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	is research highlights the use of game theory to solve the classical problem of the uncapacitated facility location optimization
model with customer order preferences through a bilevel approach. 	e bilevel model provided herein consists of the classical
facility location problem and an optimization of the customer preferences, which are the upper and lower level problems,
respectively. Also, two reformulations of the bilevel model are presented, reducing it into a mixed-integer single-level problem.
An evolutionary algorithm based on the equilibrium in a Stackelberg’s game is proposed to solve the bilevel model. Numerical
experimentation is performed in this study and the results are compared to benchmarks from the existing literature on the subject
in order to emphasize the bene
ts of the proposed approach in terms of solution quality and estimation time.

1. Introduction and Literature Review

	e facility location problem has the goal to determine the
optimal sites to locate facilities such as plants, warehouses,
and/or distribution centers. In addition, the assignment of
customers being served by these facilities and how these facil-
ities are connected with each other are interesting decisions
considered within the problem. A seminal paper on this sub-
ject is the work of Weber [1] in which the problem is placing
a single facility so total travel distance between the facility
and a set of customers is minimized. Subsequent researches
made by various authors who have worked on this problem
and a wide variety of models and algorithms have been
developed in the related literature within a broad range of
applications. For example, [2–5] are comprehensive reviews
of facility location problems (FLP), where the importance
of the applications related to Supply Chain Management
(SCM) and Logistics problems is remarked. Particularly, the
problems that arise at the strategic long-run level involve


nding the optimal sites in which facilities—such as plants,
warehouses, or distribution centers—should be located, as
well as the assignment of customers to be served by those
facilities. Taxonomy of modern location models is provided
by Daskin [6]. In [6], a classi
cation of four groups is
provided which are analytical models, continuous models,
discrete models, and network models. In addition, several
examples of each group, which can be found in the literature,
are provided.

	e uncapacitated facility location problem (UFLP) is
one of the most studied problems in location theory, which
assumes that the facilities to be installed are uncapacitated.
	e UFLP takes a great variety of forms, based on the
nature of the objective function (e.g., minisum, minimax, or
problems with covering constraints). Also, UFLP depends on
the time horizon under consideration, static or dynamic, and
the existence of hierarchical relationships between facilities.
An additional aspect of modeling the UFLP is whether to use
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deterministic or stochastic elements in the problem, Galvão
[7].

	e 
rst UFLP model is the simplest plant location
Problemproposed byKuehn andHamburger [8] andBalinski
[9]. Subsequently, Hakimi [10, 11] introduces the p-median in
this model. Next, Cornuéjols et al. [12] and Galvão and Raggi
[13] propose the UFLP with a minisum objective function.
	is type of function is used for those cases, in which it
is preferred to optimize the average performance of the
system which di�ers from the case where the minimization
of the worst case performance is aimed by using a minimax
objective.

Speci
cally, in this paper theUFLP is considered to have a
minisum objective function that incorporates preferences of
the customers. Considering preferences of the customerswith
respect to the facilities that will serve them is an important
issue due to increasing competition today, where customers
demand better service levels according to their requirements
and needs.	e 
rst problem that considers preference order-
ings of the customers was introduced by Hanjoul and Peeters
[14], which extend the simple plant location problem (SPLP)
to include preferences as the Simple Plant Location Problem
with Order (SPLPO). Customer’s orders are modeled as a
set of constraints appended in the SPLP and an algorithm
to solve it based on a greedy heuristic combined with a
branch and bound procedure is provided. Next, Krarup
and Pruzan [15] and Gorbachevskaya [16] present cases that
can be solved in polynomial time, complexity results, and
reductions of the uncapacitated facility location problem
with user preferences (UFLPUP). Gorbachevskaya [16] also
presents three reformulations of the problem.

Hansen et al. [17] introduce a new reformulation that
dominates the three formulations of Gorbachevskaya [16]
based on a bilevel formulation. Hansen et al. [17] propose a
reduction for the minimization problem of pseudo-Boolean
functions and obtain some lower bounds. In this paper, a
di�erent reformulation of the problem which reduces it to a
single-levelmixed integer problem is proposed. Furthermore,
a novel algorithm to solve the bilevel problem based on a
Stackelberg equilibrium scheme hybridized with an evolu-
tionary algorithm is presented.

Cánovas et al. [18] consider the SPLPO introduced by
Hanjoul and Peeters [14] and solve two LP relaxations: a
LP relaxation for the integer problem and a strengthened
LP relaxation. Secondly, relaxation was accomplished by
applying some reductions and reformulations of the problem
driven by the incorporation of valid inequalities to obtain
a valid bound of the original problem. Contrary to the
single-level model presented in Cánovas et al. [18], a bilevel
formulation is presented in this research, as well as a solution
methodology using a hybrid metaheuristic approach.

Ishii et al. [19] present a fuzzy modeling structure for the
facility location problem with preferences for the potential
sites. 	ey propose a membership function to represent a
satisfaction degree of the customer considering the distance
from the customer to the facility site. 	ey solve the model
using a method that optimizes two criteria: 
nding the
site that maximizes the minimal satisfaction degree among

all demand points and maximizing the preference of the
customer.	e primary di�erence with respect to the research
method proposed herein is the modeling structure. In the
problem tackled in this paper preestablished preference val-
ues are considered, which di�ers from the member function
associated with the preferences used by Ishii et al. [19].

Vasil’ev et al. [20] present new lower bounds for the
UFLPUP introducing a family of new valid inequalities
and show that the proposed formulation is stronger than
previous formulations with respect to the linear relaxation
and integrality gap. 	is new family of valid inequalities
increases the number of constraints instead of the num-
ber of variables. Vasil’ev and Klimentova [21] consider the
bilevel formulation of the UFLPUP and introduce some
valid inequalities related to the preferences as a single-level
integer linear programming problem. 	ey solve, directly, a
relaxation of the integer problem in order to 
nd a lower
bound and also propose a simulated annealing method to
obtain upper bounds of the optimal solution used in exact
methods. In addition, considering the lower and upper
bounds previously found, they apply a branch and bound
algorithm to solve the single-level problem. In contrast to
these previous studies, a heuristic algorithm to solve the
bilevel model proposed directly is presented in this research,
while Vasil’ev and Klimentova [21] solved a reduction of
the original problem.

Similarly, Marić et al. [22] implement three metaheuristic
methods for solving the bilevel problem considered in this
paper: a particle swarm optimization algorithm, a simulated
annealing method, and a combination of reduced/variable
neighborhood search method. In order to compare the e�ec-
tiveness of their proposed algorithms, they test 28 di�erent
instances varying the size from 50 to 2000 customers and
from 16 to 2000 facilities. 	ey consider the single-level
reformulation proposed inHansen et al. [17] by using CPLEX
12.1 solver and conclude that only instances with 50 facilities
and 50 customers can be optimally solved. In order to obtain
the follower’s best response, they rearrange the preferences
matrix by sorting for each customer the index of the most
preferable facilities and then search the 
rst open facility for
that speci
c customer.

	ere also have been some papers devoted to analyzing
the bilevel p-median problem by considering the customers’
preferences. For example, in Alekseeva and Kochetov [23]
a genetic local search algorithm that provides near optimal
solutions compared against an integer programming prob-
lem formulation is provided. For the experimentation they
selected instances with a considerable integrality gap in order
to evaluate the performance of their proposed heuristic. Also,
Aksen et al. [24] supply three methods to solve the bilevel p-
median problem associated with an attacker-defender prob-
lem. 	e methods they propose are an exhaustive algorithm,
taboo search heuristic, and a sequential method considering
the two levels as two separate problems. 	ey do not address
explicitly the UFLPUP and merely supply a method to solve
the bilevel formulation of the UFLPUP.

