 6) might be expected to provide a smooth transition from
one to the other. In fact, the situation is even more favorable:
while pure HeatS represents the optimum for novelty, it is pos-
sible to obtain performance improvements relative to all other
metrics by tuning the hybridization parameter λ appropriately
(Fig. 2). The accuracy of ProbS can thus be maintained and even
improved while simultaneously attaining diversity close to or even
exceeding that of HeatS. Alternatively, diversity can be favored
while minimizing the cost in terms of accuracy.

Depending on the particular needs of a system and its users,
one can define an arbitrary utility function Uðr; eP; h; I; LÞ and
choose λ to optimize it: Table 4 gives as an example the percen-
tage improvements that can be made, relative to pure ProbS
(λ ¼ 1), if we choose λ to minimize r. Shared improvements
are obtained for all metrics except with the Delicious dataset,
where minimizing r has a negative effect on ePðLÞ. However, from
Fig. 2 we can see that even in this case it is possible to choose a
value of λ to simultaneously improve all metrics relative to ProbS.

Although HeatSþ ProbS provides the best performance when
taking into account all the metrics, other hybrids (constructed

using the more general method of Eq. 5) can provide some valu-
able individual contributions (Fig. S7). HeatSþUSim behaves
similarly to HeatSþ ProbS, but with generally smaller perfor-
mance improvements. A more interesting hybrid is to combine
the poorly performing GRank with either HeatS or ProbS. These
combinations can have a dramatic effect on link recovery: for
RYM either can be tuned to produce an improvement in r of
almost 30% (relative to pure ProbS), compared to only 6.8%
for the HeatSþ ProbS hybrid (Table 4).

The explanation for these improvements stems from the way in
which ProbS and HeatS interact with sparse datasets. Coverage of
uncollected objects is limited to those sharing a user in common
with an object collected by the target user (Fig. 1): all others re-
ceive a score of zero and so share a common (and large) relative
rank, rαi ¼ ðo − 1

2
ðZ − 1ÞÞ∕ðo − kiÞ where Z is the number of

objects with zero score. GRank, with its universal coverage, is
able to differentially rank these objects and so lower their con-
tributions to r. Consequently, while incorporating it too strongly
has a deleterious effect on the other metrics, a small GRank con-
tribution can provide a useful enhancement to recommendation
coverage—notably in “cold start” cases where little or nothing is
known about a user.

Discussion
Recommender systems have at their heart some very simple and
natural social processes. Each one of us looks to others for advice
and opinions, learning over time who to trust and whose sugges-
tions to discount. The paradox is that many of the most valuable
contributions come not from close friends but from people with
whom we have only a limited connection—“weak ties” who alert
us to possibilities outside our regular experience (31).

The technical challenges facing recommender systems involve
similar paradoxes. The most reliably accurate algorithms are
those based on similarity and popularity of users and objects,
yet the most valuable recommendations are those of niche items
users are unlikely to find for themselves (21). In this paper we
have shown how this apparent dilemma can be resolved by an
appropriate combination of diversity- and accuracy-focused
methods, using a hybrid algorithm that joins a method with pro-
ven high accuracy with a unique algorithm dedicated specifically
to the production of novel and personalized recommendations.

Table 3. Performance of individual recommendation algorithms for
a probe set consisting of only low-degree (k < 100) objects

Method r ePð20Þ hð20Þ Ið20Þ
GRank 0.327 0.000 0.525 1.68
USim 0.308 0.000 0.579 1.72
ProbS 0.279 0.014 0.610 1.74
HeatS 0.262 0.679 0.848 13.1
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Fig. 2. Performance of the HeatSþ ProbS hybrid algorithm (Eq. 6) on the three different datasets. By varying the hybridization parameter between pure
HeatS (λ ¼ 0) and pure ProbS (λ ¼ 1), it is possible to gain simultaneous performance enhancements with respect to both accuracy [r and ePðLÞ] and diversity
[hðLÞ and IðLÞ] of recommendations. Tuning λ in this fashion allows the algorithm to be customized and optimized for different user or community needs.
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Their combination allows not merely a compromise between the
two imperatives but also allows us to simultaneously increase
both accuracy and diversity of recommendations. By tuning
the degree of hybridization, the algorithms can be tailored to
many custom situations and requirements.

We expect these results to be general: while we have presented
a particular set of algorithms and datasets here, other recom-
mender systems must face the same apparent dilemma, and
we expect them to benefit from a similar hybrid approach. It
is interesting to note that while the Netflix Prize focused solely
on accuracy, the winning entry in fact took a diversification
approach, in this case based on tracking the changes in user
opinions over time (32).

The algorithms presented here rely on no more than unary
data and can thus place diversity at the heart of the recom-
mendation process while still being applicable to virtually any
dataset. More detailed sources of information can nevertheless
be used to extend the recommendation process. Topical informa-

tion and other measures of item-item similarity can be used to
further diversify recommendation lists (24): user-generated
classifications such as tags (33–35) may be useful here. The HeatS
and ProbS algorithms, and hence their hybrid, can be further
customized by modifying the initial allocation of resource (36)
to increase or decrease the influence of selected objects on
the recommendation process. The hybridization process itself
can be extended by incorporating techniques such as content-
based or semantic analyses (23).

The ultimate measure of success for any recommender system
is of course in the appreciation of its users, and in particular, the
ability of the system to serve their often very distinct needs. While
in this paper we have optimized the hybrid from a global perspec-
tive, there is no reason why it cannot be tuned differently for
each individual user—either by the system provider or by users
themselves. This last consideration opens the door to extensive
future theoretical and empirical research, bringing diversity
and personalization not just to the contents of recommendation
lists, but to the recommendation process itself.
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Table 4. Percentage performance improvements in the four metrics
when the HeatSþ ProbS hybridization parameter λ is tuned to
optimize r

Dataset λ δr δePð20Þ δhð20Þ δIð20Þ
Netflix 0.23 10.6% 16.5% 28.5% 28.8%
RYM 0.41 6.8% 10.8% 20.1% 17.2%
Delicious 0.66 1.2% −6.0% 22.5% 61.7%

Percentage improvements are calculated against the pure ProbS algorithm.
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