
Solving the Assignment Problem by Relaxation
Author(s): Ming S. Hung and Walter O. Rom
Source: Operations Research, Vol. 28, No. 4 (Jul. - Aug., 1980), pp. 969-982
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/170335 .
Accessed: 15/10/2011 17:53

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Operations Research.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/170335?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

Solving the Assignment Problem by Relaxation

MING S. HUNG
Kent State University, Kent, Ohio

WALTER 0. ROM
Cleveland State University, Cleveland, Ohio

(Received June 1978; accepted February 1980)

This paper presents a new algorithm for solving the assignment problem. The
algorithm is based on a scheme of relaxing the given problem into a series of
simple network flow (transportation) problems for each of which an optimal
solution can be easily obtained. The algorithm is thus seen to be able to take
advantage of the nice properties in both the primal and the dual approaches
for the assignment problem. The computational bound for the algorithm is
shown to be O(n3) and the average computation time is better than most of
the specialized assignment algorithms.

D EGENERACY is a frequently occurring phenomenon in network
flow problems. Cunningham [6] showed that the simplex method

will not cycle at a degenerate extreme point if only "strongly feasible
bases" are constructed. For the assignment problem a strongly feasible
basis is equivalent to the "alternating path basis" used by Barr, Glover
and Klingman [3].

We show that the alternating path basis can also be used to develop an
efficient dual algorithm for the assignment problem. The assignment
problem is well known:

(AP) Min >E j cijx1

subject to

i xi= ,IjEi J (1)

E> xi>= 1, i E I (2)

xi,-O,i E Iandj E J (3)

where I = J = {1, 2, * ,n}.
The network for the assignment problem consists of a set of origin

nodes (denoted as Oj, i E I), a set of destination nodes (Dj, j E J) and arcs
(i, I) directed from an origin to a destination. This bipartite structure
and the 0 - 1 solution at an extreme point of the assignment polytope
makes (AP) easier to solve than most of the network flow problems.

969

Operations Research 0030-364X/80/2804-0969 $01.25
Vol. 28, No. 4, July-August 1980 ? 1980 Operations Research Society of America

970 Huna and Rom

Most of the specialized algorithms for the assignment problem are of
the dual nature, in that at every intermediate step the algorithm produces
a solution satisfying only some of the constraints in (1) and (2). Kuhn's
Hungarian method [12] is perhaps the best known in this category. Other
algorithms include that of Desler and Hakimi [7], Dinic and Kronrod [9]
and, as Lawler [13] indicates, Edmonds and Karp [10].

Since every basis at an extreme point of the assignment polytope
consists of n - 1 degenerate variables, primal algorithms like the simplex
method usually require many degenerate pivots. Balinski and Gomory
[1] presented a modified simplex algorithm to reduce the number of
degenerate pivots. Barr, Glover and Klingman [3], achieved a greater
decrease in degenerate pivots by using alternating path bases. However,
the computational experience in [3] shows that, still, more than 90% of
the pivots in the problems tested are degenerate.

Our algorithm, like the dual algorithm, solves AP by relaxing some of
the constraints in (1) and (2). But the method for enforcing violated
constraints uses the alternating path bases in the relaxed problem.
Furthermore, an optimal solution is always available for the relaxed
problem and the optimal alternating path basis is constructed not by
simplex pivoting but by shortest path algorithms.

1. BASIS STRUCTURE OF THE ASSIGNMENT PROBLEM

It is known that a basis in a network flow problem can be represented
by a spanning tree. An extreme point of the assignment polytope consists
of n positive variables, each having a value of 1. The graphic represen-
tation of an extreme point has n disjoint pairs of nodes, one an origin and
one a destination, which are connected by the positive variable. A basis
at the extreme point is then formed by adding n - 1 degenerate arcs such
that the n pairs are linked into a tree. (From which one can show that
there are 2n-'nn2 bases at an extreme point. See Balinski and Russakoff
[2].)

Denote a basis tree by a generic symbol T. A destination node in T is
designated as the "root." As in [6], let Rij(T) denote the node set of the
tree still connected to the root if arc (i, j) were removed from T. An arc
(i, j) is called "directed toward the root" if] E Rij(T) and "directed away
from the root" otherwise. An alternating path (short as A-P) basis
specifies that every degenerate arc on T be directed away from the root.
See Figure 1 for an example of an A-P basis, in which D2 is the root.

