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We present a parallel GPU solution of the Caputo fractional reaction-di�usion equation in one spatial dimension with explicit
	nite di�erence approximation. �e parallel solution, which is implemented with CUDA programming model, consists of three
procedures: preprocessing, parallel solver, and postprocessing. �e parallel solver involves the parallel tridiagonal matrix vector
multiplication, vector-vector addition, and constant vectormultiplication.�emost time consuming loop of vector-vector addition
and constant vector multiplication is optimized and impressive performance improvement is got. �e experimental results show
that the GPU solution compares well with the exact solution. �e optimized GPU solution on NVIDIA Quadro FX 5800 is 2.26
times faster than the optimized parallel CPU solution on multicore Intel Xeon E5540 CPU.

1. Introduction

�e idea of fractional derivatives can be dated back to the 17th
century. A fractional di�erential equation is a kind of equa-
tion which uses fractional derivatives. Fractional equations
can be used to describe some physical phenomenons more
accurately than the classical integer order di�erential equa-
tion [1]. �e reaction-di�usion equations play an important
role in dynamical systems ofmathematics, physics, chemistry,
bioinformatics, 	nance, and other research areas.

Some analytical methods were proposed for fractional
di�erential equations [2, 3].�e stability of Cauchy fractional
di�erential equations was studied [4, 5] and more attention
should be paid to the interesting Ulam’s type stability [6].
�ere have been a wide variety of numerical approxima-
tion methods proposed for fractional equations [7, 8], for
example, 	nite di�erence method [9], 	nite element method,
and spectral techniques [10]. Interest in fractional reaction-
di�usion equations has increased [11]. In 2000, Henry and
Wearne [12] derived a fractional reaction-di�usion equation
from a continuous-time random walk model with tempo-
ral memory and sources. �e fractional reaction-di�usion

system with activator and inhibitor variables was studied by
Ga	ychuk et al. [13]. Haubold et al. [14] developed a solution
in terms of the H-function for a uni	ed reaction-di�usion
equation. �e generalized di�erential transform method [15]
was presented for fractional reaction-di�usion equations.
Saxena et al [16] gave investigation of a closed form solution
of a generalized fractional reaction-di�usion equation.

Parallel computing is used to solve computation intensive
applications simultaneously [17–19]. In recent years, the com-
puting accelerators such as graphics processing unit (GPU)
provided a new parallel method of accelerating computation
intensive simulations [20–22]. �e use of general purpose
GPU is possible by the advance of programming models and
hardware resources. �e GPU programming models such as
NVIDIA’s compute uni	ed device architecture (CUDA) [23]
become more mature than before and simplify the develop-
ment of nongraphic applications. GPU presents an energy
e�cient architecture for computation intensive domains like
particle transport [24, 25] and molecular dynamics [26].

It is time consuming to numerically solve fractional
di�erential equations for high spatial dimension or big time
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integration. Short memory principle [27, 28] and parallel
computing [29–32] can be used to overcome this di�culty.
�e parallel algorithms of one- and two- dimensional time
fractional equations are studied and good parallel scalability
is got [31, 32]. Optimization of the sum of constant vector
multiplication is presented and 2-time speedup can be got
[31]. �e parallel implicit iterative algorithm was studied for
two-dimensional time fractional problem at the 	rst time
[32].

Gong et al. [29] presented a parallel algorithm for Riesz
space fractional equations. �e parallel e�ciency of the
presented parallel algorithm of 64 processes is up to 79.39%
compared with 8 processes on a distributed memory cluster
system. Diethelm [30] implemented the fractional version
of the second-order Adams-Bashforth-Moulton method for
fractional ordinary equations on a parallel computer. Domain
decompositionmethod is regarded as the basic mathematical
background formany parallel applications. A domain decom-
position algorithm for time fractional reaction-di�usion
equation with implicit 	nite di�erence method was proposed
[33]. �e domain decomposition algorithm keeps the same
parallelism but needs much fewer iterations, compared with
Jacobi iteration in each time step, until nothing has been
recorded on accelerating the numerical solution of Caputo
fractional reaction-di�usion equation on GPU.

