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Based on the fast spectral approximation to the Boltzmann collision operator, we present
an accurate and efficient deterministic numerical method for solving the Boltzmann equa-
tion. First, the linearised Boltzmann equation is solved for Poiseuille and thermal creep
flows, where the influence of different molecular models on the mass and heat flow rates
is assessed, and the Onsager-Casimir relation at the microscopic level for large Knudsen
numbers is demonstrated. Recent experimental measurements of mass flow rates along
a rectangular tube with large aspect ratio are compared with numerical results for the
linearised Boltzmann equation. Then, a number of two-dimensional microflows in the
transition and free molecular flow regimes are simulated using the nonlinear Boltzmann
equation. The influence of the molecular model is discussed, as well as the applicability
of the linearised Boltzmann equation. For thermally driven flows in the free molecular
regime, it is found that the magnitudes of the flow velocity are inversely proportional
to the Knudsen number. The streamline patterns of thermal creep flow inside a closed
rectangular channel are analysed in detail: when the Knudsen number is smaller than a
critical value, the flow pattern can be predicted based on a linear superposition of the ve-
locity profiles of linearised Poiseuille and thermal creep flows between parallel plates. For
large Knudsen numbers, the flow pattern can be determined using the linearised Poiseuille
and thermal creep velocity profiles at the critical Knudsen number. The critical Knudsen
number is found to be related to the aspect ratio of the rectangular channel.

Key words: Authors should not enter keywords on the manuscript

1. Introduction

The Knudsen number Kn, the ratio of the molecular mean free path λ to the charac-
teristic flow length ℓ, is an important parameter in rarefied gas dynamics. The Navier-
Stokes-Fourier (NSF) equations based on the continuum fluid hypothesis can usually be
used up to Kn ∼ 0.001†. When Kn is larger, the continuum hypothesis breaks down and
the NSF equations fail to capture the non-conventional behaviour of the rarefied flow.
This situation is most frequently encountered in high-altitude aerodynamics and in the
vacuum industry (where λ is large), and in micro/nano-electromechanical systems (where

† There are some exceptions where the NSF equations do not describe the gas dynamics
properly even when Kn → 0. For example, the ghost effect induced by a spatially periodic
variation of the wall temperature, see Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhauser
Boston, 2002).
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ℓ is small). The Boltzmann equation (BE) is a fundamental model at the microscopic
level describing rarefied gas dynamics for the full range of Knudsen number (Cercignani
1990). It uses the velocity distribution function (VDF) defined in a six-dimensional phase
space to describe the system state, along with the Boltzmann collision operator (BCO)
to model the intermolecular interactions. The BE is complicated, which makes it highly
desirable to use macroscopic equations like the NSF model. In the past, Burnett models
and Grad moment equations have been derived from the BE. While the Burnett models
are intrinsically unstable (Garcia-Colin et al. 2008), regularised Grad moment equations
have been applied up to the transition flow regime for some specific problems (Gu &
Emerson 2009; Rana et al. 2013).

For moderately or highly rarefied gases, it is necessary to solve the BE numerically.
The direct simulation Monte Carlo (DSMC) method (Bird 1994) is the prevailing tech-
nique. It is efficient for high speed flows, but becomes computationally time-consuming in
microflow simulations where the flow velocity is far smaller than the thermal velocity. To
tackle this difficulty, information-preservation (Fan & Shen 2001; Masters & Ye 2007) and
low-noise (Baker & Hadjiconstantinou 2005; Homolle & Hadjiconstantinou 2007; Radtke
et al. 2011) DSMC methods have been proposed. The information-preserving method
introduces information quantities (such as the information velocity and information tem-
perature) to reduce the statistical noise, which has proven highly effective. However,
its convergence to the BE has not been rigorously shown. The low-noise DSMC method
significantly improves the computational efficiency of the original DSMC method by sim-
ulating only the deviation from the equilibrium state. To our knowledge, for microflow
simulations, it is currently the most efficient stochastic method to solve the BE (Radtke
et al. 2011).
The deterministic numerical solution of the BE is, however, theoretically the best

method to resolve small signals, because it is not subject to fluctuations. However, the
high computational cost in the approximation of the BCO restricts the number of discrete
velocity grids one can use; this does not cause problems when the VDF is smooth, but it
does lead to failure at large Kn where discontinuities and/or fine structures exist. There-
fore, a deterministic numerical method allowing a large number of discrete velocity grids
but with reduced computational cost is needed for highly rarefied gas flow simulations.

The Fast Spectral Method (FSM), proposed by Mouhot & Pareschi (2006), and im-
proved by Wu et al. (2013), is one such method. The FSM handles the binary molecular
collisions in frequency space instead of velocity space, where the Fourier spectrum of
the BCO appears as a convolved sum of the weighted spectrum of the VDF. When this
sum is carried out directly, the computational cost is O(N6

ξ ), where Nξ is the number
of frequency components in one direction. The main idea of the FSM is to separate the
frequency components in the weighted function, so that the convolution theorem can be
applied, reducing the computational cost to O(M2N3

ξ logNξ), where the number of dis-
crete angles M is far less than Nξ. This separation requires special forms of the collision
kernel. In our previous paper (Wu et al. 2013), these special forms were constructed and
validated, making the FSM applicable to all inverse power-law (IPL) potentials (except
for the Coulomb potential) and the Lennard-Jones (LJ) potential.
In this present paper we explore the features of the FSM for microflow simulation. We

assess the influence of the discrete velocity grids, the number of frequency components,
and the number of discrete anglesM on the accuracy of the FSM. Based on this accurate
and efficient numerical method, a number of two-dimensional microflows are simulated,
and the influence of the molecular models is discussed. The asymptotic behaviour of
thermally driven flows in the free molecular regime is investigated and, specifically, the
flow pattern of the thermal creep flow inside a closed rectangular channel is studied in
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detail. A new criterion and method is proposed to predict the flow pattern in closed
rectangular channels of arbitrary aspect ratio and Knudsen number.
The paper is organized as follows: the BE with special anisotropic collision kernels

is introduced in Sec. 2, and the approximation of the (nonlinear and linear) BCOs by
the FSM is presented in Sec. 3. In Sec. 4, based on the linearised BE, the numerical
accuracy of the FSM is evaluated and its computational efficiency is demonstrated for
both Poiseuille and thermal creep flows. The influence of molecular models on the flow
rates is discussed and the accuracy of the special collision kernel for the LJ potential is
evaluated. In Sec. 5, based on the nonlinear BE, a number of two-dimensional flows are
simulated and the influence of the molecular models is compared. A new scaling law for
the flow velocity is proposed for thermally driven flows in the free molecular regime. The
flow field of the thermal creep flow inside a closed rectangular channel is also investigated.
Finally, we conclude this paper in Sec. 6.

2. The Boltzmann equation

2.1. The nonlinear Boltzmann equation

In this paper we consider a monatomic gas. In reality, the intermolecular interaction is
best described by the (6-12) LJ potential. For simplicity, however, IPL molecular models
have been introduced, and are widely used by researchers. Hence we first consider IPL
intermolecular potentials. According to the Chapman-Enskog expansion (Chapman &
Cowling 1970), the shear viscosity µ is proportional to Tω, with T being the temperature
and ω the viscosity index. Special collision kernels can be used to recover not only the
value of the shear viscosity but also its temperature dependence (Wu et al. 2013). We
therefore consider the BE

∂f

∂t
+ v · ∂f

∂x
= Q(f, f∗), (2.1)

where the BCO is given by

Q(f, f∗) ≡
∫ ∫

B(|u|, θ)(f ′
∗
f ′ − f∗f)dΩdv∗, (2.2)

with the following form of the collision kernel

B(|u|, θ) = |u|α
K

sinα+γ−1

(

θ

2

)

cos−γ

(

θ

2

)

, (2.3)

where α = 2(1− ω) and γ is a free parameter.
The BE above is given in dimensionless form: the spatial variable x is normalised

by a characteristic flow length ℓ; the molecular velocity v and relative velocity u are
normalised by the most probable molecular speed vm =

√

2kBT0/m, with kB the Boltz-
mann constant, T0 the reference temperature, and m the molecular mass. The time t is
normalised by ℓ/vm, while the VDF is normalised by n0/v

3
m, where n0 is the reference

molecular number density. The subscript ∗ represents the second molecule in the binary
collision, the superscript ′ stands for quantities after the collision, and Ω is the solid
angle. Finally, to recover the shear viscosity, we have

K =
27−ω

5
Γ

(

α+ γ + 3

2

)

Γ
(

2− γ

2

)

Kn, (2.4)

where

Kn =
µ(T0)

n0ℓ

√

π

2mkBT0
, (2.5)
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is the unconfined Knudsen number and Γ is the gamma function. Note that the rar-
efaction parameter Kn is 15π/2(7− 2ω)(5− 2ω) times larger than the Knudsen number
Knvhs, where λ is defined by equation (4.52) in the book by Bird (1994). Also note that
sometimes the parameter δ is used (Sharipov & Seleznev 1994, 1998), which is related to
the unconfined Knudsen number Kn by

δ =

√
π

2Kn
. (2.6)

For realistic (6-12) LJ potentials, the shear viscosity from the Chapman-Enskog expan-
sion is not a power-law function of temperature; only in a small temperature range could
the viscosity be described by a single power-law function of temperature. For instance,
for helium and argon, in the temperature range 293 < T < 373, it has been suggested to
use ω = 0.66 and ω = 0.81, respectively (Chapman & Cowling 1970; Bird 1994). For a
broader temperature range, the single IPL model may not work well. Note that if we use
the realistic collision kernel given by Sharipov & Bertoldo (2009a), the calculation of the
weighted function becomes very complicated and, moreover, the efficiency of the FSM is
reduced by one order of magnitude. Therefore, we propose using the following collision
kernel

B(|u|, θ) =
5
∑3

j=1 bj(kBT0/2ǫ)
(αj−1)/2 sinαj−1(θ/2)|u|αj/Γ(

αj+3
2 )

64
√
2Kn

∑3
j=1 bj(kBT0/ǫ)

(αj−1)/2
, (2.7)

to approximate that of the realistic (6-12) LJ potential (Wu et al. 2013), where b1 = 407.4,
b2 = −811.9, b3 = 414.4, α1 = 0.2, α2 = 0.1, α3 = 0, and ǫ is the potential depth. This
expression can recover the shear viscosity for the LJ potential over the temperature range
1 < kBT/ǫ < 25, and produce accurate macroscopic quantities and microscopic VDFs in
normal shock waves when compared to both experimental data and molecular dynamics
simulations (Wu et al. 2013). Hereafter, the BE using the approximated collision ker-
nel (2.7) will be called the LJ model, and the accuracy of this model in the microflow
simulations will be assessed.