Recently, J. M. Lee and Y. H. Lee [25] address a facility
location problem with covering constraints and preferences
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of the customers. In their work a mixed-integer program-
ming (MIP) formulation of the problem based on customer
restrictions and a heuristic procedure based on a Lagrangian
Relaxation approach are provided. It is important to point out
that in this paper covering constraints are not included.

	eprimary contribution of the proposed research herein
is the consideration of the bilevel formulation of the UFLPU
which is reduced to a classical MIP, which can be solved
directly. Reformulations found in the literature for this prob-
lem are modeled as a single-level; the unique reformulation
for the bilevel problem is made in Vasil’ev et al. [20] where
they exploit some properties related to the uniqueness of
the lower level optimal solution.	e reformulation proposed
herein treats the bilevel problem without assuming unique-
ness in the lower level optimal solution. Also, a new heuristic
procedure is presented for solving the bilevel problem. 	is
heuristic procedure can be easily adapted for solving di�erent
bilevel problems.

Previous work in the related literature presents heuristics
procedures for solving a single-level formulation, reformu-
lations, or reductions of the problem. Only one of them
proposes the use of metaheuristics to solve the bilevel unca-
pacitated facility location problemunder preferences. For this
reason, the proposed heuristic herein is compared against the
existing optimal values presented in the literature. Numerical
results show that the optimality gap is always less than 1%
as it can be observed in the numerical results section. For
the largest-size instances, provided that the optimal solution
values are not known, the best value obtained on a long-run
experiment is used as a reference for the comparison. Also,
the single-level MIP reformulations are tested in order to
identify the maximum size of the instances that can be solved
in reasonable computational time.

	e proposed heuristic procedure hybridizes a meta-
heuristic algorithm with a game theory approach, which
is an interesting way to consider the bilevel programming
problems. First, Yin [26] proposes a genetic algorithm for
solving Stackelberg games modeled as bilevel optimization
problems. He presents two examples of transportation prob-
lems in which his genetic algorithm is e�cient. Moreover,
the hybridization considered in the research herein was 
rst
applied for solving multiobjective optimization problems in
aerodynamics. Wang and Periaux [27] introduce the Nash
genetic algorithms (N-GAs) and the Stackelberg genetic
algorithms (S-GAs) as e�cient algorithms for 
nding the
corresponding equilibrium. Also, they use those algorithms
to solve a multiobjective problem in order to 
nd the optimal
�ap/slat position looking for the maximization of the li� of a
three-element airfoil system. Also, Periaux et al. [28] develop
a Nash genetic algorithm for solving a multi-objective design
optimization of internal aerodynamic shape operating with
transonic �ow.

	e remainder of the paper is organized as follows.
Section 2 presents the mathematical formulation and refor-
mulation of the bilevel UFLPUP. Section 3 describes the
solution approach. Section 4 presents numerical results and

nally Section 5 presents conclusions, 
nal remarks, and
recommendations for further research.

2. Problem Description

In this section the problem statement and the mathematical
formulation of the uncapacitated bilevel facility location
problem are described. For this problem, the assumption that
the customers establish a sorted list of their preferences to be
served by the facilities is considered. In the upper level, a com-
pany (leader) aims to minimize its total cost which includes
the cost of opening new facilities and the distribution costs
considering the preferences of the customers (followers) to be
served by a speci
c facility. In the lower level, the customers
optimize their preferences with respect to the facilities from
which they will be served. Preferences of the customers are
de
ned based on a prede
ned sorted list. Without loss of
generality, the following assumptions are considered.

(i) 	e customers set their preferences with respect to
each facility; these preferences are de
ned as an
ordered list from 1, . . . , |�|, where 1 corresponds to
the most preferable facility and |�| is the least one.
Observe that the minimum value of the preferences
with respect to the facilities located is desired.

(ii) No capacity constraints of the facilities are consid-
ered.

According to what was mentioned above, the following
questions need to be addressed: where should a facility be
located? and which customers will be assigned to each facil-
ity? 	e problem statement can be de
ned as determining
the location of the facilities that minimize the total cost by
considering the preferences of the customers. 	e details of
the model are further described in Section 2.1.

2.1. Mathematical Formulation of the Bilevel Uncapacitated
Facility Location Problem under Preferences (BUFLPUP). An
extension of the UFLP, where the customers de
ne a sorted
list of their preferences to be served by the potential facilities,
is considered. Preferences of the customers were introduced
by Hanjoul and Peeters [14] and the bilevel model considered
in this paper was 
rst proposed by Vasil’ev et al. [20].

Let � denote the facilities and � the customers, where � ∈ �
and � ∈ �.	e parameters ��� represent the costs for supplying
thewhole customer’s demand � from the facility �. Also, de
ne�� as the 
xed cost for opening the facility �. Each customer �
has a preference 	�� for being served by the facility �, where a
value of 	�� = 1 corresponds to the most preferable site.

	e decision variables of the bilevel problem are the
binary variables 
�� which establish whether the facility �
satis
es the whole demand of the customer �; and the binary
variables �� that represent if the facility � is open or not.

	ese parameters and variables lead to the following
mathematical formulation of the bilevel facility location
problem with preferences (BFLPP):

min�,� ∑
�∈�
∑
�∈�
���
�� +∑

�∈�
����, (1)

subject to : �� ∈ {0, 1} ∀� ∈ �, (2)


 ∈ Argmin∑
�∈�
∑
�∈�
	��
��, (3)
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subject to : ∑
�∈�

�� = 1 ∀� ∈ �, (4)


�� ≤ �� ∀� ∈ �, � ∈ �, (5)


�� ∈ {0, 1} ∀� ∈ �, � ∈ �. (6)

Equation (1) presents the upper level objective function,
where the leader minimizes the total costs represented by the
sum of the costs for satisfying the demand of the customer �
by the facility � and the sumof the costs for opening the facility�. 	e upper level constraints (2) indicate whether a facility �
will be open or not. In (3) the lower level objective function
is described, which accounts for the sum of the preferences
of customer � for being served by the facility �. Finally, for the
lower level constraints, (4) indicates that a customer must be
served by a single facility. Constraints (5) state that a customer
must be served by facility � only if the facility is located.
Finally, constraints (6) are the binary requirements.