If the variables xij are put in an n x n matrix, an extreme point of the
assignment polytope is a 0 - 1 matrix with exactly one 1 on every row
and every column. An A-P basis then requires one degenerate variable in
every column, except for the root column.

The name "alternating path basis" arises from the fact that a path

Assignment Problem Relaxation 971

from a node to the root of the tree consists of arcs which are alternatively
positive and degenerate, and are alternatively directed toward and away
from the root.

The dual of problem AP is

A dual solution satisfying the complementary slackness condition will
satisfy ui + vj = cij if xij is a basic variable. From now on, we will always
assumeVr =0 where r is the root. Define the "distance" of an A-P to be
the total cost of degenerate arcs minus the total cost of the positive arcs.
Then it is straightforward to check that vj is the distance of the A-P from
destination j to the root, whereas ui is the negative of the distance of the
A-P from origin i.

REMARK 1 [3]. Let T1, T2 be A-P bases at the same extreme point and
T2 = T1 U{(i*, j*)}\{(j, j)}. That is T2 is obtained from T1 by a

(D) max EiUi + Yjvj

subject to

ui + vj ' Cij, i E I, jE J

ui, vj unrestricted in sign.

000
Figue 1.

0/ mS~~~~~~~~~~

~~~~~~~~~~~1 

Figure 1. An alternating path basis tree. 



972 Hung and Rom 

degenerate pivot for which (i *, j*) is the entering arc and (K, f) is the 
leaving arc. Suppose ( = c*j* - - vu-j. Then 

v1(T2) = { vj(T), if j E R - (T1) = R. *j (T2) 
v1(TO) + 6,] R (T1) 

and u~(T2) =fui(Ti), if i E Ri-(Ti) 
u-,i - R ---(Ti). 

Since an entering arc (i*, j*) is chosen only when ( < 0, the above 
remark indicates that a degenerate pivot results in a strict decrease for 
some vj's and a strict increase for some ui's. 

Our algorithm is based on constructing the optimal A-P basis at the 
optimal extreme point for a sequence of relaxed problems. A basis is 
optimal if the corresponding dual solution is feasible. 

THEOREM 1. Let Tk, k = 1, ... be A-P bases at the optimal extreme 
point, each having the same root r. Tk* is optimal if vj(Tk ) = min vj(Tk) 
for each j E T and all k. That is, Tk* is optimal if every vj(Tk*) is the 
distance of the shortest A-P from destination node j to the root r. 

Proof Follows directly from Remark 1. 

One can therefore construct the optimal basis by finding the shortest 
A-P from every column to the root. To find the shortest A-P, one may 
first change the sign of the cost of the positive arcs. Or one may first 
subtract the cost of the positive arc from the cost of every arc on the 
same row (emanating from the same origin) since every A-P going 
through the row must go through the positive arc. Then one can use a 
shortest path algorithm that allows negative costs. Such algorithms all 
have a computational bound of 0(m3) for a dense network of m nodes 
(see Christofides [5] or Lawler [13]). Dijkstra's algorithm [8] has a bound 
of 0(m2) but does not allow negative costs. The following algorithm 
relaxes AP so that Dijkstra's algorithm can be used. 

II. THE RELAXATION ALGORITHM 

1. Relaxed Problem 

The idea behind the new algorithm is to relax the column constraints 
(1) so that an optimal (and basic) solution to the relaxed problem can be 
found easily. Then a violated constraint is enforced and a new optimal 
(and basic) solution is constructed. At every intermediate step of the 
algorithm the column index set is partitioned into three subsets, Jo, J1 
and J2. J1 is the set of column constraints in (1) whose left-hand-sides are 
equal to 1, i.e., the satisfied constraints. Jo is the set of column constraints 



Assignment Problem Relaxation 973 

whose left-hand-sides are equal to 0 and J2 is that whose left-hand-sides 
are at least 2. Specifically, we relax the original problem (AP) to 

(APr) Min Ei Ej cijxij 

subject to 

o,] E Jo 
Eixij= X, 1E jl (1') 

Lbj, jEJ2 