2.2. The linearised Boltzmann equation

If the state of the gas is weakly nonequilibrium, the nonlinear BE (2.1) can be linearised.
We express the VDF then as

f(t,x,v) = feq + h(t,x,v), (2.8)

where

feq(v) =
exp(−|v|2)

π3/2
(2.9)

is the global equilibrium velocity distribution function, and h(t,x,v) represents the de-
viation from global equilibrium satisfying |h| ≪ 1. The nonlinear BE is then linearised
to

∂h

∂t
+ v · ∂h

∂x
= Lg(h)− νeq(v)h, (2.10)

where

Lg(h) =

∫ ∫

B(|u|, θ)[feq(v′)h(v′

∗
) + feq(v

′

∗
)h(v′)− feq(v)h(v∗)]dΩdv∗, (2.11)

which can be viewed as a linear gain term, and

νeq(v) =

∫ ∫

B(|u|, θ)feq(v∗)dΩdv∗ (2.12)
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is the equilibrium collision frequency.

3. The Fast Spectral Method

The five-fold integral BCO poses a challenge for the numerical solution of the BE. Un-
like the discrete velocity method, which handles the binary collision in velocity space, the
FSM works in a corresponding frequency space, where the VDF and BCO are expanded
in Fourier series. The discrete velocity grid points can be nonuniform to capture dis-
continuities, however, in order to take advantage of fast Fourier transform (FFT)-based
convolution, the frequency components should be uniformly distributed, i.e.

f(v) =

N/2−1
∑

j=−N/2

f̂j exp(iξj · v),

f̂j =
1

VD

∫

D

f(v) exp(−iξj · v)dv,

(3.1)

where i is the imaginary unit, N = (N ′

1, N
′

2, N
′

3), the equidistant frequency components
are ξj = jπ/L with j = (j1, j2, j3) and L being the maximum truncated velocity, and D
is the truncated velocity domain with VD its volume. The velocity domain is discretized
by N1 ×N2 ×N3 points and the spectrum f̂ of the VDF can be calculated numerically
by the trapezoidal rule. Note that the number of velocity grid points is usually larger
than the number of frequency components.

The BCO and its Fourier spectrum Q̂ are also expanded by Fourier series. The j-th
Fourier mode of the BCO is related to the spectrum f̂ as follows (Wu et al. 2013):

Q̂(j) =
1

VD

∫

D

Q(f, f∗) exp(−iξj · v)dv =

N/2−1
∑

l+m=j

l,m=−N/2

f̂lf̂m[β(l,m)− β(m,m)], (3.2)

where l = (l1, l2, l3), m = (m1,m2,m3), and β(l,m) is the weighted function. For the
collision kernel (2.3) for IPL potentials, the frequency components ξl and ξm in the
weighted function can be separated as

β(l,m)IPL ≃ 4

K

M
∑

p,q=1

ψγ

{
√

|ξm|2 − (ξm · eθp,ϕq )
2
}

ωpωq sin θpφα+γ(ξl · eθp,ϕq ), (3.3)

while for the collision kernel (2.7) to approximate the LJ potential, we have

β(l,m)LJ ≃ 5

16
√
2Kn

∑3
j=1 bj(kBT0/ǫ)

(αj−1)/2

M
∑

p,q=1

ψγ

{
√

|ξm|2 − (ξm · eθp,ϕq
)2

}

× ωpωq sin θp

3
∑

j=1

bj(kBT0/2ǫ)
(αj−1)/2φαj

(ξl · eθp,ϕq
)/Γ

(

αj + 3

2

)

,

(3.4)

where θp (ϕq) and ωp (ωq) are the p (q)-th point and weight in the Gauss-Legendre
quadrature, respectively, with θ, ϕ ∈ [0, π]; eθp,ϕq = (sin θp cosϕq, sin θp sinϕq, cos θp),

φα+γ(s) = 2
∫ R

0
ρα+γ cos (ρs) dρ, and ψγ(s) = 2π

∫ R

0
ρ1−γJ0(ρs)dρ. Here R = 2

√
2L/(2+√

2) is chosen approximately as the average value of its minimum allowed value 2
√
2L/(3+√

2) and its maximum allowed value L (see figure 5 in Wu et al. (2013)), and J0 is the
zeroth-order Bessel function.



6 Lei Wu1, Jason M Reese2, and Yonghao Zhang1

For conventional spectral methods (Pareschi & Russo 2000; Gamba & Tharkabhushanam
2009), equation (3.2) is calculated by direct sum, with a computational costO(N ′2

1 N
′2
2 N

′2
3 ).

However, if the FFT-based convolution is applied, the computational cost is reduced to
O(M2N ′

1N
′

2N
′

3 log(N
′

1N
′

2N
′

3)). The number of discrete angles M controls the compu-
tational cost and the numerical accuracy. It will be shown below that M = 6 produces
sufficiently accurate results. Hence the FSM is significantly faster than conventional spec-
tral methods. Note that the computational cost of the IPL and LJ models are exactly
the same.

When the spectrum of the BCO is obtained, we calculate the BCO through the fol-
lowing equation:

Q(f, f∗) =

N/2−1
∑

j=−N/2

Q̂(j) exp(iξj · v). (3.5)

Now we consider the fast spectral approximation of the linearised collision operator.
The equilibrium collision frequency can be calculated analytically. For the linearised gain
term Lg, when the IPL potential is considered, the j-th Fourier mode of Lg is

L̂g(j) ≈
4

K

M
∑

p,q=1

N/2−1
∑

l+m=j

l,m=−N/2

ωpωq[f̂eq(l)φα+γ(ξl, θp, ϕq)] · [ĥmψγ(ξm, θp, ϕq)] · sin θp

+
4

K

M
∑

p,q=1

N/2−1
∑

l+m=j

l,m=−N/2

ωpωq[ĥlφα+γ(ξl, θp, ϕq)] · [f̂eq(m)ψγ(ξm, θp, ϕq)] · sin θp

− 4

K

N/2−1
∑

l+m=j

l,m=−N/2

f̂eq(l) · [ĥmφloss],

(3.6)

where φloss =
∑M

p,q=1 ωpωqφα+γ(ξm, θp, ϕq)ψγ(ξm, θp, ϕq) sin θp and ĥ is the spectrum of
the VDF h. For the LJ collision kernel (2.7), the j-th Fourier mode of the linear gain
term can be obtained in a similar way.
Note that each term on the right hand side of equation (3.6) is a convolution; like

equation (3.2), these can be calculated effectively by a FFT-based convolution. Since

the Fourier transform of the terms f̂eq(l)φα+γ(ξl, θp, ϕq)and f̂eq(m)ψγ(ξm, θp, ϕq) can
be precomputed and stored, the computational time required for the linearised collision
operator is nearly the same as that for the full BCO. However, for IPL potentials, if
γ = (1− α)/2, the linear gain operator is simplified to

Lg(h) =

∫ ∫

B(|u|, θ)[2feq(v′)h(v′

∗
)− feq(v)h(v∗)]dΩdv∗, (3.7)

and its j-th Fourier mode is approximated by

L̂g(j) ≈
8

K

M
∑

p,q=1

N/2−1
∑

l+m=j

l,m=−N/2

ωpωq f̂eq(l)φα+γ(ξl, θp, ϕq)ĥmψγ(ξm, θp, ϕq) sin θp

− 4

K

N/2−1
∑

l+m=j

l,m=−N/2

f̂eq(l) · [ĥmφloss],

(3.8)

so the computational cost can be reduced by half.
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The symmetry in the VDF can also help to reduce computational cost further. For
example, if h is symmetric with respect to v3, i.e., h(v3) = h(−v3), then q in equation (3.8)
can only take values of 1, 2, · · · ,M/2 for even M . We denote the spectrum obtained in
this way as L̂z

g(j) and let Lz
g(v) =

∑

j L̂z
g(j) exp(iξj · v). Then the linear gain operator

Lg(v) can be obtained as Lz
g(v1, v2, v3) + Lz

g(v1, v2,−v3). In this way the computational
cost is reduced by half. This technique can also be applied to the nonlinear BCO.