Ausiello et al. [29] show that this problem is NP-Hard.
In the case that the user’s preferences at the lower level
properly correspond to the leader’s transportation costs, the
BUFLPUP is equivalent to the uncapacitated facility location
problem. Moreover, even if there are no 
xed costs for
locating facilities, that is, �� = 0, for all � ∈ �, this case of the
BUFLPUP is still NP-Hard in the strong sense. In this paper
the consideration that the customers’ preferences are di�erent
than the distribution costs is made, so this problem cannot be
solved in polynomial time.

Di�culty of the BUFLPUP is the motivation to propose a
reformulation of the bilevel problem and a reduction of it into
a single-level by using the primal-dual optimality conditions.
If the � variables are 
xed, the lower level problem will be an
assignment problem. So, in order to determine the primal-
dual relations of the problem (1)–(6), binary constraints of
(6) need to be replaced by a set of nonnegativity constraints
�� ≥ 0, for all � ∈ �, � ∈ �. It can be clearly seen that these
constraints are closely related to (5) and (4), and the lower
level problem is naturally integer. However, a�er obtaining
those relations, the original constraints (6) are considered
again in the reformulation. Hence, the lower level’s linear
programming problem can be replaced by its primal-dual
optimality conditions. Let ��, for all � ∈ �, and ���, for all � ∈�, � ∈ �, be the dual variables associated with constraints (4)-
(5), respectively.

	e reformulated model, called single-level uncapacitat-
ed facility location problem under preferences (SUFLPUP),
is as follows:

min
�,�,	,


∑
�∈�
∑
�∈�
���
�� +∑

�∈�
����, (7)

subject to : �� ∈ {0, 1} ∀� ∈ �, (8)

∑
�∈�

�� = 1 ∀� ∈ �, (9)


�� ≤ �� ∀� ∈ �, � ∈ �, (10)

�� + ��� ≤ 	�� ∀� ∈ �, � ∈ �, (11)

∑
�∈�
∑
�∈�
	��
�� = ∑

�∈�
�� +∑
�∈�
∑
�∈�
�����,

(12)


�� ∈ {0, 1} ∀� ∈ �, � ∈ �, (13)

��� ≤ 0 ∀� ∈ �, � ∈ �. (14)

It can be observed that the problem described in (7)–
(14) is obtained by considering the leader’s variables �� as
parameters of the lower level linear problem. Constraints (8)–
(10) and (13) ensure primal feasibility, constraints (11) and
(14) ensure dual feasibility, and constraints (12) guarantee
that the follower’s objective function values corresponding
to its primal and dual problems are equal. As a conclusion
it can be established that the SUFLPUP is equivalent to the
BUFLPUP. Although SUFLPUP is a single-level problem, it
is di�cult to solve it due to the quadratic term of constraint
(12) that appears as a result of the fact that the variable ��
is a parameter for the lower level, but in this reformulation
version it is considered as a variable. Also, the problem (7)–
(14) adds |�||�| + |�| variables and |�||�| + 1 constraints, where
one of them is nonlinear.

In order to solve this problem, (12) needs to be analyzed
with the aim of linearizing it. 	e variables ��� = ����� are
introduced assuring that when �� = 0, then ��� = 0; and if�� = 1, then ��� = ���. 	is can be done by introducing the
following inequalities:

��� ≤ 0 ∀� ∈ �, � ∈ �,
��� ≥ −��� ∀� ∈ �, � ∈ �,
��� ≥ ��� ∀� ∈ �, � ∈ �,

��� +��� ≤ ��� +M ∀� ∈ �, � ∈ �,
(15)

and replacing (12) by the following equation:

∑
�∈�
∑
�∈�
	��
�� = ∑

�∈�
�� +∑
�∈�
∑
�∈�
���. (16)

As a result of this, a mixed integer programming model
referred to as 
rst linearized single-level uncapacitated facil-
ity location problem under preferences (1-LSUFLPUP) is
generated de
ned by (7)–(11) and (13)–(16) that is equivalent
to the BUFLPUP.	is reformulation has 4|�||�|+1 additional
constraints and 2|�||�| + |�| additional variables than the
reformulation proposed in Hansen et al. [17]. It is worthy to
mention that 1-LSUFLPUP avoids the use of |�||�| subsets of
preferences as in the reformulation proposed by Hansen et al.

It is worthy to mention that based on the reduction into
a single-level using the primal-dual relations as an alternative
reformulation, the equality of the objective functions for
both problems can be substituted, which is given by (12)
and by the following complementarity constraints that force
complementarity slackness:


�� (�� + ��� − 	��) = 0 ∀� ∈ �, � ∈ �,
��� (
�� − ��) = 0 ∀� ∈ �, � ∈ �. (17)
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And (17) can be linearized with the following expressions:

�� + ��� − 	�� ≥ −�(1 − 
��) ∀� ∈ �, � ∈ �,
��� ≥ −�(1 + (
�� − ��)) ∀� ∈ �, � ∈ �. (18)

	en, the resulting MIP model de
ned by (7)–(11), (13)-
(14), and (18) would be referred to as the second linearized
single-level uncapacitated facility location problem under
preferences (2-LSUFLPUP). 	is reformulation has 3|�||�|
additional constraints and |�||�|+|�| additional variables than
the model proposed in Hansen et al. and it is signi
cantly
smaller than 1-LSUFLPUP.

	ismodel can include the p-median assumption that the
leader has a 
xed number of	 facilities that should be located.
	erefore, the constraint to be included in the upper level
problem is

∑
�∈�
�� ≥ 	. (19)

It is clear that this does not a�ect the analysis of the problem
previously described that corresponds to the lower level (the
primal-dual relations or the complementarity slackness) and
constraint (19) is just incorporated into the upper level. 	en
it is enough to solve the problem either the 1-LSUFLPUP or
the 2-LSUFLPUP also considering constraint (19).

3. Methodology

In this section the methodology proposed in order to solve
the BUFLPUP is described.	e reformulations 1-LSUFLPUP
and 2-LSUFLPUP are both MIP models that can be exactly
solved in reasonable time for small-size instances. Due to
the di�culty for solving the reformulations, a heuristic
procedure to solve the bilevel formulation of the problem
is proposed. 	e procedure is based on the principles of
the Stackelberg equilibrium in an evolutionary scheme. A
set of leader’s solutions as parameters of the lower level
are proposed to be used to solve this problem in order
to obtain the optimal response; then the leader’s objective
function is evaluated and solutions obtained are improved.
Before describing the details of the procedure proposed, the
concept of the Stackelberg equilibrium and the evolutionary
algorithms main characteristics are introduced, and then the
proposed methodology is described.