and (2), (3), where bj - 2 integer and E EJ2 bj + IJiI = n. {SI denotes the 
number of elements in set S. 

(APr) is a network flow problem and in which every basic solution 
consists of n positive variables and I J1 + I J2I - 1 degenerate basic 
variables. Thus an A-P basis is applicable. Since the dual problem of APr 
has the same constraints as D, Remark 1 and Theorem 1 also remain 
applicable. 

Furthermore, an A-P basis makes enforcing a constraint in Jo extremely 
easy. Suppose a column j* E J2 is chosen as the root, and an alternating 
path basis for APr is available (see Figure 2). If a column constraint j E 
Jo is to be enforced and it is determined that x-*j = 1, i.e., Row i* is to be 
assigned to Column j, there is a unique path from Row i * to the root. An 
A-P from a row node to the root alternates between a positive arc and a 
degenerate arc. Therefore, by letting the positive arcs in the path become 
degenerate arcs and degenerate arcs become positive arcs, a feasible 
solution is obtained for the new relaxed problem in which bj* is reduced 
by 1 and column constraint j is enforced. 

It may be easier to see the above argument by the example on Figure 
2, particularly the basis matrix. Suppose Column 4 is to be enforced and 
Row 4 is to be assigned to it, i.e., (i *, j) = (4,4). Then an alternating path 
to the root (which is Column 1) is easily identified as ((4,4), (4,2), (3,2), 
(3,1)) and a change of variable values along the path will make possible 
the assignment of Row 4 to Column 4. Note that the alternating path for 
enforcing column constraints j E Jo need not always end at the root 
column. It can end at any column with more than one assigned cell, that 
is, a column in the set J2. For example, if Row 1 is to be assigned to Row 
4, the alternating path can be just t(1,4), (1,3)) so that, loosely speaking, 
the assignment of Row 1 is passed from Column 3 to Column 4. 

2. Algorithm 

Step 0. Initialization. 
Assign every row to a column with the minimum cost in that 

row. Therefore, column index set J is partitioned into Jo, Ji and 
J2 and an optimal solution to the relaxed problem is clearly 



974 Hung and Rom 

obtained by setting the variables of the assigned cells to 1. Set 
v; = 0 for jE J. 

Step 1. Construction of basis. 
This step determines the optimal A-P basis and the correspond- 

ing dual solution. 

1.1. Select a column j* E J2 as the root, and let v>* = 0 (if it was 
not zero) and ui = cij* if xi>* = 1. At this moment, the basis 
tree consists of the root and the row nodes assigned to the 
root. 

1.2. For each column j E J1 U J2 not in the tree, compute the 
minimum distance of attaching it to the tree. That is, for 

4o 4o 

The Basis in Matrix Form 

Destination 

1 2 3 4 5 

1 1 

OrigiTn 2 1 0 

3 1 0 

4 1 

5 1 1 
- -- 

Figure 2. An alternating path basis for the relaxed problem (APr). 



Assignment Problem Relaxation 975 

each such j, compute kj = Min (cij - u) over rows i in the 
tree. 

1.3 Select a column, say j, with the minimum kj - vj and attach 
it to the tree. (This statement anticipates that vj may not be 
zero after the initial cycle.) Suppose k1 occurs in Row r(j), 
then Xr(j)j is chosen as the degenerate basic variable for 
Column j. Determine the appropriate dual variables. That is, 
let vJ = k1 and ui = cif- v if xij = 1. If every column of Ji or 
J2 is in the tree go to Step 2. Otherwise, return to Step 1.2. 

Step 2. Enforcing violated constraints. 
In this step, a column constraint FE Jo is enforced. 

2.1. Select a column E E J0 and compute vJ = MiniEI(cy - ut) 
Suppose vJ occurs on Row i *. Then trace the alternating 
path from Row i * to a column in J2. 

2.2. Change every degenerate arc in the path to a positive arc 
and every positive arc to a degenerate arc. Assign row i * to 
columnj, i.e., let x-*f = 1. Constraint jof (1) is now enforced, 
so remove F from JO and place it in set Ji. Note that the 