�is paper focuses on the Caputo fractional reaction-
di�usion equation:

0��� � (�, �) + �� (�, �) = �2� (�, �)��2 + �	 (�, �) (0 < 
 < 1)� (�, 0) = � (�) , � ∈ [0, ��]� (0, �) = � (��, �) = 0, � ∈ [0, �]
(1)

on a 	nite domain 0 ≤ � ≤ �� and 0 ≤ � ≤ �.�e � and� are
constants. If 
 equals 1, (1) is the classical reaction-di�usion
equation. �e fractional derivative is in the Caputo form.

2. Background

2.1. Numerical Solution. �e fractional derivative of 	(�) in
the Caputo sense is de	ned as [27]

�
0��� 	 (�) = 1Γ (1 − 
) ∫�0 	� (�)(� − �)� �� (0 < 
 < 1) . (2)

If 	�(�) is continuous bounded derivatives in [0, �] for
every � > 0, we can get

�
0��� 	 (�) = lim

�→0,	�=�
�� 	∑

=0
(−1)
 (
�)

= 	 (0) �−�Γ (1 − 
) + 1Γ (1 − 
) ∫�0 	� (�)(� − �)� ��. (3)

De	ne � = �/�, ℎ = ��/(�+1), �	 = ��, and �
 = 0+ �ℎ
for 0 ≤ � ≤ �, 0 ≤ � ≤ � + 1. De	ne �	
 ,  	
 , and �
 as the

numerical approximation to �(�
, �	),	(�
, �	), and �(�
). We
can get [11]

�
0��� � (�, �)!!!!!����= 1�Γ (1 − 
) [#0�	
 − 	−1∑�=1 (#	−�−1 − #	−�) ��
 − #	−1�0
 ]+ ⃝ (�2−�) ,

(4)

where 1 ≤ � ≤ �, � ≥ 1, and# = �1−�1 − 
 [(2 + 1)1−� − 21−�] , 2 ≥ 0. (5)

Using explicit center di�erence scheme for �2�(�, �)/��2 ,
we can get�2� (�, �)��2 !!!!!!!!!���� = 1ℎ2 (�	−1
+1 − 2�	−1
 + �	−1
−1 ) + ⃝ (ℎ2) . (6)

�e explicit 	nite di�erence approximation for (1) is1�Γ (1 − 
) [#0�	
 − 	−1∑�=1 (#	−�−1 − #	−�) ��
 − #	−1�0
 ] + ��	
= �	−1
+1 − 2�	−1
 + �	−1
−1ℎ2 + � 	
 .
(7)

De	ne 5 = #0 + ��Γ(1 − 
), 61 = �Γ(1 − 
)/(5ℎ2), 62 =��Γ(1−
)/5,7	 = (�	1 , �	2 , . . . , �	�)�,8	 = (		1 , 		2 , . . . , 		�)�,		
 = �Γ(1 − 
)� 	
 , and 9 as9 = # − #+15 . (8)

Equation (7) evolves as

7	 = 	−1∑
�=1
9	−1−�7� + #	−170 + :7	−1 + 628	, (9)

where matrix : is a tridiagonal matrix, de	ned by

:�×� =(−261 6161 −261 61∙ ∙∙ ∙ 6161 −261). (10)

2.2. GPU Architecture and CUDA Programming Model. �e
architecture of GPU is optimized for rendering real-time
graphics, a computation and memory access intensive prob-
lem domain with enormous inherent parallelism. Not like
CPU, a much larger portion of GPUs resources is devoted to
data processing rather than to caching or control �ow. �e
NVIDIA Quadro FX 5800 GPU has 30 multiprocessor units
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which are called the streaming multiprocessors (SMs). Each
SM contains 8 SIMD CUDA cores. Each CUDA core runs at
1.30GHz. �e multiprocessors create, manage, and execute
concurrent threads in hardware with near zero scheduling
overhead.�e single instructionmultiple thread (SIMT) unit,
which is akin to SIMDvector organizations, creates,manages,
schedules, and executes threads in groups of 32 parallel
threads called warp [23].