3.1. Stackelberg Equilibrium. 	e Stackelberg equilibrium for
noncollaborative game theory is proposed by Stackelberg [30]
and is a well-known problem in game theory. Stackelberg’s
game is a complete information problem, where two 
rms,
the leader and the follower, compete in a market looking
for the maximization of their pro
ts which depends on both
decisions. One of the 
rms, the leader, moves 
rst and then
the followermakes its own decision a�er knowing the leader’s
decision.

	e Stackelberg equilibrium is obtained a�er using fol-
lower’s decision as a reaction of leader’s decision. With
this reaction function, the leader 
rm makes a decision

trying to maximize its pro
t (which depends only on its
own decision, because the decision of follower’s 
rm is a
reaction to the leader’s one). Historically bilevel optimization
is closely related to the Stackelberg problem (see [31]). In a
discrete bilevel optimization problem, each possible leader’s
solution can also be taken by the follower and this player
should choose its own strategy with the aim of optimizing
its pro
t function. 	ese decisions can be anticipated by the
leader in order to choose the solution that maximizes its
pro
t function taking the follower’s reaction into account.
It is evident that 
nding the Stackelberg equilibrium by
an exhaustive procedure that analyzes all possible leaders’
solution is out of consideration for medium- and large-size
problems. Hence, an evolutionary algorithm is proposed to
solve the problem.	e evolutionary algorithm aims to create
the reaction function in order to obtain leader’s solution and
then Stackelberg’s equilibrium (bilevel optimal solution).

	e Stackelberg game can be considered as a bilevel
problem and the methodology of 
nding its equilibrium can
be used for solving di�erent bilevel problems. In the next
section this methodology is employed to 
nd the solution
of the bilevel problem BLFPP by an evolutionary heuristic
technique.

3.2. Evolutionary Algorithms. Evolutionary algorithms are
a population-based metaheuristic procedure that simulates
the behavior of living beings. 	ese algorithms use some
mechanisms inspired by the biological evolution such as
reproduction, mutation, recombination, and selection.	ere
are several variations of this type of algorithms that di�er in
the implementation approaches. 	e general framework is as
follows: there is a set of individuals (solutions) which form
a population for a determined generation, and then either
two individuals are selected and combined in a crossover
operation or each individual is mutated. 	ese crossover and
mutations are randomly performed based on a prede
ned
factor that guarantees diversity of the individuals. Infeasible
solutions that may be generated are discarded; this procedure
is referred to as an abortion. Based on a selection criterion,
the strongest individuals (those with the best value of a per-
formancemetric) survive and remain for the next generation.
	e process is repeated until some stopping conditions are
ful
lled.

	e main components of an evolutionary programming
algorithm are as follows.

(i) Representation. It characterizes the individuals of a
population.

(ii) Evaluation Function. It is the objective function (or
performancemetric) of the problem that is optimized.

(iii) Population. It is the set of individuals. 	e approach
used to generate the sets of individuals and the
corresponding size is also de
ned.

(iv) Variation Operators. 	ey are the variables which
de
ne how the crossover will be performed among
the individuals as well as the mutations.

(v) Selection Mechanisms. 	ey are the mechanisms
which specify those individuals that prevalence for
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the next generation, considering that the selection
process must guarantee diversity of the population.

3.3. Stackelberg-Evolutionary Algorithm. In this section the
components of the Stackelberg-Evolutionary (S-E) algorithm
proposed to solve the bilevel uncapacitated facility location
problem under preferences are introduced. 	e procedure is
further described.

First, the way that the individuals of a population are
represented is de
ned. An individual ��� consists on the kth
vector that indicates the facilities that the leader has decided
to locate in generation �. 	e evaluation function is de
ned
by the following equation:

��� (���, 
 (���)) = ∑
�∈�
∑
�∈�
���
�� ([��]��) +∑

�∈�
��[��]��, (20)

where 
(�) is the optimal solution found by the follower
a�er the low level problem de
ned by (3)–(6) was solved,
considering the values of � as an input parameter. By solving
the lower level problem for each leader’s decision, the aim is to
obtain the reaction function to be used in order to obtain the
Stackelberg equilibrium. Furthermore, de
ne ���(���, 
(���))
as the value of the objective function for the individual �
of generation �, when the leader has made a decision over
the variables ��� and the follower has optimized its decision

obtaining the values of 
(���). 	is iterative methodology,
where the lower level is solved in each leader’s iteration, is
very common in bilevel programming (see [32–36]). 	e
methodology proposed is further described.

Initialization (t = 0). First, the size � of the initial population�� is determined. 	en, � feasible facility location vectors
are randomly generated, ���, � = 1, 2, . . . , �, where each
component of the vector has a value of 0 or 1 representing
whether or not the facility is located. A�er that, for all ���,
the follower’s objective function (the customer’s preferences)
is optimized obtaining the assignments 
(���). Finally, the

tness function is the leader’s objective function���(���, 
(���))
which is calculated in order to minimize the locating and
distribution costs.

Crossover. A standard crossover operator is implemented.
First, a pair of solutions ��� and �� and � ̸= � is randomly
matched, that will be the parents. 	en, a crossover point
is randomly selected. 	is crossover point cannot be in the
initial or 
nal position of the chromosome. 	at is to say,
if the crossover point is selected in one extreme of the
chromosome, then the o�spring will be exactly as one of
their parents. So, an o�spring that di�ers from its respective
parents is generated. As a result of this crossover there
will be two new o�spring; the 
rst one inherits the 
rst
characteristics from parent 1 and the second characteristics
from parent 2 with respect to the crossover point; the second
o�spring will be analogously generated.

Mutation. For each vector ��� one evolutionary mechanism is
randomly applied, considering three alternatives based on a
random number (0 < rand ≤ 1).

(i) If rand ≤ �, the number of facilities located is
reduced. For a randomly selected located facility its
value is set to zero.

(ii) If � < rand < 1 − �, the number of facilities located
is maintained; this is to say the value of zero to one
facility that is not currently located will be randomly
set, as well as the value of one to zero to another
currently located facility.

(iii) If rand ≥ 1 − �, the number of facilities located is
increased. For this, a randomly selected closed facility
turns its value from zero to one.

With the previous mechanisms, individuals are created
that will be referred to as ��new.	ese individuals are included

in the initial population set, ��, so as to de
ne the augmented
population set,��aug = {��, ��new}, which is compounded by �+
 individuals.	en, for each new individual���, � = �+1, �+2, . . . ,  , the objective function of the follower is minimized
to obtain the assignment values 
(���). Finally, the objective
function of the leader is computed, ���(���, 
(���)), � = � +1, � + 2, . . . ,  .
Selection. For each vector ���, � = 1, 2, . . . , � +  , another�� , � ̸= � is randomly selected, and then the values of the
corresponding objective functions are compared by a tour-
nament selection. If ��� ≤ �� , then it is established that ���
has won the tournament and the victory is registered. 	e
tournament is performed during a predetermined number
of times (�!
 "#$%�), so as each individual ��� ∈ ��aug will
accumulate victories through the tournaments. Once all the�!
 "#$%� tournaments are performed, the � individuals
associated with the highest number of victories will be part

of the new population ��+1� . In this part, the crossover
and mutation operators can produce a solution that already
exists in the population. In order to avoid the duplication
of individuals in the current population, an identi
er value
obtained with a hash function is associated with using the
following formula:

&(���) = ∑
�∈�
��2�. (21)

If a solution that is candidate to be part of the new population
is already on it, this solution is discarded. 	is process
guarantees that all the solutions in the population will be
di�erent from each other.	en, the crossover ormutation step
is performed until the number of generations (�!
 '*�) is
obtained. 	is means that the iterations will be repeated as
long as � ≤ �!
 '*�.