number of assignments (bj) of the last column in the alter- 
nating path is now reduced by 1. If the new number is 1, 
move the column from set J2 to J1. If Jo = 0, stop because 
the optimal solution to AP is found. Otherwise, a cycle is 
complete (or if an optimal basis to AP is desired), return to 
Step 1. 

3. Example 

Consider the following 7 x 7 example adapted from Christofides [5, p. 
376]. 

1 2 3 4 5 6 7 u 

1 13 21 20 12 [1 26 22 3 

2 12* 36 25 41 40 11 fI_1 4 

3 35 32 j 36 26 21 131 13 

4 34 54 L7 8,1 121 22 11 7 

5 21 A6 45 18 24 34 12 -4 

6 42 191 39 15 1 16 28 9 

7 16 34 38 1 34 40 22 2 

v 104 0 1 & 01 

Cycle 1 



976 Hung and Rom 

CYCLE 1: 

Step 0. The assignments are on the boxed (LI) cells which yield the initial 
partition of J0 = t1,6), Ji t2,4,7} and J2 = t3,5}. vj = 0 for all j. 

Step 1. Suppose the root is Column 3. The dual variables are determined 
for Rows 3 and 4. Iterations through Steps 1.2 and 1.3 yield the 
necessary degenerate basic variables which are checked (1+), and 
the dual variables. The superscript on the v values indicates the 
order in which they are determined. 

Step 2. Suppose Column 1 is to be enforced. The pivot element is (2,1) 
because vi = 8 = min-(c.i - us). The alternating path from Row 
2 is t(2,7), (3,7), (3,3)}. Therefore, Row 2 is now assigned to 
Column 1, Row 3 to Column 7. 

1 2 3 4 5 6 7 u 

1 131 21 20 12 A 26 22 8 

2 12 36 25 41 40 11 41 7 

3 35 32 131/ 36 26 21 13 16 

4 34 54 2 81 12 22 11 10 

5 21 45 18 24 34 12 1 

6 42 191 39 15 [14 16* 28 14 

7 16 34 38 F 34 40 22 5 

u 52 51 -34 -25 0 _33 

Cycle 2 

CYCLE 2: 

Step 1. The optimal basis is shown above. The root is now Column 5. 
Step 2. Column 6 is enforced. v6 = 2 and the alternating path is t (6,6), 

(6,5)). So Row 6 is assigned to Column 6. The algorithm termi- 
nates with an optimal solution of X15 = X21 = X37 = X43 = X52 = X6 

= X74 = 1 and all other xij = 0. The optimal value is 65. 

4. Proof of Algorithm 

To prove that the preceding algorithm does produce an optimal solu- 
tion to AP in a finite number of cycles requires establishing the following: 

a. Step 1 yields an optimal A-P basis to the relaxed problem. 
b. Step 2 results in an optimal solution to the new relaxed problem. 
We shall prove (b) first. Let G1 be the network of the old relaxed 



Assignment Problem Relaxation 977 

problem APr. G1 has arcs (i, j) where i E I and j E J1 U J2. Assume that 
Step 1 is correct and therefore there is an optimal A-P basis T1, which is 
a tree on G1. Then 

clj -u-vjfo, for (i,j) E T, (4) 
Cu U~~ V1 10 (i,i)E4~ Ti. 

Now a column constraint xi j = 1 for af E Jo is added to APr. Let G2 

be the network of the new relaxed problem. Then G2 has arcs (i, j) where 
i C I,j E Ji U J2 U {j}. Let T2 = T1 U {i*, j-) (T2 also has the additional 
nodej) where c*j -u* = min1El (cij - u), as indicated in Step 2.1. Then 
after the augmentation carried out in Step 2.2, T2 is an optimal basis (but 
not on A-P basis) for the new relaxed problem since relations (4) hold 
true for T2 also. Thus (b) is proven. 

To prove (a), recall that an optimal A-P basis can be constructed by a 
shortest path algorithm after the cost of every positive variable is sub- 
tracted from the cost of all variables in the same row. When Step 1 is 
entered from Step 0, the tasks performed in Step 0 ensure that this 
subtraction will leave every cost nonnegative. 

When Step 1 is entered from Step 2, there is an optimal, but not A-P, 
basis T2. Since relations (4) hold for T2, if u- and vj are subtracted from 
cost cij, every new cost is nonnegative. 

So in either case, an O(n2) algorithm like Dijkstra's can be used to 
construct a new optimal A-P basis. And Dijkstra's is the algorithm we 
used in Step 1. 

In Step 1.2, kj - vj is the temporary label (current shortest distance) 
from column j E G2 to the root. In Step 1.3, the smallest temporary label 