4. Numerical results for Poiseuille and thermal creep flows using the

linearised Boltzmann equation

Poiseuille and thermal creep flows are two classical problems in rarefied gas dynamics.
Because of the singular (over-concentration) behaviour in the VDF (Takata & Funagane
2011), the numerical simulation of a highly rarefied gas is a difficult task; for a long time
accurate numerical results have been limited toKn 6 20 for the hard sphere gas (Ohwada
et al. 1989; Doi 2010). Recently, some progress has been achieved both analytically and
numerically in obtaining the mass and heat flow rates at large Knudsen numbers (Takata
& Funagane 2011; Funagane & Takata 2012; Doi 2012a,b). Here, based on the FSM for the
linearised BCO, we solve these two classical flows in parallel plate and rectangular tube
configurations up to Kn ∼ 106. The accuracy of the FSM for solving the linearised BE is
evaluated by comparing our numerical results for the Poiseuille flow of a hard sphere gas
with those obtained by the numerical kernel method (Ohwada et al. 1989). We can then
determine the discretization resolutions required in the velocity and frequency spaces, as
well as the number of discrete angles M . The influence of the molecular models on the
mass and heat flow rates is discussed below; specifically, we check the model accuracy by
comparing flow rates for the IPL and LJ models with those for the realistic LJ potentials
presented in Sharipov & Bertoldo (2009b). Finally, the recent experimental data by Ewart
et al. (2007) is evaluated.

4.1. Poiseuille flow between parallel plates

Consider a gas between two parallel plates located at x2 = −ℓ/2 and ℓ/2, respectively.
A uniform pressure gradient is imposed on the gas in the x1 direction: the pressure is
given by n0kBT0(1+βPx1/ℓ) with |βP | ≪ 1. The BE is linearised around the equilibrium
state at rest with number density n0 and temperature T0, where the VDF is expressed
as f = feq + βP (x1feq + h). The linearised BE in the dimensionless form is then

v2
∂h

∂x2
= Lg(h)− νeq(v)h− v1feq, (4.1)

and the velocity and heat flux are V1 =
∫

v1hdv and q1 =
∫ (

|v|2 − 5
2

)

v1hdv, respectively.
Due to symmetry, only half of the spatial region (−0.5 6 x2 6 0) is simulated, with

a specular-reflection boundary condition at x2 = 0. The diffuse boundary condition is
adopted at the wall, i.e., h(x2 = −0.5, v2 > 0) = 0. The spatial domain is divided into
Ns nonuniform sections, with most of the discrete points placed near the wall:

x2 = (10− 15s+ 6s2)s3 − 0.5, (4.2)

where s = (0, 1, · · · , Ns)/2Ns. ForNs = 100, the size of the smallest section is 1.24×10−6,
while the largest is 0.0094.

Because of the symmetry and smoothness of the VDF, N1, N3 = 12 uniform grids are
used in the v1(> 0) and v3(> 0) directions. The maximum molecular velocity is at L = 6.
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Fast spectral method Literature

M = 6 M = 8 M = 12

k −M Q −M Q −M Q −M Q
0.1 1.1951 0.0550 1.1953 0.0551 1.1953 0.0552 1.1930 0.0553
0.15 0.9948 0.0758 0.9946 0.0760 0.9947 0.0760 0.9938 0.0761
0.2 0.9006 0.0931 0.9003 0.0934 0.9004 0.0934 0.8999 0.0935
0.3 0.8156 0.1205 0.8154 0.1208 0.8154 0.1208 0.8152 0.1209
0.4 0.7804 0.1415 0.7802 0.1418 0.7802 0.1418 0.7801 0.1419
0.6 0.7566 0.1727 0.7563 0.1729 0.7563 0.1729 0.7562 0.1730
0.8 0.7537 0.1957 0.7534 0.1958 0.7533 0.1759 0.7533 0.1958
1 0.7580 0.2139 0.7576 0.2139 0.7575 0.2138 0.7574 0.2140
1.5 0.7778 0.2479 0.7774 0.2478 0.7771 0.2475 0.7771 0.2477
2 0.7998 0.2726 0.7994 0.2725 0.7991 0.2722 0.7991 0.2724
3 0.8405 0.3085 0.8402 0.3084 0.8398 0.3079 0.8398 0.3082
4 0.8755 0.3348 0.8753 0.3348 0.8749 0.3342 0.8749 0.3345
6 0.9326 0.3731 0.9325 0.3733 0.9321 0.3727 0.9321 0.3730
8 0.9781 0.4013 0.9781 0.4016 0.9777 0.4011 0.9778 0.4015
10 1.0161 0.4239 1.0161 0.4243 1.0158 0.4238 1.0159 0.4242
15 1.0907 0.4664 1.0908 0.4669 1.0905 0.4664 1.0908 0.4669
20 1.1475 0.4977 1.1477 0.4982 1.1475 0.4978 1.1479 0.4984
102 1.5139 0.6897 1.5141 0.6898 1.5142 0.6900 1.5143 0.6900
103 2.1208 0.9959 2.1209 0.9959 2.1210 0.9960 2.1210 0.9960
104 2.7614 1.3165 2.7614 1.3165 2.7615 1.3165 2.7615 1.3166
105 3.4094 1.6406 3.4094 1.6405 3.4094 1.6405 3.4094 1.6406
106 4.0586 1.9653 4.0587 1.9652 4.0587 1.9652 4.0587 1.9652

Table 1: Mass and heat flow rates in Poiseuille flow between parallel plates of a hard
sphere gas. For k = 8Kn/5

√
π 6 20 and k > 102, the data in the last two columns are

collected from Ohwada et al. (1989) and Takata & Funagane (2011), respectively.

In the discretization of v2, N2 nonuniform grids are used:

v2 =
L2

(N2 − 1)ı
(−N2 + 1,−N2 + 3, · · · , N2 − 1)ı, (4.3)

where L2 = 4 and ı is a positive odd number. Due to the over-concentration in the VDF,
large values of Ns and ı should be chosen when investigating large Kn problems.
The number of frequency components in the ξ1 and ξ3 directions are N ′

1N
′

3 = 24× 24,
and there are N ′

2 frequency components in the ξ2 direction. The FFT is used in the v1
and v3 directions, while in the v2 direction the direct sum is implemented†, resulting in
an overall computational cost of O(N2N

′

2N
′

1N
′

3 ln(N
′

1N
′

3)), which is comparable to the
FFT-based convolution sum of equation (3.8).
To obtain the stationary solution, the following implicit iteration scheme is used:

νeq(v)h
k+1 + v2

∂hk+1

∂x2
= Lg(h

k)− v1feq, (4.4)

where ∂h/∂x2 is approximated by a second-order upwind finite difference. The calculation
of Lg(h

k) is as follows: when hk is known, we obtain L̂g from equation (3.8). Then we

† For nonuniform velocity grids (4.3), we use
∑

m
g(v2m)wm to approximate

∫
g(v2)dv2, where

wm = ıL2m
ı−1/(N2 − 1)ı with m ∈ [−N2 + 1,−N2 + 3, · · · , N2 − 1].
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Figure 1: Comparisons of mass and heat flow rates for different IPL molecular models in
Poiseuille gas flow between parallel plates. Here αa represents the wall accommodation
coefficient, where the boundary condition at x2 = −0.5 is h(v1, v2, v3, x2 = −0.5) =
(1− αa)h(v1,−v2, v3, x2 = −0.5) for v2 > 0.

obtain Lg(h
k) by applying the inverse FFT to L̂g: Lg(h

k) =
∑N/2−1

j=−N/2 L̂g(j) exp(iξj · v).
The iterations are terminated when changes in the mass flow rate

M = 2

∫ 0

−1/2

V1dx2, (4.5)

and heat flow rate

Q = 2

∫ 0

−1/2

q1dx2, (4.6)

between two consecutive iteration steps are less than 10−8.
To validate the FSM for the linearised BE, our numerical results are compared to those

obtained using the numerical kernel method (Ohwada et al. 1989) for a hard sphere gas
(ω = 0.5). For k = 8Kn/5

√
π 6 20, the number of equispaced frequency components is

N ′

2 = 32 and the velocity discretization is given by equation (4.3) with N2 = 48 and ı = 3.
For k > 100, we choose N ′

2 = 64, N2 = 100, and ı = 7. The comparisons are summarised
in Table 1. It is seen that, when we use M = 6, the relative error in the mass flow
rate between the two methods is less than 0.1%, while that in the heat flow rate is less
than 0.25%. When M = 8 (or 12), a relative error less than 0.01% can be achieved. Our
method produces accurate results even when the Knudsen number is very large. We also
compared our numerical results with those from the information-preserving DSMC (Fan
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He Ne Ar Kr Xe

IPL LJ LJ LJ LJ IPL LJ LJ LJ LJ IPL LJ LJ
δ FSM FSM SB FSM SB FSM FSM SB FSM SB FSM FSM SB

0.010 2.852 2.814 2.668 2.733 2.581 2.788 2.615 2.502 2.577 2.495 2.770 2.562 2.497
0.020 2.534 2.507 2.424 2.444 2.358 2.478 2.349 2.280 2.318 2.269 2.463 2.306 2.270
0.025 2.438 2.414 2.345 2.357 2.287 2.385 2.270 2.211 2.242 2.199 2.371 2.231 2.199
0.040 2.246 2.230 2.182 2.185 2.140 2.200 2.115 2.072 2.092 2.058 2.188 2.082 2.057
0.050 2.160 2.148 2.107 2.109 2.073 2.117 2.046 2.009 2.025 1.995 2.106 2.017 1.993
0.100 1.920 1.917 1.893 1.894 1.876 1.889 1.853 1.830 1.838 1.816 1.881 1.832 1.813
0.200 1.726 1.728 1.715 1.717 1.707 1.704 1.691 1.679 1.681 1.668 1.699 1.677 1.665
0.250 1.674 1.677 1.667 1.668 1.661 1.656 1.647 1.637 1.638 1.628 1.651 1.635 1.625
0.400 1.584 1.587 1.582 1.583 1.580 1.572 1.569 1.566 1.564 1.559 1.569 1.561 1.557
0.500 1.552 1.555 1.552 1.551 1.550 1.542 1.541 1.540 1.537 1.535 1.540 1.536 1.533
1.000 1.504 1.505 1.507 1.505 1.508 1.502 1.504 1.507 1.504 1.507 1.502 1.504 1.507
1.600 1.530 1.530 1.534 1.531 1.536 1.533 1.536 1.540 1.538 1.543 1.534 1.539 1.544
2.000 1.565 1.565 1.570 1.566 1.572 1.570 1.573 1.578 1.576 1.582 1.572 1.578 1.583
2.500 1.619 1.618 1.624 1.620 1.626 1.626 1.629 1.634 1.633 1.639 1.628 1.635 1.641
4.000 1.813 1.811 1.819 1.814 1.822 1.824 1.827 1.833 1.833 1.839 1.827 1.836 1.842
5.000 1.955 1.953 1.963 1.957 1.966 1.968 1.971 1.978 1.978 1.985 1.972 1.981 1.988
10.00 2.723 2.721 2.740 2.726 2.743 2.744 2.746 2.756 2.755 2.764 2.748 2.759 2.768

Table 2: Mass flow rate (−2M) in Poiseuille flow of various gases between parallel plates
for various δ, see equation (2.6). The data in columns denoted by SB are those results
from Sharipov & Bertoldo (2009b).