It is important to notice that in the proposed algorithm,
the selection of the evolutionary mechanism is randomly
chosen.	is means that only an individual will enter into the
crossover or into themutation operator. An individual cannot
enter into both of those operators. In the proposed algorithm
the chances to enter into any of those operators are the same.

	e decision of equally allowing the individuals to enter
into the crossover or mutation operators is based on the
preliminary tests that showed that if crossover is considered,
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Figure 1: Stackelberg-evolutionary algorithm description.

the algorithm would lead to very diverse results when the
algorithm is reaching a good solution. 	is was expected
because when a leader’s solution reaches the cardinality that
provides good objective function values, it is better to explore
the neighborhood around that solution. Based on this fact
and considering that in Fogel and Atmar [37] it is justi
ed
that the crossover is not strictly necessary or superior to
the mutation, both operators are considered in the same
proportion for this particular problem.

In Figure 1 the overall framework of the algorithm
proposed that summarizes the steps previously described is
illustrated.

Details of the predetermined values such as the size of
the population �, the number of generations�!
 '*�, the
number of tournaments �!
 "#$%�, the probability - of
entering into the crossover or mutation phase, and the value
of � for the mutation step are described in the next section.

4. Numerical Experimentation

In this section results of the numerical experimentation are
presented. To test the performance of the algorithm a partic-
ular set of benchmark instances is considered and another set

of larger size instances is generated. All the experimentation
was conducted on a 3.00GHz Pentium Dual-Core Processor
with 2.00GB RAM running under Windows 7 Professional
operative system. 	e reformulations 1-LSUFLPUP and 2-
LSUFLPUP were solved directly with CPLEX 12.1. 	e
Stackelberg-evolutionary algorithm proposed to solve the
bilevel formulation (BUFLPUP) was implemented in C++.
In order to 
nd the 
(�) solutions, at each iteration this
algorithm solves exactly the lower level problem.

For solving the lower level problem, the approach consid-
ered inMarić et al. [22] is employed, where an ordered prefer-
ences matrix was considered. For each customer they sort the
index of the most preferred locations. 	en, they search for
the opened facility most preferred by a particular customer
and assign it to that location. By following such procedure
it is guaranteed that the optimal follower’s response will be
the same as the one obtained by solving the integer problem
associated with the lower level.

	e main reason, which led to the decision of solving
the lower level using this approach, is the computational
time. 	e required time for CPLEX 12.1 to solve the lower
level problem is on average 0.0225 seconds (for the 50 × 50
instances) plus the time that is necessary for creating and
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Table 1: Instance sizes.

Instance Locations Clients

Small 1 50 50

Small 2 50 75

Medium 1 75 100

Medium 2 100 1000

Large 1 300 1000

Large 2 500 1000

initializing the CPLEX environment. Let us suppose that
in the best-case scenario all the 100 individuals perform
the mutation operation over the 150 generations; then 100
o�springwill result and their optimal lower level solutionwill
need to be computed. Hence, neglecting the required time
to create the environment, the computation associated with
this case is 0.0225(100)(150) = 337.5 seconds. 	is time is
considerably high for the algorithm proposed herein to be
competitive in terms of computational time.

4.1. Instances. For the numerical experimentation two main
sets of instances are considered. 	e 
rst set is obtained
from Cánovas et al. [18]. For these instances the authors
use Beasley’s OR-Library and adapt them to incorporate
preferences. It is worthy to note that these instances were also
used to test the performance of the proposed work in Vasil’ev
and Klimentova [21]. 	e second set of instances is obtained
in the sameway as the 
rst one.	e uncapacitated warehouse
location instances from Beasley’s OR-Library are considered
and selected, the capa, capb, and capc 
les. 	e size of
these three instances is 100 locations and 1000 customers. In
order to establish the preferences, the procedure described
in Cánovas et al. [18] is implemented, where the preferences
are generated throughout a triangular distribution taking into
account that the customers that are near to a location have
bigger probability of preferring that speci
c location. For the
larger size instances values between the corresponding ranges
for the 100 × 1000 
les are randomly generated. Six di�erent
instance sizes are considered as described in Table 1.

For the 
rst set of instances, three replicates of each
instance size and four di�erent values of the vector of the
preferences are considered. 	is results to a total of 3 ⋅ 3 ⋅ 4 =36 instances. For the Small 1 instances, the three replicates
referred to as 132, 133, and 134 di�er from each other on
the values of the distribution and 
xed costs (���, ��). Also,
the instance considers four di�erent matrices of preferences.
Hence, an instance 132 1 refers to an instance of 50 clients,
50 locations, replicate 132, and preference matrix 1. 	e
same structure is considered for the other two instance
sizes, but the replicates for both instance sizes are referred
to as A, B, and C. For example, A75 50 1 consists of 75
clients, 50 locations, replicate A, and preference vector 1. 	e
nomenclature is similar to the 100 clients and 75 locations
(A100 75 1 for example). 	erefore, for the second set of
instances a similar procedure was done resulting in 36 other
instances, giving a total of 72 instances to measure the
performance of the Stackelberg-evolutionary algorithm.

4.2. Reformulation Scheme. As previously mentioned, the
proposed reformulations 1-LSUFLPUP and 2-LSUFLPUP are
implemented in C++ by using the CPLEX 12.1 optimizer in
order to solve the problem. Unfortunately, only the small
size instances, Small 1 and Small 2, can be optimally solved.
Hence, as mentioned in Section 3, the use of a heuristic
procedure is justi
ed because of the complexity of the
problem.

Also, in the same way as in Marić et al. [22] the fourth
reformulation presented inHansen et al. [17] (here referred to
as 4-UFLPUP) was implemented in the same computational
environment in order to compare the e�ciency of the
reformulations.

In Table 2 the required time (in seconds) for optimally
solving the tested problems is presented. 10 instances from
the Small 1 and Small 2 pools are randomly selected. 	e
“Size” column indicates the number of possible locations
and the total customers to be served. 	e “Instance” column
represents the label for the instance. 	e 4-UFLPUP column
corresponds to the fourth reformulation presented inHansen
et al. [17] and the remaining two columns show the time
required by the reformulations.

In Table 2 the “∗” mark followed by a percentage
represents that the optimal value was not found due to
the limitations of the computational environment and such
percentage indicates the optimality gap. In the cases, where
the mark “∗” appears, it implicates that the computer ran
out of memory and the optimizer stops with the best found
value until that moment and the optimality gap is presented
between parenthesis. For the rest of the cases, the optimal
value was found.

From Table 2, it can be noticed that the reformulation
proposed in Hansen et al. [17] optimally solved both subsets
of instances; the 50 × 50 instances were solved in a short time
but for the 50 × 75 instances the time increases considerably.
	is signi
cant increment of timemay be caused by the com-
putation of all the subsets related to the ordered preferences.