is fixed (see [8] or [5, Chap. 8] for more details). Therefore it is concluded 
that Step 1 produces an optimal A-P basis. 

Finally, since there are initially at most m - 1 columns in Jo and every 
cycle of the algorithm reduces the number by 1, the algorithm is finite 
and terminates with an optimal solution. Furthermore, since every cycle 
has a bound of O(n2), the following is clear. 

THEOREM 2. The algorithm has a computational bound of 0(n3). 

The discussions so far also establish that the algorithm can be used to 
solve the following problem with the same worst-case bound. 

Min Z, Zj cijxij 

Ej xij = 1, i EI= {1 l**, n) 

Ei xi bj, jE (i J-1, * ,m} 

xj ?0 for all (i,j) 

where m c n, b& > 0 and integer, and Ej b& = n. 



Q 7R I-4inn snl RPnm 

111. COMPUTATIONAL CONSIDERATIONS AND EXPERIENCE 

There are a few additional comments we would like to mention regard- 
ing the implementation of the algorithm. 

1. In the initial step (Step 0) one may subtract constants from rows 
and columns of the cost matrix in order to minimize the number of 
columns in Jo initially. For the previous example, if this had been 
performed, then Row 1 would be assigned to Column 1 and Cycle 1 
would thus be avoided. 

2. In Step 2 of the algorithm, one may enforce more than one column 
constraint at a time, as long as the alternating paths do not overlap. 
For example, in Cycle 1 of the previous example, one may enforce 
Columns 1 and 6 because the alternating path from Column 6 is 
(6,6), (6,5)}. Cycle 2 is thus saved. 

3. One need not construct the optimal basis from the very beginning 
every time Step 1 is entered. If the root remains unchanged, then all 
the paths still connected to the root will remain optimal. 

4. There may be more than one pivot element for column jwhen it is 
enforced. This happens when there are ties in the minimum of 

cif - ui. Thus in every cycle one may investigate several possible 
combinations of pivots among the J0 columns in order to bring in as 
many columns as possible. 

5. One may modify the algorithm somewhat by considering all J2 
columns as a collective root. This will simplify the bookkeeping 
chores because dual variables need to be computed only for columns 
in J1. In other words, one can further relax constraint (1') in (APr) 
into 

yLixUi= oJo 

EjEJ2Ei Xii = EEJ2 bj. 
The code used for the following computational experience incorporates 

all the above modifications except those in (4). 

Computational Experience 

The proposed algorithm has been extensively tested against other 
algorithms for the assignment problem. The competing algorithms se- 
lected are Silver's [14] code of the Hungarian method [12], Brown and 
Obee's [4] code of the graph theoretic algorithm of Desler and Hakimi 
[7], and the recent primal method of Barr, Glover and Klingman [3]. The 
first two, which will be denoted by "Hungarian" and "Graphic" respec- 
tively, are directly, statement for statement, translated from their original 
language ALGOL into FORTRAN. 



Assignment Problem Relaxation 979 

Our code of Barr et. al.'s algorithm, which will be denoted by "Primal" 
was coded from the description in [3]. In our code, we have used most of 
the work-saving techniques the authors suggested [3] and some tactics 
which were not explicit in their paper: 

a. Their algorithm uses a row as the root. To determine the entering 
basic variable, we search for the most violated dual constraint (i.e., 
the most negative cij - ui- vj) in a row, starting from the row of the 
last pivot. 

b. The initial solution is chosen as suggested in [3]. That is, assign a 
row to the least cost column which does not have an assignment. 

After that, we use our Step 1 to locate the degenerate basic variables. 
Certainly this will not yield a basis requiring no degenerate pivots, 
but we found it tends to reduce the number of degenerate pivots. 