& Shen 2001), and found that the information-preserving method works well except at
extremely large Knudsen number: the relative error in the mass flow rate between the
two methods reaches about 7% at Knvhs = 100.

We now compare the mass and heat flow rates for a hard sphere gas (ω = 0.5), for argon
(ω = 0.81), and for a Maxwell gas (ω = 1) using the IPL models. The numerical results
are shown in figure 1. We denote Knc (≈ 0.9) the Knudsen number at which the Knudsen
minimum in the mass flow rate exists. When Kn > Knc (or Kn < Knc), the mass flow
rate decreases (or increases) as the viscosity index ω increases, for a fixed value of Kn.
For instance, at Kn = 10, the mass flow rate of the Maxwell gas is about 94% that of the
hard sphere gas when αa = 1. The underlying mechanism for this may be understood
in terms of the effective collision frequency: for the same value of shear viscosity, the
average collision frequency

∫

νeq(v)feqdv/
∫

feqdv increases with ω (see figures 12 and 13
in Wu et al. (2013) and the corresponding text therein). Therefore, Maxwell molecules
have a greater effective collision frequency (and a smaller effective Kn) than hard sphere
molecules. Since at large Kn the mass flow rate increases with Kn, the Maxwell gas has
a lower mass flow rate than the hard sphere gas. Conversely, since at small Kn the mass
flow rate decreases with Kn, when Kn < Knc, the Maxwell gas has a higher mass flow
rate than the hard sphere gas, although the difference is very small. The heat flow rate
behaves similarly to the mass flow rate; that is, when Kn > 0.5 (or Kn < 0.5), the heat
flow rate decreases (or increases) as ω increases, for a fixed value of Kn. The difference
in flow rates between various gases with the same value of shear viscosity holds when the
wall accommodation coefficient αa is not 1, see figure 1(c,d).
Since IPL potentials are simplifications of the realistic LJ potential, it is interesting

to check the accuracy of the collision kernels (2.3) and (2.7). Tables 2 and 3 compare
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He Ne Ar Kr Xe

IPL LJ LJ LJ LJ IPL LJ LJ LJ LJ IPL LJ LJ
δ FSM FSM SB FSM SB FSM FSM SB FSM SB FSM FSM SB

0.010 1.252 1.217 1.142 1.143 1.103 1.185 1.043 1.055 1.013 1.053 1.166 1.001 1.056
0.020 1.092 1.066 1.027 1.006 0.990 1.033 0.924 0.937 0.899 0.933 1.016 0.890 0.935
0.025 1.042 1.020 0.989 0.965 0.954 0.986 0.890 0.900 0.866 0.895 0.970 0.857 0.897
0.040 0.942 0.927 0.909 0.884 0.878 0.893 0.821 0.824 0.801 0.818 0.879 0.793 0.819
0.050 0.897 0.885 0.870 0.847 0.843 0.851 0.790 0.790 0.771 0.782 0.838 0.764 0.783
0.100 0.764 0.761 0.751 0.737 0.734 0.729 0.697 0.689 0.682 0.680 0.719 0.677 0.679
0.200 0.641 0.644 0.637 0.631 0.627 0.617 0.604 0.595 0.593 0.585 0.610 0.589 0.583
0.250 0.604 0.607 0.601 0.597 0.593 0.583 0.574 0.565 0.564 0.556 0.577 0.560 0.554
0.400 0.527 0.531 0.526 0.525 0.521 0.513 0.509 0.503 0.502 0.495 0.509 0.499 0.493
0.500 0.492 0.495 0.491 0.491 0.487 0.480 0.477 0.473 0.473 0.467 0.477 0.470 0.465
1.000 0.386 0.387 0.385 0.386 0.383 0.381 0.381 0.379 0.379 0.377 0.380 0.379 0.376
1.600 0.316 0.316 0.315 0.316 0.314 0.315 0.316 0.315 0.316 0.315 0.315 0.316 0.315
2.000 0.283 0.284 0.282 0.284 0.282 0.284 0.285 0.284 0.286 0.285 0.284 0.286 0.286
2.500 0.252 0.252 0.251 0.252 0.251 0.254 0.255 0.254 0.256 0.256 0.254 0.257 0.256
4.000 0.189 0.189 0.188 0.190 0.189 0.192 0.193 0.193 0.195 0.196 0.193 0.196 0.197
5.000 0.162 0.162 0.161 0.163 0.162 0.166 0.166 0.166 0.168 0.169 0.167 0.169 0.170
10.00 0.094 0.093 0.093 0.094 0.093 0.097 0.097 0.097 0.099 0.099 0.098 0.100 0.100

Table 3: Heat flow rate (2Q) in Poiseuille flow of various gases between parallel plates
for various δ. The data in columns denoted by SB are those results from Sharipov &
Bertoldo (2009b).

10
−2

10
−1

10
0

10
1

0

2

4

6

8

10

12

δ

 

 

He (PL)

He (LJ)

Ne (PL)

Ne (LJ)

Ar (PL)

Ar (LJ)

Kr (PL)

Kr (LJ)

Xe (PL

Xe (LJ)

10
−2

10
−1

10
0

10
1

−6

−4

−2

0

2

4

6

8

10

12

14

δ

Figure 2: Relative differences in the mass (left) and heat (right) flow rates between the
molecular models and LJ potentials in Poiseuille gas flow between parallel plates for
various δ.

the mass flow rates and heat flow rates for five noble gases with the data of Sharipov &
Bertoldo (2009b) for the LJ potential. For the IPL models, at a temperature of 300K,
we use the viscosity index ωHe = ωNe = 0.66 (so only the results for helium are shown),
ωAr = 0.81 ≃ ωKr = 0.80 (so only the results for argon are shown), and ωXe = 0.85. For
the LJ potential, the potential depth ǫ of He, Ne, Ar, Kr, and Xe are 10.22kB , 35.7kB ,
124kB , 190kB , and 229kB , respectively. The relative differences between the mass and
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(a) At x2 = −0.5 (b) At x2 = −0.25 (c) At x2 = 0

Figure 3: Demonstration of the Onsager-Casimir relation at the microscopic level. Lines
(or dots): velocity distribution functions (|v|2− 5

2 )hP in Poiseuille flow (or hT in thermal
creep flow) at v1, v3 = 6/31 and Kn = 104. From top to bottom, the curves correspond
to the hard sphere, helium (IPL), argon (IPL), and Maxwell gases, respectively.

heat flow rates produced by the FSM and those in Sharipov & Bertoldo (2009b) are
visualized in figure 2. For δ > 0.2, the relative difference |MIPL−MSB |/|MSB | between
the IPL models and LJ potentials is less than 1%. For δ < 0.2, the relative difference
increases as δ decreases. Specifically, at δ = 0.01, the IPL model overestimates the mass
flow rate by around 6.9%, 10.5%, 11.4%, 11.7%, and 11.0% for He, Ne, Ar, Kr, and Xe,
respectively. When the collision kernel (2.7) is used for the LJ potential, at δ = 0.01,
the LJ model overestimates the mass flow rate by around 5.5%, 6.0%, 4.5%, 3.3%, and
2.6% for He, Ne, Ar, Kr, and Xe, respectively. As δ increases, the relative difference
quickly decreases. Similar behaviour can be observed for the heat flow rate, except that
the LJ models for Ar, Kr, and Xe underestimate the heat flow rate at small values of δ.
Generally speaking, when compared to the solution for the realistic LJ potential, the LJ
model yields closer results than the IPL model.