Also, it can be noticed that CPLEX 12.1 is able to optimally
solve the models 1-LSUFLPUP and 2-LSUFLPUP for the 50×50 instances. On the other hand, only the 2-LSUFLPUP refor-
mulation reaches the optimal value for the 50 × 75 instances.
Hence, it can be concluded that the reformulation scheme
proposed is valid. As a conclusion it may be established that
the 2-LSUFLPUP reformulation needs more than 40minutes
for optimally solving the 50 × 50 instances, while the 1-
LSUFLPUP needs more than 80 minutes.

With respect to the 50 × 75 instances, the 1-LSUFLPUP
reformulation cannot be solved because the computer ran out
of memory giving small optimality gaps. 	e 2-LSUFLPUP
model requires less time than the 4-UFLPUP in four of the

ve instances. However, the computational times are not
very acceptable and due to this fact the heuristic algorithm
described in this paper is proposed.

It is important to notice that the reformulation presented
inHansen et al. [17] only solved 30×30 instances to optimality.
InMarić et al. [22] it is indicated that themaximum instances
sizes that can be solved by that reformulation are 50 × 50
instances. Since di�erent instances are used, we cannot
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Table 2: Required time for the reformulations (in seconds).

Size Instance 4-UFLPUP 2-LSUFLPUP 1-LSUFLPUP

50 × 50 132 1 184.41 3,723.45 8,723.45

50 × 50 132 2 204.98 5,368.27 11,368.27

50 × 50 133 1 464.88 2,461.96 4,878.99

50 × 50 133 3 394.31 3,686.08 6,669.94

50 × 50 134 1 200.30 3,721.31 6,208.53

50 × 75 a75 50 1 34,408.00 28,701.58 (13.46%)∗

50 × 75 a75 50 3 28,039.10 30,165.06 (13.09%)∗

50 × 75 b75 50 1 16,755.00 9,691.56 (10.58%)∗

50 × 75 b75 50 4 12,370.00 8,601.30 (8.11%)∗

50 × 75 c75 50 1 34,951.90 10,599.17 (11.33%)∗
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Figure 2: Plot of an example of the preliminary tests.

generalize the fact that any of the reformulations considered
is able to solve just a particular size of instances.

4.3. Stopping Rules and Control Parameters De�nition.
	roughout the computational testing, the S-E procedure
is stopped when the maximum number of generations is
reached. 	e preliminary testing points out that the main
control parameters correspond to the size of the population�, the number of generations to be created�!
 '*� and the
number of tournaments to be performed �!
 "#$%�. 	e
latter parameter is de
ned through a preliminary experimen-
tation, where it was observed that as long as the number of
tournaments is increased, diversity is lost. Hence, based on
the results and also considering commonly used values in this
type of algorithm, its value was set to 
ve.

Once the value of the number of tournaments is de
ned, a
preliminary experimentation was performed to set the value
of the two other parameters. For such purpose, the values of� = 100, 150 and the values of �!
 '*� = 100, 150 are
considered for all the instances. Each instance is run ten times
and the average value found is reported. As a result of the

experimentation, � is set to the value of 100 and �!
 '*�
to 100.

A full factorial 22 experiment is developed by using,
as factors, the size of the population � and the number of
generations�!
 '*� at the minimum and maximum levels
100 and 150 for � and the same for�!
 '*� considering the
di�erent sizes of problems as blocks. 	e experiment’s main
objective is to determine the optimal levels of each parameter
by analyzing the e�ect of each factor in the performance of
the experiment measured in two variables: execution time
and the gap between the heuristic and optimal values of each
instance solved, which is de
ned by the following equation:

%Gap = (�SE − �opt�opt ) × 100%, (22)

where �SE is the value of the solution obtained by the S-E
procedure and �opt is the value of the optimal solution (when
it is known, and in the cases when this is not possible, the
strategy described in the next subsection is utilized).

It can be concluded that the factor�!
 '*� signi
cantly
a�ects the gap, while the factor � does not a�ect this response
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Table 3: Results for the small-size instances.

Instance size Instance ID Optimal value Average value Best value Worst value Gap (%) Time (sec) Number of opt

50 × 50 132 1 1,122,750 1,129,632.20 1,122,750 1,156,712 0.613 1.4458 9

50 × 50 132 2 1,157,722 1,166,628.87 1,157,722 1,193,100 0.769 1.4325 9

50 × 50 132 3 1,146,301 1,157,273.67 1,146,301 1,283,510 0.957 1.4391 11

50 × 50 132 4 1,036,779 1,040,920.87 1,036,779 1,056,677 0.399 1.4704 9

50 × 50 133 1 1,103,272 1,104,166.80 1,103,272 1,110,614 0.081 1.472 12

50 × 50 133 2 0,135,443 1,043,974.87 0,135,443 1,099,432 0.824 1.4681 13

50 × 50 133 3 1,171,331 1,179,617.13 1,171,331 1,192,603 0.707 1.4576 6

50 × 50 133 4 1,083,636 1,083,955.53 1,083,636 1,087,769 0.029 1.4703 12

50 × 50 134 1 1,179,639 1,185,867.73 1,179,639 1,219,335 0.528 1.4673 11

50 × 50 134 2 1,121,633 1,132,109.40 1,121,633 1,149,761 0.934 1.4701 8

50 × 50 134 3 1,171,409 1,183,031.40 1,171,409 1,198,847 0.992 1.4624 6

50 × 50 134 4 1,210,465 1,222,462.13 1,210,465 1,236,753 0.991 1.4604 6

50 × 75 a75 50 1 1,661,269 1,664,342.60 1,661,269 1,673,507 0.185 1.9681 6

50 × 75 a75 50 2 1,632,907 1,648,883.00 1,632,907 1,682,822 0.978 1.9632 8

50 × 75 a75 50 3 1,632,213 1,632,698.13 1,632,213 1,633,426 0.029 1.9820 8

50 × 75 a75 50 4 1,585,028 1,585,428.40 1,585,028 1,591,034 0.025 1.9557 14

50 × 75 b75 50 1 1,252,804 1,260,789.53 1,252,804 1,304,636 0.637 1.9883 12

50 × 75 b75 50 2 1,337,446 1,341,283.27 1,337,446 1,357,102 0.287 1.9729 5

50 × 75 b75 50 3 1,249,750 1,257,445.27 1,249,750 1,282,987 0.616 1.9696 7

50 × 75 b75 50 4 1,217,508 1,228,422.53 1,217,508 1,235,590 0.896 1.9687 3

50 × 75 c75 50 1 1,310,193 1,318,412.47 1,310,193 1,332,980 0.627 1.9745 2

50 × 75 c75 50 2 1,244,255 1,252,745.53 1,244,255 1,283,134 0.682 1.9746 1

50 × 75 c75 50 3 1,201,706 1,203,925.27 1,201,706 1,232,129 0.185 1.9737 12

50 × 75 c75 50 4 1,334,782 1,341,951.47 1,334,782 1,370,764 0.537 1.9686 7

Table 4: Results for the medium-size instances.