All the programs were compiled and run under IBM FORTRAN IV G 
level compiler and on an IBM 370-158 multiprogramming system. The 
algorithms were put into subroutines and were run two at a time back to 
back. Since significant discrepancies in the time of even the same program 
on the same problem were detected, we resorted to using the ratio 
between the times of the two algorithms as a common measure. The 
ratios reported in Tables 1-111 are the time of our algorithm divided by 
that of the competing algorithm. Thus a ratio of 0.5 under algorithm X 
would mean that our algorithm was twice as fast as X. 

Three sets of test problems were used. In Set 1, the results of which 
are shown in Table I, the cost coefficients are randomly generated 
between 1 and 100. In Set 2, shown in Table II, the cost coefficients are 
randomly chosen between 1 and 1,000; and in Set 3, between 1 and 10,000. 

TABLE I 

COMPUTATIONAL RESULTS ON RANDOM PROBLEMS: SET V 

Relaxation Relative Efficiencyb 

TimeC No. of cyclesd Hungarian Graphic Primal 

20 0.032 1.85 0.509 0.636 0.548 
30 0.089 2.65 0.451 0.569 0.534 
40 0.174 2.90 0.540 0.588 0.549 
50 0.297 3.65 0.591 0.568 0.532 
60 0.454 3.85 0.656 0.587 0.545 
70 0.663 4.20 0.689 0.552 0.560 
80 1.002 4.80 0.818 0.624 0.596 
90 1.163 4.45 0.760 0.563 0.502 

100 1.412 4.35 0.770 0.516 0.497 

Cost coefficients range from 1 to 100. There are 20 problems in each problem size (n). 
b (Average time of relaxation)/(average time of algorithm X). 
'CPU seconds on an IBM 370/158, per problem over 3 runs. 
d Average per problem. 



980 Hung and Rom 

TABLE II 

COMPUTATIONAL RESULTS ON RANDOM PROBLEMS: SET 2' 

Relaxation Relative Efficiency 
n 

Time No. of cycles Hungarian Graphic Primal 

20 0.036 2.15 0.342 0.595 0.524 
30 0.087 2.65 0.245 0.511 0.484 
40 0.176 3.05 0.229 0.497 0.541 
50 0.301 3.65 0.199 0.480 0.511 
60 0.446 3.70 0.204 0.509 0.484 
70 0.662 4.15 0.185 0.531 0.492 
80 0.890 4.35 0.199 0.464 0.479 
90 1.150 4.45 0.186 0.433 0.467 

100 1.465 4.50 0.195 0.447 0.463 

" Cost coefficients range from 1 to 1000. See other footnotes to Table I. 

TABLE III 

COMPUTATIONAL RESULTS ON RANDOM PROBLEMS: SET 3' 

Relaxation Relative Efficiency 
n 

Time No. of cycles Hungarian Graphic Primal 
20 0.037 2.25 0.316 0.610 0.559 
30 0.099 2.95 0.230 0.623 0.570 
40 0.186 3.20 0.210 0.558 0.543 
50 0.306 3.55 0.162 0.508 0.524 
60 0.473 4.00 0.145 0.483 0.515 
70 0.640 3.95 0.129 0.498 0.490 
80 0.906 4.45 0.112 0.479 0.467 
90 1.239 4.75 0.104 0.415 0.506 

100 1.523 4.85 0.102 0.437 0.482 
a Cost coefficients range from 1 to 10000. See other footnotes to Table I. 

The reason for this design is due to Brown and Obee [4] who found in 
their computational study that algorithms can behave differently when 
the range of cost coefficients varies. From our computational experience, 
the Hungarian method is most sensitive to this variation of data. The 
Graphic method is also sensitive to data but the effect is less pronounced. 

The tables also show the number of cycles required by our algorithm. 
This is the number of times an optimal A-P basis to APr must be 
constructed. This is the most time consuming part of the algorithm and 
the reason the algorithm performs so well is clearly due to the fact that 
relatively few cycles are required. In fact, not only are the average number 
of cycles low, but also, among the 540 test problems, only 1 problem 
required 8 cycles and only 2 required 7. The increase in the number of 
cycles also seems to grow rather slowly with the increase in problem size. 

IV. CONCLUDING REMARKS 

After the completion of the computational study for this paper, we 
distributed the computer code of our relaxation algorithm to a few 



Assignment Problem Relaxation 981 

researchers for further computational experiments. Glover [11] compared 
our algorithm with the original code of Barr, Glover and Klingman's and 