4.2. Thermal creep flow between parallel plates

In thermal creep flow, the wall temperature varies as T = T0(1+βTx1/ℓ), where |βT | ≪ 1.
The VDF is expressed as f = feq +βT [x1feq(|v|2− 5

2 )+h] and the linearised BE is given
by equation (4.1) with the last term replaced by v1(|v|2 − 5

2 )feq.
The Onsager-Casimir relation (Loyalka 1971; Sharipov 1994a,b; Takata 2009a,b) states

that the mass flow rate in thermal creep flow is equal to the heat flow rate in Poiseuille
flow:

∫

V1[hT ]dx2 =
∫

q1[hP ]dx2. Recently, Takata & Funagane (2011) observed a strong
relation, that is, at large Kn, V1[hT ] and q1[hP ] have identical spatial profiles, i.e.,
V1[hT ] = q1[hP ] + O[Kn−1(lnKn)2]. The VDFs obtained by our FSM in figure 3 show
that a stronger Onsager-Casimir relation exists at the microscopic level, that is, hT ≈
(|v|2 − 5

2 )hP , at large Kn, for various IPL models.
Because of the Onsager-Casimir relation, we compare only the heat flow rates in ther-

mal creep flow for different potential models. The results are in Table 4. For a particular
molecular model, the heat flow rate increase monotonically as δ decreases. As in the
Poiseuille flow case, different molecular models have different flow rates at the same value
of shear viscosity; for IPL models, the heat flow rate always decreases as ω increases.
The relative difference in heat flow rates is visualized in figure 4. At δ = 0.01, for He,

Ne, Ar, Kr, and Xe, the IPL models overestimate the heat flow rate relative to Sharipov
& Bertoldo (2009b) by 6.6%, 10.3%, 11.4%, 11.7%, and 11%, while the LJ model over-
estimate the heat flow rate by 5.1%, 5.7%, 4.6%, 3.5%, and and 2.9%, respectively. As δ
increases, the relative difference quickly decreases. This comparison, together with those
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He Ne Ar Kr Xe

IPL LJ LJ LJ LJ IPL LJ LJ LJ LJ IPL LJ LJ
δ FSM FSM SB FSM SB FSM FSM SB FSM SB FSM FSM SB

0.010 6.269 6.182 5.879 6.010 5.684 6.140 5.768 5.512 5.691 5.496 6.104 5.662 5.500
0.020 5.496 5.435 5.263 5.301 5.121 5.385 5.109 4.958 5.048 4.934 5.354 5.024 4.935
0.025 5.255 5.202 5.059 5.082 4.936 5.151 4.906 4.779 4.850 4.754 5.121 4.828 4.754
0.040 4.761 4.725 4.626 4.632 4.542 4.670 4.491 4.404 4.445 4.376 4.644 4.427 4.373
0.050 4.532 4.505 4.421 4.424 4.353 4.448 4.298 4.225 4.257 4.197 4.424 4.240 4.193
0.100 3.848 3.840 3.792 3.793 3.761 3.784 3.709 3.669 3.679 3.641 3.766 3.666 3.635
0.200 3.196 3.200 3.174 3.175 3.162 3.151 3.120 3.103 3.098 3.080 3.138 3.089 3.074
0.250 2.992 2.997 2.977 2.977 2.968 2.951 2.929 2.918 2.909 2.897 2.940 2.901 2.891
0.400 2.569 2.575 2.562 2.562 2.560 2.538 2.526 2.525 2.511 2.508 2.529 2.504 2.502
0.500 2.371 2.377 2.367 2.367 2.366 2.343 2.335 2.337 2.321 2.322 2.336 2.316 2.317
1.000 1.772 1.776 1.770 1.770 1.771 1.752 1.750 1.756 1.741 1.745 1.748 1.737 1.741
1.600 1.387 1.391 1.385 1.387 1.387 1.373 1.371 1.377 1.365 1.369 1.369 1.362 1.366
2.000 1.216 1.219 1.213 1.215 1.216 1.203 1.202 1.207 1.197 1.201 1.200 1.194 1.198
2.500 1.054 1.057 1.051 1.054 1.053 1.043 1.042 1.046 1.038 1.041 1.040 1.036 1.039
4.000 0.752 0.754 0.750 0.752 0.752 0.745 0.745 0.747 0.742 0.744 0.743 0.740 0.743
5.000 0.631 0.633 0.629 0.631 0.630 0.625 0.625 0.627 0.622 0.625 0.623 0.621 0.624
10.00 0.347 0.348 0.345 0.347 0.346 0.344 0.344 0.345 0.343 0.344 0.343 0.342 0.344

Table 4: Heat flow rate (2Q) in thermal creep flow of various gases between parallel
plates for various δ. The data in columns denoted by SB are those results from Sharipov
& Bertoldo (2009b).

for Poiseuille flows, indicate that, in the free-molecular regime, it is necessary to consider
the LJ potential to get highly reliable results (Sharipov & Strapasson 2012; Venkattra-
man & Alexeenko 2012; Sharipov & Strapasson 2013). However, the LJ model with the
collision kernel (2.7) can produce mass and heat flow rates with a relative error less than
2% when δ > 0.04 or, equivalently, Kn < 22.
In the free molecular limit, it has previously been found that the mass flow rates

in Poiseuille and thermal creep flows increase logarithmically with the Knudsen num-
ber (Cercignani & Daneri 1963; Takata & Funagane 2011). Our numerical results show
that the heat flow rate in thermal creep flow can also be fitted to a logarithmic function
of Kn, viz, Q[hT ] = −0.6345 ln(Kn)−Q0 in the region 105 < Kn < 2× 106, where the
constant Q0 is 0.2679, 0.1762, 0.07371, and -0.09903 for hard sphere, helium, argon, and
the Maxwell gases when the IPL model is used, respectively.

4.3. Poiseuille and thermal creep flow along a rectangular tube

We now consider rarefied gases in a long straight tube that lies along the x3 axis. The cross
section is uniform and rectangular, so that −Aℓ/2 < x1 < Aℓ/2 and −ℓ/2 < x2 < ℓ/2,
where A is the aspect ratio. The linearised BE in dimensionless form for Poiseuille flow
along this rectangular tube is:

v1
∂h

∂x1
+ v2

∂h

∂x2
= Lg(h)− νeq(v)h− v3feq, (4.7)

while v3 should be replaced by v3
(

|v|2 − 5
2

)

for the thermal creep flow. Due to symmetry,
only one quarter of the spatial domain is considered. The mass flow rate is defined asM =
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Figure 4: Relative difference in the heat flow rate between the molecular models and LJ
potentials in thermal creep flow between parallel plates as a function of δ.

(4/A)
∫ 0

−1/2

∫ 0

−A/2
V3dx1dx2 and the heat flow rate is Q = (4/A)

∫ 0

−1/2

∫ 0

−A/2
q3dx1dx2,

where V3 =
∫

v3hdv and q3 =
∫ (

|v|2 − 5
2

)

v3hdv.
This problem was first solved for a hard sphere gas by the numerical kernel method (Doi

2010) and then by the low-noise DSMC method (Radtke et al. 2011). To compare the
numerical accuracy and efficiency of our new FSM, we first consider the thermal creep flow
at Knvhs = 0.1 and A = 2. We use a 50×50 nonuniform spatial grid (see equation (4.2)),
32× 32 nonuniform velocity grids (equation (4.3) with ı = 3) in the v1 and v2 directions,
and 12 uniform mesh points in the v3 direction. The FSM withM = 6 yieldsM = 0.0478,
compared to 0.048 by Doi (2010) and 0.0473 by Radtke et al. (2011). We then consider
Poiseuille flow in the square tube; with a 25×25 spatial cell mesh, 32×32×24 frequency
components, and M = 6, we obtain M = 0.3808 and 0.3966, Q = 0.1365 and 0.1874 for
Knvhs = 1 and 10, respectively, compared to Doi’s 0.381 and 0.396 for M, and 0.136
and 0.187 for Q. The computational time is 100 and 40 seconds†, respectively, compared
to the low-noise DSMC that takes 66 and 12 minutes‡, respectively. These comparisons
indicate that the FSM is an accurate and efficient new numerical method.
We observe that the difference in mass and heat flow rates between different molecular

models is very small when A = 1. Although the difference increases with A, at A = 10,
|(MAr −MHe)/MAr| is only 1.6% at δ = 0.01, while that at A = ∞ is 7.6%, when the
LJ model is used. So, in the following numerical simulation we only use the IPL model.

We now compare our numerical results with recent experiments on the reduced mass
flow rate in Poiseuille flow (Ewart et al. 2007). The tube cross section is rectangular,
with an aspect ratio of A = 52.45. The working gas is helium and we take the IPL model
with ω = 0.66. In the spatial discretization, 100 and 50 nonuniform grid points are used
in the x1 and x2 directions, respectively. The number of velocity grids is 32 × 32 × 12,
the frequency components are 32× 32× 24, and the number of discrete angles is M = 6.
Different wall accommodation coefficients αa are used: the wall boundary condition is
given by h(v1, v2, v3, x1, x2 = −1/2) = (1 − αa)h(−v1, v2, v3, x1, x2 = −1/2) for v1 > 0
and h(v1, v2, v3, x1 = −A/2, x2) = (1 − αa)h(v1,−v2, v3, x1 = −A/2, x2) for v2 > 0.

† Our Fortran program runs on a computer with an Intel Xeon 3.3 GHz CPU, and only one
core is used.

‡ The Fortran program runs on a single core of an Intel Q9650 (3.0 GHz Core 2 Quad
processor). The time is obtained when there is better than 0.1% statistical uncertainty in the
mass flow rate. To achieve the same level of uncertainty in the velocity field, the low-noise DSMC
would need 240 and 120 minutes, respectively.
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Figure 5: Comparison of the FSM-calculated reduced mass flow rate G in Poiseuille flow
along a rectangular tube (aspect ratio 52.45) with the experimental data of Ewart et al.
(2007), for various values of the wall accommodation coefficient αa.