Instance size Instance ID Optimal value Average value Best value Worst value Gap (%) Time (sec) Number of opt

75 × 100 a100 75 1 2,286,397 2,305,392.47 2,286,397 2,407,972 0.831 3.4230 11

75 × 100 a100 75 2 2,463,187 2,466,300.40 2,463,187 2,509,888 0.126 3.3775 14

75 × 100 a100 75 3 2,415,836 2,439,790.27 2,415,836 2,481,304 0.992 3.3760 6

75 × 100 a100 75 4 2,380,150 2,386,191.33 2,380,150 2,398,158 0.254 3.4679 7

75 × 100 b100 75 1 1,950,231 1,968,184.47 1,950,231 1,999,198 0.921 3.5263 8

75 × 100 b100 75 2 2,023,097 2,043,233.40 2,023,097 2,067,532 0.995 3.5099 6

75 × 100 b100 75 3 2,062,595 2,082,063.53 2,062,595 2,142,439 0.944 3.5200 2

75 × 100 b100 75 4 1,865,323 1,883,910.00 1,965,323 1,953,993 0.996 3.4973 3

75 × 100 c100 75 1 1,843,620 1,851,536.07 1,843,620 1,875,764 0.429 3.5425 7

75 × 100 c100 75 2 1,808,867 1,826,892.60 1,808,867 1,885,459 0.997 3.5293 8

75 × 100 c100 75 3 1,820,587 1,829,550.67 1,820,587 1,869,527 0.492 3.4979 10

75 × 100 c100 75 4 1,839,007 1,856,116.80 1,839,007 1,896,699 0.930 3.5146 4

100 × 1000 cap a 1 27,490,608∗ 27,669,164.8 27,490,608 27,848,872 0.649 49.939 5

100 × 1000 cap a 2 27,434,572∗ 27,620,332.0 27,434,572 27,909,206 0.677 49.662 5

100 × 1000 cap a 3 27,435,430∗ 27,639,741.2 27,435,430 27,792,660 0.745 49.241 5

100 × 1000 cap a 4 27,804,896∗ 27,813,746.1 27,804,896 27,937,648 0.032 51.115 14

100 × 1000 cap b 1 24,449,922∗ 24,449,922.0 24,449,922 24,449,922 0.000 51.631 15

100 × 1000 cap b 2 24,532,388∗ 24,556,056.3 24,532,388 24,708,592 0.096 50.304 12

100 × 1000 cap b 3 24,318,664∗ 24,331,881.6 24,318,664 24,351,708 0.054 51.039 9

100 × 1000 cap b 4 24,526,456∗ 24,535,120.8 24,526,456 24,591,442 0.035 50.444 13

100 × 1000 cap c 1 23,095,054∗ 23,321,130.5 23,095,054 23,740,388 0.979 50.557 4

100 × 1000 cap c 2 23,368,530∗ 23,447,282.0 23,368,530 23,579,496 0.337 51.621 4

100 × 1000 cap c 3 23,237,760∗ 23,366,553.3 23,237,760 23,502,456 0.554 52.952 6

100 × 1000 cap c 4 23,192,496∗ 23,257,851.5 23,192,496 23,461,264 0.282 52.449 5
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Table 5: Results for the large-size instances.

Instance size Instance ID Optimal value Average value Best value Worst value Gap (%) Time (sec) Number of opt

300 × 1000 big a 1 22,255,196∗ 22,463,397.9 22,255,196 23,011,264 0.935 137.294 7

300 × 1000 big a 2 22,189,452∗ 22,203,899.7 22,189,452 22,406,168 0.065 136.519 14

300 × 1000 big a 3 22,765,286∗ 22,930,434.2 22,765,286 23,615,044 0.725 136.765 9

300 × 1000 big a 4 22,799,540∗ 22,888,083.0 22,799,540 23,186,908 0.388 136.618 6

300 × 1000 big b 1 22,475,276∗ 22,693,778.4 22,475,276 23,597,092 0.972 136.842 4

300 × 1000 big b 2 21,988,192∗ 22,368,965.6 21,988,192 24,321,834 1.732 136.854 7

300 × 1000 big b 3 22,919,924∗ 23,276,402.6 22,919,924 24,159,568 1.555 136.714 6

300 × 1000 big b 4 22,442,388∗ 22,528,429.8 22,442,388 22,660,422 0.383 137.477 8

300 × 1000 big c 1 21,207,902∗ 21,213,366.2 21,207,902 21,215,708 0.026 138.299 5

300 × 1000 big c 2 21,199,978∗ 21,411,178.8 21,199,978 22,758,784 0.996 137.756 12

300 × 1000 big c 3 21,404,592∗ 21,439,839.4 21,404,592 21,748,904 0.165 137.719 4

300 × 1000 big c 4 21,896,128∗ 22,000,610.0 21,896,128 22,228,388 0.477 137.965 8

500 × 1000 large a 1 38,635,228∗ 44,263,374.8 38,635,228 47,614,256 14.567 246.448 2

500 × 1000 large a 2 34,642,732∗ 37,575,132.3 34,642,732 54,083,736 8.465 245.541 4

500 × 1000 large a 3 37,365,008∗ 52,054,726.0 37,365,008 53,931,292 12.551 247.318 2

500 × 1000 large a 4 36,443,660∗ 41,851,030.5 36,443,660 48,943,700 14.838 247.371 4

500 × 1000 large b 1 30,678,758∗ 34,006,518.8 30,678,758 38,201,136 10.847 247.373 4

500 × 1000 large b 2 30,304,860∗ 32,972,009.2 30,304,860 36,488,528 8.801 248.489 3

500 × 1000 large b 3 30,870,146∗ 34,027,882.8 30,870,146 38,467,564 10.229 258.161 1

500 × 1000 large b 4 30,330,226∗ 31,763,682.9 30,330,226 36,202,968 4.726 248.756 3

500 × 1000 large c 1 30,354,964∗ 31,914,530.3 30,354,964 36,746,900 5.138 250.254 3

500 × 1000 large c 2 30,341,740∗ 32,659,784.3 30,341,740 36,388,612 7.639 248.719 1

500 × 1000 large c 3 30,281,492∗ 31,677,372.4 30,281,492 34,613,144 4.609 249.228 1

500 × 1000 large c 4 24,334,680∗ 30,592,168.1 24,334,680 34,946,604 15.714 248.388 2

variable. Regarding the time of execution response variable,
both variables a�ect it negatively, � being the parameter with
higher e�ect. Hence, the factor�!
 '*� is set to the value
of 150 and the factor � to the value of 100.

For example, in Figure 2 the leader’s objective function
values found are plotted in two di�erent runs of the 132 4
instance with the parameter setting as it is described above.
In the le� plot it can be seen that the optimal value was found
around the 110 generation, but on the right plot it was not
found until the 148 generation. If the�!
 '*� value is set to
100 in both cases, the optimum would not be reached.

	e parameters - and � are selected based on the
preliminary testing which showed that the crossover does
not lead to better solutions in comparison with the mutation
operator for this particular problem, so it was decided to set- = 0.5. Finally, � is selected in such a way that assures
that any version of the mutation is equally possible (adding,
deleting, or interchanging locations).