confirmed that our algorithm is about twice as fast as the latter on totally 
dense problems. But since our code was not designed for the sparse 
problem and theirs was, the relative efficiency of our algorithm decreases 
as the problem gets sparser. 

We also learned of the existence of two other 0(n3) assignment algo- 
rithms after the completion of this paper. One is that of Dinic and 
Kronrod [9] and the other an implementation of Edmonds and Karp's 
[10] algorithm for general network flow problems. Dinic and Kronrod's 
algorithm relaxes AP to our APr. But the method of enforcing a constraint 
in J0 is based on subtracting constants from the cost matrix so that a cost 
in a column of Jo may become a minimum on a certain row and hence 
that row may be assigned to that column in Jo. 

The general algorithm of Edmonds and Karp can be specialized in 
several ways to solve the assignment problem. But we think in all ways 
the original problem AP is relaxed in both column and row constraints 
and the relaxed problem is a smaller assignment problem. Every cycle 
then enforces both a column and a row constraints. In this regard, the 
alternating path basis can also be used for the relaxed problem. 

The efficiency of our algorithm is derived from being able to enforce 
several constraints in a cycle, as seen from the small number of cycles in 
our computational experience. We do not know of any good way of 
accomplishing this in either Dinic and Kronrod's or Edmonds and Karp's 
algorithm. 

Finally, we would like to mention an interesting aspect of using A-P 
basis for the sparse problems. It is possible that one may not be able to 
construct an A-P basis for a sparse problem, either AP or APr. But in this 
situation Cunningham [6] shows that the problem is decomposable into 
smaller, separate problems. The following solution matrix for APr is an 
example. Crossed-out cells mean nonexistent arcs. 

1: 

If one designates Column 1 as the root, then Column 3 cannot be 
connected to the root according to the A-P basis. Then this assignment 
problem can be decomposed into two parts, one part made up of Rows 1, 
2 and Columns 1 and 2, and the other part of Rows 3, 4 and Columns 3 
and 4. 



982 Hung and Rom 

REFERENCES 

1. M. L. BALINSKI, AND R. E. GOMORY, "A Primal Method for the Assignment 
and Transportation Problems," Mgmt. Sci. 10, 578-593 (1964). 

2. M. L. BALINSKI, AND A. RUSSAKOFF, "The Assignment Polytope," SIAM 
Rev. 16, 516-525 (1974). 

3. R. S. BARR, F. GLOVER AND D. KLINGMAN, "The Alternating Path Algorithm 
for Assignment Problems," Math. Prog. 13, 1-13 (1977). 

4. J. R. BROWN, AND R. W. OBEE, "Efficient Assignment Algorithms," Working 
paper, Graduate School of Business Administration, Kent State University, 
1976. 

5. N. CHRISTOFIDES, Graph Theory, Academic Press, New York, 1976. 
6. W. CUNNINGHAM, A Network Simplex Method," Math. Prog. 11, 105-116 

(1976). 
7. J. F. DESLER, AND S. L. HAKIMI, "A Graph-Theoretic Approach to a Class of 

Integer Programming Problems," Opns. Res. 17, 1017-1033 (1969). 
8. E. W. DIJKSTRA, "A Note on Two Problems in Connection with Graphs," 

Numerische Mathematik 1, 269 (1969). 
9. E. A. DINIC, AND M. A. KRONROD, "An Algorithm for the Solution of the 

Assignment Problem," Soviet Math. Dokl. 10, 1324-1326 (1969). 
10. J. EDMONDS, AND R. M. KARP, "Theoretical Improvements in Algorithmic 

Efficiency for Network Flow Problems," J. Assoc. Comput. Mach. 19, 248- 
264 (1972). 

11. F. GLOVER, private communication, 1979. 
12. H. W. KUHN, "The Hungarian Method for the Assignment Problem," Naval 

Res. Log. Quart. 12, 83-97 (1955). 
13. E. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, 

Rinehart & Winston, New York, 1976. 
14. R. SILVER, "An Algorithm for the Assignment Problem," Commun. Assoc. 

Comput. Mach. 3, 603-606 (1960). 


	p. 969
	p. 970
	p. 971
	p. 972
	p. 973
	p. 974
	p. 975
	p. 976
	p. 977
	p. 978
	p. 979
	p. 980
	p. 981
	p. 982