The obtained mass flow rate M is transformed to the reduced mass flow rate G via the
following equation (Sharipov & Seleznev 1994):

G(δin, δout) =
2

δout − δin

∫ δout

δin

M(δ)dδ, (4.8)

where the subscripts ‘in’ and ‘out’ stand for the inlet and outlet, respectively. The re-
duced mass flow rate G no longer depends on the local pressure gradient, but only on
the mean value of pressure; so the parameter δm at the mean pressure of the tube is
also introduced. We consider the published experimental data where the inlet to outlet
pressure ratio is five, so that δin = 5δm/3 and δout = δm/3. The mass flow rate M
is obtained at discrete values of the rarefaction parameter. The reduced mass flow rate
is calculated by equation (4.8), where M at an unknown δ is obtained by cubic inter-
polation. Comparisons between the numerical and experimental data are visualized in
figure 5. When δ > 6, the experimental data agrees well with the numerical results from
the BE if αa = 0.92. In the region 1 6 δ < 6, the experimental data agrees with the
numerical results if αa = 0.92 ∼ 1. For 0.2 6 δ 6 1, the mass flow rates from the BE
with αa = 0.92 agree with the experimental measurements. When δ 6 0.1, the BE with
αa = 0.95 ∼ 1 agrees well with the experimental results.
Note that the advantage of the FSM over the DSMC method becomes more profound

for a series of simulations with the same spatial geometry but different values of Kn.
Sorting Kn in descending order, the converged VDF at the previous Kn can be used as
the initial condition for the FSM for those subsequentKn. In this way, the computational
efficiency can be improved further. For example, for this Poiseuille flow problem, it takes
4.4 hours to compute the solution for Kn = 0.1 when the initial VDF is the global
equilibrium one, but only 2 hours when the initial VDF is taken as the solution at
Kn = 0.15.
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Figure 6: Temperature contours and streamlines (velocity: first column; heat flux: second
column) in the lid-driven cavity flow of argon gas. From top to bottom, the Knudsen
number Knvhs in each column is 0.1, 1, and 10, respectively. Here and after, the abscissa
represents the x1-axis, while the ordinate represents the x2-axis.

5. Numerical results for the nonlinear Boltzmann equation

In this section, a number of two-dimensional simulations using the nonlinear BE are
carried out in the transition flow regime (0.1 6 Kn 6 10) and the free molecular regime
using the IPL models. The influence of the IPL models on the macroscopic flow proper-
ties is assessed, and the applicability of using the linear BCO in microflows with large
temperature variations is evaluated. A linear scaling law is proposed for the flow veloc-
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Figure 7: Comparisons of the velocity, heat flux, and temperature profiles between argon
and hard sphere gases in lid-driven cavity flow. The solid (or dashed) lines are the results
for argon with Knvhs = 0.1 (or 10). The circles (or stars) are the results for the hard
sphere gas with Knvhs = 0.132 (or 13.2).

ities in thermally driven flows in the free molecular regime. Specifically, thermal creep
flow inside a closed channel is analysed, where the flow pattern can be well explained by
the superposition of both the velocity profiles of linearised Poiseuille and thermal creep
flow between parallel plates.

5.1. Lid-driven cavity flow

Consider the lid-driven flow in a square cavity, as has been previously studied using
DSMC (John et al. 2010, 2011). Since the gas velocity near the lower wall is small, the
DSMC solution is extremely time-consuming. Even when the velocity of the moving upper
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lid is so small that the linearised BE can be applied, the low-noise DSMC method (Radtke
et al. 2011) takes more than 1 day to achieve reasonably resolved results at Knvhs = 0.1.
We solve this problem (for argon gas, the upper lid velocity of 50m/s, and a wall

temperature of 273K) in a 51 × 51 nonuniform spatial grid, see equation (4.2). The
minimum length of the spatial cell is 7.8×10−5, while the maximum is 0.0375, with most
of the grid points located near the walls. ForKnvhs = 0.1 and 1, 32×32×12 grid points in
velocity space are used, while for Knvhs = 10, there are 64×64×12 velocity grid points,
with most of the grid points located in v1, v2 ∼ 0 to capture the discontinuities in the
VDF. The number of frequency components is 32× 32× 24. The BCO is approximated
by the FSM with M = 6, and the spatial derivatives are approximated by second-
order upwind finite differences. We solve the discretized BE by the implicit scheme in
an iterative manner. At the (k + 1)-th iteration step, the VDF at the wall (entering the
cavity) is determined according to the diffuse boundary condition, using the VDF at
the same position (but leaving the cavity) at the previous iteration step. This numerical
scheme is much faster than an explicit time-dependent technique because no Courant-
Friedrichs-Lewy condition is imposed (Frangi et al. 2007). However, the disadvantage to
the explicit time-marching technique is that, when the mass flux entering the cavity at
the (k + 1)-th step (which is equal to that leaving the cavity at the k-th step) is not
equal to that leaving the cavity at the (k + 1)-th step, the total mass inside the cavity
is not conserved. To overcome this, at the end of each iteration step, a simple correction
of the VDF by a factor equal to the initial total mass divided by the current total mass
is introduced. This is sufficient to recover the correct steady state conditions, and was
introduced by Mieussens & Struchtrup (2004).

The convergence rate of our iterative scheme is proportional to the Knudsen number.
For Knvhs = 0.1 and 1, starting from the global equilibrium state, the FSM takes 110
and 14 minutes, respectively, to produce a converged solution, which is when the error
between two consecutive iteration steps,

||ǫ||2 = max







√

∫

|V k+1
1 − V k

1 |2dx1dx2
∫

|V k
1 |2dx1dx2

,

√

∫

|V k+1
2 − V k

2 |2dx1dx2
∫

|V k
2 |2dx1dx2







, (5.1)

is less than 10−5.
Figure 6 shows the calculated temperature contours and streamlines in the lid-driven

cavity flow of argon gas with diffuse boundary conditions. Compared to DSMC, these
solutions are free of noise. We have also simulated the flow of a hard sphere gas, with
the same values of the normalized wall velocity (i.e. 0.148) and shear viscosity (the
Knudsen numberKn are the same, butKnvhs are different). Comparisons of the velocity,
temperature, and heat flux profiles between the two IPL molecular models are shown
in figure 7, and demonstrate that the molecular model has little influence on the flow
pattern. This may explain why, for the same problem, the Bhatnagar-Gross-Krook and
Shakhov kinetic models can both produce excellent results that are in agreement with
DSMC data (Huang et al. 2012).

5.2. Thermally driven flows

5.2.1. Thermal creep flow inside a closed channel

Consider thermal creep flow in a two-dimensional closed rectangular channel with a
length-to-width ratio of 5. The temperature at the right side is set to be twice that of
the left side, while the temperature of the top and bottom walls varies linearly along
the channel. Using the mean density, the temperature of the left wall, and the channel
width, Kn is set to be 0.08, 0.2, 0.25, 0.6, 2, and 10 in the cases we investigate. Figure 8
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(a) Kn = 0.08

(b) Kn = 0.2

(c) Kn = 0.25

(d) Kn = 0.6

(e) Kn = 2

(f) Kn = 10

Figure 8: Temperature contours and velocity streamlines in the thermal creep flow of
argon gas within a closed rectangular channel (only the down half domain is shown). In
each figure, from left to right, the nondimensional temperature of each contour is 1+0.1i,
where i = 1, 2, · · · , 9.
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Figure 9: (a) The average horizontal velocity varying withKn in thermal creep flow inside
the closed rectangular channel, in the free molecular regime. In this double logarithmic
diagram, the three lines have a slope of 1, demonstrating that the velocity magnitude is
proportional to 1/Kn. (b) Examples of the linear scalability of the horizontal velocity at
x1 = 1.4825.

presents the resulting streamlines and the temperature distributions inside the channel
for the flow of argon gas. Due to symmetry, only half of the spatial domain is shown.
Unlike thermal creep in an open channel, where the flow straightforwardly moves towards
the hot region, the thermal creep flow in a closed channel exhibits richer phenomena. At
Kn = 0.08, the gas flows from the cold region to the hot region along the bottom wall,
and returns in the central region. At Kn = 0.2, the flow still moves from hot to cold in
the central region, however, near the lower wall the flow moves towards the hot region
when x1 < 2 and towards the cold region for at x1 > 2, i.e., a circulation emerges
near the lower corner of the domain. At Kn = 0.25, the circulation near the lower wall
grows, which divides the flow in the central region into two circulation zones. The lower
circulation zone keeps expanding, and pushes the other two circulations in the central
region towards the left and right boundaries, as Kn increases. At Kn = 0.6, the flow
direction is reversed (as compared to that whenKn = 0.08) and only one circulation zone
remains near the left wall. The reversal of the flow direction persists but the circulations
near the left wall gradually disappear as the Knudsen number increases further, for
instance, to Kn = 2. By Kn = 10, the gas near the bottom wall moves from hot to cold,
and two clockwise circulations emerge near the left and right sides. Finally, when the flow
enters the free molecular regime, the streamline pattern does not change, but the velocity
magnitudes are proportional to 1/Kn, see figure 9. The magnitudes of density, pressure,
and temperature, however, remain unchanged irrespective of the Knudsen number.

Comparison of the velocity profiles for different molecular models at the start and the
end of the transition flow regime are shown in figure 10; it can be seen that the molecular
model affects the velocity magnitudes significantly.
The flow patterns shown in figure 8 can be understood qualitatively as follows. Starting

from the global equilibrium state, the temperature gradient drives the gas molecules to
move from cold to hot (thermal creep flow). This process increases the pressure at the
right side of the channel while decreasing the pressure at the left. Then, the pressure
gradient causes the gas molecules to move to the left (Poiseuille flow). The steady state is
reached when the effects of Poiseuille and thermal creep flows cancel each other out, that
is, when the net mass flow rate across the lines perpendicular to the top and bottom walls
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Figure 10: Velocity profiles for thermal creep flow within a closed rectangular channel;
Kn = 0.08 and 10 are represented by the red and blue lines, respectively.
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Figure 11: Net velocity profiles obtained by linear superposition of the velocity profiles
of Poiseuille and thermal creep flows between parallel plates, which result in zero mass
flow rate. The walls are at x2 = 0 and x2 = 1 and the working gas is argon, where the
IPL model with ω = 0.81 is used.

is zero. The horizontal velocity profile can be analysed by assuming the wall temperature
gradient to be small (i.e. the channel is long enough) so that the BE can be linearised.
In this case, we can directly use the velocity profiles obtained in Sec. 4. Figure 11 plots
the net velocity profiles in the linear superposition of Poiseuille and thermal creep flows
between parallel plates where the net mass flow rate is zero. The flow velocities are
normalised; in real problems, the horizontal velocity is given by (see the first paragraph
in Sec. 4.2):