It is important to mention that for the Small 1, Small 2,
and Medium 1 instances the optimal value is known a priori.
Hence, parameter setting is performed by considering this
value in the preliminary testing. For the Medium 2, Large 1,
and Large 2 instances before the preliminary testing, 10 long-
run experiments are done setting�!
 '*� = 1000 and � =500with the aim at getting the best leader’s objective function
value that will be considered as the optimum. A�er that, the
size of the population is set to 100 and 200 generations. 	e�!
 "#$%�, -, and � parameters remain as described above.

4.4. Numerical Results. 	is subsection presents the numer-
ical results. Tables 3, 4, and 5 show a summary of the
results obtained from the computational testing for the S-
E algorithm. It is important to point out that the presented
results correspond to all the instance sizes considered and
that 15 runs of the algorithm for each of the benchmark
instances are performed. 	e average value of the results
obtained and the number of the times, where the optimal
solution is obtained by the algorithm, are presented. As
previously mentioned, an average gap between the heuristic
and optimal values of each instance solved is computed, as
de
ned in (22). A positive gap means that, in average, the
optimal solution is not obtained by the algorithm.

	ese tables also show the average of the leader’s objective
function value that corresponds to the solutions found by
the algorithm (over the 15 runs) for each instance. 	e 
rst
two columns refer to the identi
cation of the instance. 	e
next column presents the value of the optimal solution,
the “∗” means that the optimum is unknown, and the best
value obtained in the long-run experiments is presented.	e
next four columns present the results of the Stackelberg-
evolutionary algorithm. 	e values corresponding to the
average value obtained during the 15 runs are listed in the
“Average value” column. 	e column “Best value” (Worst
value) presents the minimum (maximum) value obtained
in the experimentations by the algorithm over the 15 runs
performed. 	e column “Gap (%)” presents the value of
the gap obtained with respect to the optimal solution, as
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indicated by (22), where �SE is the value that corresponds to
the “Average value” column. 	e next column presents the
average computational time measured in seconds of the S-E
algorithm. Finally, the “# opt” column indicates the number
of times that the algorithm reaches the optimal value over the
15 runs.

It can be observed from Table 3 that in average the

optimality gap is less than 1%, which demonstrates that the
proposed algorithm has a very consistent performance. In
addition, more than half (around 54.7%) of the instances
solved reached the optimal solution. Computational time is
on average small (less than 2 seconds) which are very good
values for a strategic problem of this size.

As it can be observed in Table 4, the average of the
optimality gap is less than 1% for the 75 × 100 instances
and for the 100 × 1000 instances; it is also less than 1%
with respect to the best known value obtained by the long-
run experimentation. Furthermore, the S-E algorithm always

nds the optimal solution. Moreover, in more than 50% of
the experiments, the algorithm reaches the optimal value.
Computational time increases with respect to the small-size
instances, but this is expected because of the size of the
problem and the extra generations computed; no exponential
increase is observed.

In Table 5 the results for the large-size instances are
presented. It can be appreciated that the required time for
solving the 300 × 1000 instances is on average less than
2.5 minutes; in the same way, it is on average less than 4.2
minutes for the 500 × 1000 problems. 	e optimality gaps
corresponding to the 300 × 1000 instances are on average
less than 1.75% reaching the best value known in half of the
runs.

On the other hand, for the 500 × 1000 instances the aver-
age of the optimality gaps is relatively large when compared
to the other instances (from 4.6% to 15.7%). 	e algorithm
only reaches the best value in around 16.7% of the times.
	e main reason of this is that due to the number of the
possible locations, it is not possible to compute the hash
function given by (21) for the solutions belonging to the
current population. 	is issue clearly a�ects the algorithm
because it cannot discard the duplicated individuals of the
population a�ecting in this way the diversity of the solutions
pool.	is is the reason why the S-E algorithm does not reach
the best value very o�en for the large-size instances. One
possible solution for this issue is to extend the size of the
population and increase the number of generations in order
to have more probability of getting a good value, but it is
evident that this decision will increase the total time.

5. Conclusions and Further Research

In this paper the bilevel facility location problem under
preferences (BFLPUP) of the customers with respect to the
most desired locations is addressed. Two reformulations of
the problem to reduce the bilevel programming problem to a
single-level mixed integer program (MIP) are proposed. 	e
reformulations are solved directly by CPLEX for a number of
small-size instances. In order to measure the e�ectiveness of

the reformulations, computational tests are done, comparing
the running time against the time required for the fourth
reformulation that was presented in Hansen et al. [17]
validating in this way that the proposed reformulations 
nd
the optimal solution.

Motivated by the di�culty of the problem and due
to the fact that only the smaller size instances could be
solved directly by the reformulations proposed, a heuristic
algorithm for solving the bilevel formulation of the problem
is presented. It is important to point out that only the three
procedures presented in Marić et al. [22] solve the bilevel
formulation of the problem. Most of the existing techniques
are designed to solve a reduction or a reformulation of the
original problem. Furthermore, Li and Fang [38] also propose
an evolutionary algorithmbased on the duality conditions for
a general bilevel problem obtaining e�cient results. 	is led
to the conclusion that evolutionary algorithmsmay be a good
option for solving bilevel programming problems.

Numerical results for di�erent size instances are pre-
sented showing a good performance of the S-E algorithm. In
more than half of the times that the S-E was run, the optimal
value was found and for the rest of the times gaps obtained
were relatively small.

Low computational time is observed for the S-E pro-
cedure with a maximum time of 2, 53, and 250 seconds
for the small, medium, and large-size instances, respectively.
	e computational time obtained can be regarded as a very
e�cient value for a strategic problem of the dimensions
considered in this paper. Furthermore, the presented times
consist of the total time for solving the problem without
considering any initial solution as a seed for the algorithm.
For instance, in Vasil’ev and Klimentova [21] lower bounds
are obtained with a cutting plane approach and then with
a heuristic based on simulated annealing. By using these
bounds, Vasil’ev and Klimentova, [21] preprocessed a branch
and price procedure to solve the problem, reporting com-
putational time of the branch and price method. Hence,
in order to compare computational time, the lower and
upper bounds to preprocess the S-E procedure should be
considered.

For further research, the design and implementation of a
Stackelberg-Scatter Search algorithm are proposed, with the
aim of obtaining better results of this approach because of the
combination and improvement steps which are not randomly
performed as it is done in the S-E procedure. A solution
methodology to solve the reformulations of the problemmay
also be proposed, in order to be able to solve larger size
instances. Also, an extension of the problem to the capacitated
version maintaining the preferences of the customers may
be addressed for further research. Also, the lower bound
that has been proposed in Vasil’ev and Klimentova [21] can
be included in the procedure in order to improve the S-E
algorithm.
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