�e programming model is a bridge between hardware
and application. CUDA comes with a so�ware environment
that allows developers to use C as a high-level programming
language. �ere are three key abstractions in CUDA: a
hierarchy of thread execution model (grid or kernel, thread
block, and thread), shared memory, and barrier synchro-
nization. �ese abstractions provide 	ne-grained data level
parallelism and thread parallelism, nested within coarse-
grained data level parallelism and task level parallelism. Each
CUDA kernel creates a single grid, which consists of many
thread blocks. Each thread block schedules groups of threads
that can share data through on-chip shared memory and
synchronize with one another using barrier synchronization.
�reads within a block are organized into warps which
run in SIMT fashion. CUDA threads may access data from
multiplememory spaces during their execution.�ememory
spaces include global, texture, and constant memory for
grid, on-chip shared memory for thread block, and private
register 	les for thread. �e memory access time to di�erent
memory spaces varies from several to hundreds of cycles.
�ese memory accesses must be coalesced to improve the
performance of global memory access.

3. Details of GPU Solution

�e parallel solution consists of three parts. �e 	rst part is
preprocessing, which prepares the initial matrices, vectors,
and so on. �e second part is the parallel solver, which
focuses on the iteration of time step with (9). �e third
part is postprocessing, which outputs the 	nal results and so
on.

�e preprocessing includes initialization of parallel envi-
ronment, distribution of computing task, allocation of local
memory space, and initialization of variables and arrays.
Matrices :�×� and 8�×� are prepared before the compu-
tation of (9). For example, matrix : can be got according
to (10). �e postprocessing is simple. �e results of the
exact solution are performed. �e max absolute error of
the exact and parallel solutions is computed and outputted.
Both the results of the exact and parallel solution are saved
in 	les which are necessary for plot. Other operations of
postprocessing include free memory space and stop the
parallel environment.

In order to get 7	, the right-sided computation of (9)
should be performed. �ere are mainly one tridiagonal
matrix vector multiplication, many constant vector multipli-
cations, and many vector-vector additions in the right-sided
computation.

(1) �e tridiagonal matrix vector multiplication is :7	.

(1) Init CUDA environment
(2) Allocate GPU global memory :,7, 8, 9, # . . ..
(3) Init variables and arrays on GPU
(4) record time �1
(5) call kernel ����70 ⟨⟨⟨�/BS,BS⟩⟩⟩ (. . .)
(6) for � = 1 to � by Step 1 do
(7) call kernel �9�CVCD7⟨⟨⟨�/BS,BS⟩⟩⟩ (. . .)
(8) call kernel EVC VV6D7 ⟨⟨⟨�/BS,BS⟩⟩⟩ (. . .)
(9) for F = 1 to � by Step 1 do
(10) call kernel EVC6D7 ⟨⟨⟨�/BS,BS⟩⟩⟩ (. . .)
(11) call kernel EVCD7⟨⟨⟨�/BS,BS⟩⟩⟩ (. . .)
(12) record time �2
(13) output �2 − �1 and 7� . . .
(14) free GPU memory and stop CUDA environment

Algorithm 1: Parallel solution for Caputo fractional reaction-
di�usion equation with CUDA.

(2) �e constant vector multiplications are G� =9	−1−�7�, 628	, and so on.

(3) �e vector-vector additions are ∑	−1�=1 G� and so on.

�e parallel solution uses the data level parallelism of
GPU architecture. �e parallel solution with CUDA for (1)
is described in Algorithm 1. �e preprocessing involves lines
1 to 3. �e parallel solver, which is the most time consuming
procedure, involves lines 4 to 12. �e postprocessing involves
lines 13 to 14 and other additional operations are not shown
in Algorithm 1. Because the time spent on the preprocessing
and postprocessing is trivial when the number of time steps
is big enough, the preprocessing and postprocessing time
is omitted for the measured time. �1 and �2 are used to
record the measured time of the parallel CPU and GPU
solutions.

�e parallel solution uses the data level parallelism of
GPU architecture. �e parallel solution with CUDA for (1)
is described in Algorithm 1. �e preprocessing involves lines
1 to 3. �e parallel solver, which is the most time consuming
procedure, involves lines 4 to 12. �e postprocessing involves
lines 13 to 14 and other additional operations are not shown
in Algorithm 1. BS stands for the CUDA thread block size
and �/BS is the number of CUDA thread blocks. BS is the
prede	ned constant like 16, 32, 64, and so forth. Because
the time spent on the preprocessing and postprocessing is
trivial when the number of time steps is big enough, the
preprocessing and postprocessing time is omitted for the
measured time. �1 and �2 are used to record the measured
time of the serial and parallel solution.