V1 = βT

{

V1[hT ]−
M[hT ]

M[hP ]
V1[hP ]

}

, (5.2)

where βT is the temperature gradient; in this case, it is about 1/5.
Now the horizontal velocity profiles in figure 11 can be used to explain the flow patterns

in figure 8. From figure 11 we find that, when Kn =
√
π/20, the net horizontal velocity is
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Figure 12: Thermal creep flow patterns of the argon gas (IPL model with ω = 0.81) in
the free molecular regime at different values of length-to-height ratio A. (a) A = 0.25,
(b) A = 0.5, (c) A = 1, and (d) A = 2.

positive when x2 < 0.25 and negative otherwise, which agrees well with the flow pattern
in figure 8(a). Also, from figure 10(a) we find that, at Kn = 0.08, V1(x2 = 0.5) ≃ −0.0018
near the left side of the channel, which is well predicted by equation (5.2) when we choose
Kn =

√
π/20 and x2 = 0.5: V1(x2 = 0.5) ≃ (−0.009)/5 = −0.0018. Furthermore, as Kn

increases, the magnitude of the horizontal velocity at x2 = 0.5 decreases (figure 11).
This is in accordance with the horizontal velocity profiles shown in figure 10(a), where
the velocity magnitude decreases as x1 increases from 1 to 4, because the local Knudsen
number increases along the channel as a result of increasing temperature and decreasing
particle number density. When Kn =

√
π/10 (and

√
π/8), the net horizontal velocity

in figure 11 is positive when 0.26 > x2 > 0.009 (and 0.28 > x2 > 0.023) and negative
otherwise. This explains the flow patterns at the right side of the channel, as shown in
figure 8(b). As Kn increases, the extent of the region near the bottom wall where the
velocity is negative increases (figure 11), so that the circulation near the bottom wall in
figure 8(c) is larger than that in figure 8(b). When Kn increases above a critical value
of around

√
π/5, the horizontal velocity in figure 11 is negative when x2 is smaller than

some fixed value x2c and positive otherwise. In this case, the flow direction is completely
reversed in comparison with that at small Knudsen numbers. When Kn >

√
π/2, the

fixed value is x2c = 0.2. In figure 8(d-f), we see that the gas moves from left to right if
x2 < 0.2, and moves right to left if x2 > 0.2.

Note that the above analysis is valid at positions far from the left and right walls; near
the ends of the channel, the horizontal velocity is nearly zero and the above analysis fails.
This end effect becomes dominant in the whole channel when the molecular mean free
path is of the order of half the distance between the left and right walls. When the mean
free path is much larger than the wall distance, from figures 8 and 9 we find that the
streamline pattern does not change very much, but the velocity magnitude is inversely
proportional to the Knudsen number. In other words, at large Knudsen numbers, the flow
pattern is determined by the velocity profiles in figure 11 at a critical Knudsen number.
In our numerical simulations, we find that the critical Knudsen number varies linearly
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with the length-to-height ratio A of the channel:

Knc ≃ 0.35A. (5.3)

For instance, when A = 0.25, the end effect becomes dominant when Knc > 0.09, and
the flow pattern at Kn ≫ Knc is similar to the flow pattern at Knc. Figure 11 shows
that at Kn = 0.09 the molecules move from left to right near the bottom wall, and return
to the left at x2 = 0.5, which is exactly the case shown in figure 12(a). For A = 0.5,
Knc = 0.18 ≃ √

π/10, and from figure 11 we see the horizontal flow velocity turns from
negative to positive and then back to negative as we move from the bottom wall to
the central region, which is the same as in figure 12(b). The aspect ratio A = 1 is a
critical case, since near Knc = 0.35 ≃ √

π/5, the horizontal velocity at x2 = 0.5 could be
negative or positive, depending on whether the local Knudsen number is smaller or larger
than

√
π/5. That is why the flow pattern shown in figure 12(c) is more complicated. For

A = 2, where Knc = 0.7, the flow pattern is simpler, and the molecules move from the
hot to the cold region near the bottom and return from the cold to the hot region near
x2 = 0.5, see figure 12(d). For Kn < Knc, the horizontal velocity profiles can be analysed
using the data in figure 11.

5.2.2. Flow induced by a spatially-periodic wall temperature

Consider the gas flow between two parallel plates that have spatially-periodic tem-
perature: the upper (x2 = ℓ) and lower plates (x2 = 0) have the temperature T0(1 −
0.5 cos 2πx1). Due to symmetry, the spatial domain is chosen as 0 6 x1, x2 6 1/2. The
specular reflection boundary condition is chosen for the left, upper, and right boundaries,
while the diffuse boundary condition is employed at the lower wall. Using the mean den-
sity, mean temperature T0, and the wall distance ℓ, the unconfined Knudsen number Kn
is chosen to be 0.1, 1, and 10. In the spatial discretization, 51 equispaced points are used
in the x1 direction and 51 non-uniform points (see equation (4.2)) are placed in the x2
direction, with most of the points close to the lower wall. In the discretization of the
velocity space, 64 × 64 × 16 (maximum velocity L = 7.5, L2 = 5 in equation (4.3) with
ı = 3) grid points are used when Kn = 0.1 and 1, while 128 × 128 × 16 grid points are
used when Kn = 10. The number of frequency components is 32 × 32 × 32. Even with
such a large number of velocity grid points, the FSM with M = 6 takes only about 150
minutes to converge to ||ǫ||2 less than 10−5 at Kn = 0.1.

The temperature contours and velocity streamlines are shown in figure 13. The gas
moves from the cold to the hot region near the lower wall, while it returns from hot to
cold around the central horizontal region. The circulation centre approaches the lower wall
as Kn increases. The marginal VDFs, which become more complicated as Kn increases,
are shown in figure 14, and large discontinuities at the lower wall and fine structures are
clearly seen. This demonstrates the necessity of using a large number of velocity grid
points in the v1 and v2 directions at large Kn, in order to get a high resolution. The
flow velocities for different molecular models are compared in figure 15: the maximum
velocity increases with the viscosity index. We have also investigated the flow in the free
molecular regime and find that the velocity magnitudes are inversely proportional to the
Knudsen number, as in the case of thermal creep flow inside closed channels.

Note that this problem has also been solved by the low-noise DSMC method, based
on the linearised BE (Radtke et al. 2011): from figure 14 we see that the VDFs deviate
significantly from the equilibrium state, so the required linearisation around the global
equilibrium state may not be appropriate. We test this by solving the linearised BE using
the same spatial and velocity grids. Although the velocity is very small, the numerical
comparisons shown in figure 15 indicate that linearisation around the global state does
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(a) Kn = 0.1 (b) Kn = 1

(c) Kn = 10

Figure 13: Contour plots of the temperature, and the velocity streamlines in argon gas
subjected to a spatially-periodic wall temperature.

(a) Kn = 1 (b) Kn = 10

Figure 14: Contour plots of the marginal VDF,
∫

fdv3, for Kn = 1 and Kn = 10. In
each figure, from bottom to top, x2 = 0.5, 0.25, and 0.5, respectively. From left to right,
x1 = 0, 0.25, and 0.5, respectively. The velocity region shown is [−2, 2]× [−2, 2].
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Figure 15: Comparisons of the velocity profiles predicted by the full nonlinear and the
linearised BEs, and for different molecular models. The unconfined Knudsen number is
Kn = 1 and the temperature of the top and bottom walls vary as T0(1− 0.5 cos 2πx1).

(a) Kn = 0.1 (b) Kn = 1

(c) Kn = 10

Figure 16: Temperature contours and velocity streamlines in the flow in a square box of
a Maxwell gas driven by a temperature discontinuity at the bottom left corner.

not give accurate results in this problem if the variation of the wall temperature is strong.
If the temperature variation is weak, e.g. the wall temperature is T0(1 − 0.05 cos 2πx1),
however, the linearised BE can be used effectively.

5.2.3. Flow induced by a temperature discontinuity

Finally, we consider the gas flow inside a square box that is driven by a temperature
discontinuity: the temperature of the left wall is one half that of the other three walls. In
terms of the mean density, temperature of the left wall, and the wall distance, Kn is 0.1,
1, and 10 in the cases we investigate. The half spatial region (0 6 x1 6 1, 0 6 x2 6 0.5)
is simulated, due to symmetry. The nonuniform spatial grids are 101×100 for Kn = 0.1,
and 51 × 30 for Kn = 1 and 10. The velocity grids are 48 × 48 × 12 for Kn = 0.1



26 Lei Wu1, Jason M Reese2, and Yonghao Zhang1

0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

x 10
−3

x1

V
1

 

 

Hard sphere Kn=0.1

Hard sphere Kn=1

Hard sphere Kn=10

Argon Kn=0.1

Argon Kn=1

Argon Kn=10

Maxwell Kn=0.1

Maxwell Kn=1

Maxwell Kn=10

(a) velocity along the central horizontal line

−1 0 1 2 3 4 5 6

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

V2

x
2

(b) velocity along the central vertical line

Figure 17: Comparison of the velocity profiles for different molecular models for the flow
in a square box driven by a temperature discontinuity at the corner.

and 1, and 64 × 64 × 12 for Kn = 10. The resulting temperature contours and velocity
streamlines for a Maxwell gas in this configuration are shown in figure 16. At Kn = 0.1,
four circulation zones arise. As Kn increases, the two circulations near the left and the
right walls gradually disappear, while the centre of the largest circulation moves towards
the right wall. Note that this problem was previously studied using the original DSMC
method (Huang et al. 2013), and comparison shows that our FSM yields much smoother
streamlines than the DSMC method at Kn = 0.1.
The velocity profiles along the central horizontal and vertical lines are depicted in

figure 17, and clearly show the influence of different molecular models. However, inter-
estingly, the molecular model has little effect on the temperature and heat flux profiles
(not shown). We have also solved this problem using the BGK model, and found that
while the BGK model gives almost identical temperature and heat flux profiles, it cannot
recover the velocity profiles.
In the free molecular limit, the density, pressure, and temperature profiles reach fixed

values independent of the Knudsen number. The streamline pattern also remains un-
changed, except that the velocity magnitudes decrease as 1/Kn.

6. Conclusions

We have studied the application and usefulness of the Fast Spectral Method (FSM) for
gas microflow simulations. A numerical approximation to both the linearised and nonlin-
ear Boltzmann collision operator was presented. Numerical accuracy has been evaluated
by comparing our FSM results with the numerical kernel method for Poiseuille flow,
and excellent agreements in the mass and heat flow rates were seen up to Kn ∼ 106.
Computational efficiency has been demonstrated on two-dimensional Poiseuille and lid-
driven cavity flows, and we found that the FSM can be 10 to 50 times faster than the
low-noise DSMC method (which itself is much faster than the original DSMC technique
for microflow simulations).
We have investigated the influence of different molecular models on the mass and heat

flow rates in Poiseuille and thermal creep flows between parallel plates. The mechanism
of the variability in flow rates for different molecular models with the same value of
shear viscosity is explained in terms of the effective collision frequency. We also assessed
the accuracy of special collision kernels for the LJ potential, and found that these can
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produce mass and heat flow rates with a relative error of less than 2% for Kn < 22
and about 5% at Kn ≃ 88, when compared to results obtained using the realistic LJ
potential; for the flow through a rectangular channel, this relative error decreases as the
aspect ratio decreases from infinity to 1.
We have simulated a number of two-dimensional microflows. New insight into experi-

mental mass flow rates along a rectangular tube with a large aspect ratio (Ewart et al.
2007) has been provided. We have also analysed quantitatively the influence of different
molecular models on the flow properties. In lid-driven cavity flow, we found that the so-
lution is only determined by the value of the shear viscosity, irrespective of the molecular
model. For thermally driven flows, however, the molecular model affects the flow velocity
significantly, but the temperature field is not very sensitive to the molecular model. In
the free molecular regime, our numerical results showed that the streamline pattern does
not change but the velocity magnitudes are inversely proportional to the Knudsen num-
ber. We have also analysed in detail the thermal creep flow inside a closed rectangular
channel, and found that the streamline pattern can be predicted based on the velocity
profiles of superposed Poiseuille and thermal creep flows between parallel plates. These
thermally driven flows can serve as benchmark cases for future investigations.
Finally, we brief analyse why the FSM is suitable for the simulation of moderately

and/or highly rarefied microflows. The molecular velocity distribution functions have
large discontinuities at large Kn, hence a significant number of velocity grids are needed.
This poses an extremely difficult problem for other deterministic methods that handle
binary collisions in velocity space. However, this problem becomes amenable for the FSM
because the collisions are treated in frequency space. The FSM approximates the collision
operator with spectral accuracy (Mouhot & Pareschi 2006); the number of frequency
components does not need to be as large as the velocity grids. One reason for this is
that discontinuities in the distribution function produce high frequency components in
its spectrum (and this is usually smooth, or at least smoother than the distribution
function); in the calculation of the spectrum of the collision operator, the spectrum of
the distribution function is multiplied by a weight function which is very small for high
frequency components (see figure 4 in Wu et al. (2013)). Therefore, very high frequencies
can be safely ignored: in the transition flow regime, we have shown that 32 frequency
components in each direction is enough.
The only drawback of the FSM, like all other deterministic numerical methods, is that

a large amount of compute memory is required (relative to that required for the DSMC
method).
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Ewart, T., Perrier, P., Graur, I. A. & Méolans, J. G. 2007 Mass flow rate measurements
in a microchannel, from hydrodynamic to near free molecular regimes. J. Fluid Mech. 584,
337–356.

Fan, J. & Shen, C. 2001 Statistical simulation of low-speed rarefied gas flows. J. Comput.
Phys. 167, 393–412.

Frangi, A., Ghisi, A. & Frezzotti, A. 2007 Analysis of gas flow in MEMS by a deterministic
3D BGK kinetic model. Sens. Lett. 6 (1), 1–7.

Funagane, H. & Takata, S. 2012 Hagen-Poiseuille and thermal transpiration flows of a highly
rarefied gas through a circular pipe. Fluid Dyn. Res. 44, 055506.

Gamba, I. M. & Tharkabhushanam, S. H. 2009 Spectral-Lagrangian methods for collisional
models of non-equilibrium statistical states. J. Comput. Phys. 228 (6), 2012–2036.

Garcia-Colin, L. S., Velasco, R. M. & Uribe, F. J. 2008 Beyond the Navier-Stokes equa-
tions: Burnett hydrodynamics. Phys. Rep. 465, 149–189.

Gu, X. J. & Emerson, D. R. 2009 A high-order moment approach for capturing non-
equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216.

Homolle, T. M. M. & Hadjiconstantinou, N. G. 2007 A low-variance deviational simulation
Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226 (2), 2341–2358.

Huang, J. C., Xu, K. & Yu, P. B. 2012 A unified gas-kinetic scheme for continuum and
rarefied flows II: Multi-dimensional cases. Commun. Comput. Phys. 12, 662–690.

Huang, J. C., Xu, K. & Yu, P. B. 2013 A unified gas-kinetic scheme for continuum and
rarefied flows III: Microflow simulations. Commun. Comput. Phys. 14, 1147–1173.

John, B., Gu, X. J. & Emerson, D. R. 2010 Investigation of heat and mass transfer in a lid-
driven cavity under nonequilibrium flow conditions. Num. Heat Transfer B 52, 287–303.

John, B., Gu, X. J. & Emerson, D. R. 2011 Effects of incomplete surface accommodation on
non-equilibrium heat transfer in cavity flow: A parallel DSMC study. Computers & Fluids
45, 197–201.

Loyalka, S. K. 1971 Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. I.
J. Chem. Phys. 55, 4497.

Masters, N. D. & Ye, W. J. 2007 Octant flux splitting information preservation DSMC
method for thermally driven flows. J. Comput. Phys. 226 (2), 2044–2062.

Mieussens, L. & Struchtrup, H. 2004 Numerical comparison of Bhatnagar-Gross-Krook
models with proper Prandtl number. Phys. Fluids 16 (8), 2297–2813.

Mouhot, C. & Pareschi, L. 2006 Fast algorithms for computing the Boltzmann collision
operator. Math. Comput. 75 (256), 1833–1852.

Ohwada, T., Sone, Y. & Aoki, K 1989 Numerical analysis of the Poiseuille and thermal
transpiration flows between two parallel plates on the basis of the Boltzmann equation for
hard sphere molecules. Phys. Fluids A 1, 2042.

Pareschi, L. & Russo, G. 2000 Numerical solution of the Boltzmann equation I: Spectrally
accurate approximation of the collision operator. SIAM J. Numerical Analysis 37 (4),
1217–1245.

Radtke, G. A., Hadjiconstantinou, N. G. & Wagner, W. 2011 Low-noise Monte Carlo
simulation of the variable hard sphere gas. Phys. Fluids 23 (3), 030606.

Rana, A., Torrilhon, M. & Struchtrup, H. 2013 A robust numerical method for the R13



Application of the Fast Spectral Method to gas microflows 29

equations of rarefied gas dynamics: Application to lid driven cavity. J. Comput. Phys. 236,
169–186.

Sharipov, F. 1994a Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary
rarefaction. I. General theory for single gas. Physica A 203, 437–456.

Sharipov, F. 1994b Onsager-Casimir reciprocity relations for open gaseous systems at arbitrary
rarefaction. II. Application of the theory for single gas. Physica A 203, 457–485.

Sharipov, F. & Bertoldo, G. 2009a Numerical solution of the linearized Boltzmann equation
for an arbitrary intermolecular potential. J. Comput. Phys. 228, 3345–3357.

Sharipov, F. & Bertoldo, G. 2009b Poiseuille flow and thermal creep based on the Boltzmann
equation with the Lennard-Jones potential over a wide range of the Knudsen number. Phys.
Fluids 21, 067101.

Sharipov, F. & Seleznev, V. 1994 Rarefied flow through a long tube at any pressure ratio.
J. Vac. Sci. Technol. A 12 (5), 2933–2935.

Sharipov, F. & Seleznev, V. 1998 Data on internal rarefied gas flows. J. Phys. Chem. Ref.
Data 27 (3), 657–706.

Sharipov, F. & Strapasson, J. L. 2012 Ab initio simulation of transport phenomena in
rarefied gases. Phys. Rev. E 86, 031130.

Sharipov, F. & Strapasson, J. L. 2013 Benchmark problems for mixtures of rarefied gases.
I. Couette flow. Phys. Fluids 25, 027101.

Takata, S. 2009a Note on the relation between thermophoresis and slow uniform flow problems
for a rarefied gas. Phys. Fluids 21, 112001.

Takata, S. 2009b Symmetry of the linearized Boltzmann equation and its application. J. Stat.
Phys. 136, 751.

Takata, S. & Funagane, H. 2011 Poiseuille and thermal transpiration flows of a highly rarefied
gas: over-concentration in the velocity distribution function. J. Fluid Mech. 669, 242–259.

Venkattraman, A. & Alexeenko, A. A. 2012 Binary scattering model for Lennard-Jones
potential: Transport coefficients and collision integrals for non-equilibrium gas flow simu-
lations. Phys. Fluids 24, 027101.

Wu, L., White, C., Scanlon, T. J., Reese, J. M. & Zhang, Y. H. 2013 Deterministic
numerical solutions of the Boltzmann equation using the fast spectral method. J. Comput.
Phys. 250, 27–52.