Except for the initialization of variables and arrays, there

are four CUDA kernels. �e 	rst kernel is ����70, which
computes the initial condition according to �(�) in (1). �e
second kernel is �9�CVCD7, which performs the tridiagonal
matrix vector multiplication.�e third kernel is EVC VV6D7,
which stands for constant vector multiplication and vector-
vector addition. �e fourth kernel is EVC6D7, which per-
forms the constant vector multiplication and vector-vector
addition.�e last kernel is EVCD7, which stands for constant
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input: EI2J��, EI2K�, 62, 7
output: 7

(1) for all threads in each thread block do in parallel

(2) local variable L��, �
(3) L�� ← �ℎ9N6�K�.� + #2IEFK�.� ⋅ #2IEF��C.�
(4) � ← 62 × 7[� ⋅ EI2K� + L��]
(5) 7[� ⋅ EI2J�� + L��] ← 7[� ⋅ EI2J�� + L��] + �

Algorithm 2: CUDA kernel for constant vector multiplication and
vector vector addition.

vector multiplication.�e CUDA kernels ����71 and EVCD7
are simple and will not be described in detail.

3.1. Implementation. �eCUDAkernel EVC6D7 for constant
vector multiplication and vector-vector addition is shown in

Algorithm 2. Algorithm 2 computes 7����� + 627���	 and
saves the 	nal vector into 7�����.

Most elements of tridiagonal matrix: are zero.�emost
common data structure used to store a sparse matrix for
sparse matrix vector multiplication computations is com-
pressed sparse row (CSR) format [34] shown in

:3×� = ( 0 61 ⋅ ⋅ ⋅ 61 61−261 −261 ⋅ ⋅ ⋅ −261 −26161 61 ⋅ ⋅ ⋅ 61 0 ) . (11)

So in the following parts of this paper, matrix : stands for
the format of (11) not the format of (10). With the format
of (11), the global memory is coalesced and can improve the
performance of global memory access.

�e CUDA kernel �9�CVCD7 for tridiagonal matrix
vector multiplication is shown in Algorithm 3. One thread
block deals with the multiplication of one row of matrix: and one column of U. Algorithm 3 computes :7	−1 and
saves the 	nal vector into 7	. �e shared memory is used
to improve the memory access speed. �e synchronization
function 5R�E�ℎ9N6�5() is used to ensure the correctness of
the logic of the algorithm.

In Algorithm 3, each GPU thread deals with the mul-
tiplication of one row of tridiagonal matrix : and vector7	−1. Each thread needs to use three elements of vector7	. �e nearest two threads use the same two elements of
vector 7	−1. We can use the shared memory to improve
the memory access performance. So the elements of vector7	−1 which will be used by threads in a thread block are
stored into shared memory, shown between lines 6 and 16
of Algorithm 3. �e real computation of tridiagonal matrix
multiplication is shown between lines 18 and 21. Finally, the
results are stored into the global memory of 7	.
3.2. Optimization. In Algorithm 1, the kernels EVC VV6D7,EVCD7, and �9�CVCD7 are invoked � times. In each time
step, kernel EVC6D7 is invoked n (1, 2, . . . , �) times. BecauseK (K − 1)2 = 1 + 2 + ⋅ ⋅ ⋅ K (12)

input: �,�,BS, :, 7
output: 7

(1) shared memory 5C[BS + 2]
(2) for all threads in every thread block do in parallel

(3) local variables ���, L��,BS, �
(4) ��� ← �ℎ9N6�K�.�
(5) L�� ← �ℎ9N6�K�.� + #2IEFK�.� ⋅ #2IEF��C.�
(6) 5C[��� + 1] ← 7[� ⋅ (� − 1) + L��]
(7) if 0 == ��� then

(8) if 0 == L�� then

(9) 5C[0] ← 0
(10) else

(11) 5C[0] ← 7[� ⋅ (� − 1) + L�� − 1]
(12) if BS − 1 == ��� then

(13) if � == L�� then

(14) 5C[BS + 1] ← 0
(15) else

(16) 5C[BS + 1] ← 7[� ⋅ (� − 1) + L�� + 1]
(17) 5R�E�ℎ9N6�5()
(18) � ← 0.0
(19) � ← � + 5C[��� + 0] ⋅ :[0 ∗� + L��]
(20) � ← � + 5C[��� + 1] ⋅ :[1 ∗� + L��]
(21) � ← � + 5C[��� + 2] ⋅ :[2 ∗� + L��]
(22) 7[� ⋅ � + L��] ← 7[� ⋅ � + L��] + �

Algorithm 3: CUDA kernel for tridiagonal matrix vector multipli-
cation.

input: �, LT�U,7
output: 7

(1) for all threads in every thread block do in parallel

(2) local variables L��, �, F
(3) L�� ← �ℎ9N6�K�.� + #2IEFK�.� ⋅ #2IEF��C.�
(4) � ← 0
(5) for F = 1 to � − 1 by Step 1 do
(6) � ← � + LT�U[F] ⋅ 7[� ⋅ (� − 1 − F) + L��]
(7) 7[� ⋅ � + L��] ← 7[� ⋅ � + L��] + �

Algorithm 4: Optimized CUDA kernel for constant vector multi-
plication and vector-vector addition.

the total number of the invocations of kernel EVC6D7 is�2(� − 1)/2. �e most time consuming part of Algorithm 1
is the loop of line 9. Loop 9 can be combined into one
CUDA kernel EVC6JT�D7 as shown in Algorithm 4. �e
array LT�U is the coe�cient of (8) in global memory.

So the optimized parallel solution for Caputo fractional
reaction-di�usion equation is similar to Algorithm 1 except
that the loop (lines 9-10) in Algorithm 1 is replaced with the
optimized CUDA kernel of Algorithm 4.

4. Experimental Results

4.1. Experiment Platforms. �e experiment platforms consist
of one GPU and one CPU listed in Table 1. For the purpose
of fair comparisons, we measure the performance provided
by GPU compared to the MPI code running on multicore
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Table 1: Technical speci	cations of experiment platforms.

CPU
Intel Xeon E5540,
4 cores, 2.53GHz

GPU
NVIDIA Quadro FX 5800,
240 SPs, 1.30GHz

Operating system Kylin server version 3.1

CPU compiler
GPU compiler

mpif90, Intel Fortran version 11.1
NVCC, CDUA version 3.0

Communication MPICH2 version 1.3rc2

CPU [31]. Both codes run on double precision �oating
point operations. �e CPU code is compiled by the mpif90
compiler with level three optimization. �e GPU code is
compiled by the NVCC compiler provided by CUDA version
3.0 with level three optimization too.

4.2. Numerical Example. �e following Caputo fractional
reaction-di�usion equation [11] was considered:

0��� � (�, �) + �� (�, �) = �2� (�, �)��2 + �	 (�, �) (0 < 
 < 1)� (�, 0) = 0, � ∈ (0, 2)� (0, �) = � (2, �) = 0
(13)

with � = 1,� = 1, and	 (�, �) = 2Γ (2.3)� (2 − �) �1.3 + � (2 − �) �2 + 2�2. (14)

�e exact solution of (13) is� (�, �) = � (2 − �) �2. (15)

4.3. Accuracy of the GPU Implementation. �eGPU solution
compares well with the exact solution to the time fractional
di�usion equation in this test case of (13), shown in Figure 1.
�e � and ℎ for the GPU solution are �/2048 and 2.0/16. �e
maximum absolute errors for � = 0.3, 0.5, and 0.7 are 3.29 ×10−5, 1.07 × 10−4, and 2.30 × 10−4. In fact, the accuracy and
convergence of the GPU solution are the same as the serial
and parallel MPI solution on CPU [31].

4.4. Total Performance Improvement. In this section, the
performance of the optimizedGPU solution presented in this
paper is compared with the performance of the parallel CPU
solution [31].�e parallel CPU solutionmakes full use of four
cores of E5540. �e optimized GPU solution is presented in
Section 3.2.

For 	xed� = 128, the performance comparison between
GPU and multicore CPU is shown in Table 2. �e thread
block size is 32.

For 	xed � = 122880, the performance comparison
between optimized GPU solution and parallel CPU solution
is shown in Table 3. �e thread block size is 32.

 0
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 0.4

 0.5

 0.6

0.125 0.375 0.625 0.875 1.125 1.375 1.625 1.875

x

Exact (T = 0.3)

Exact (T = 0.5)
Exact (T = 0.7)GPU (T = 0.3)
GPU (T = 0.5)

GPU (T = 0.7)

u
(x
,t
)

Figure 1: Comparison of exact solution to the parallel GPU solution
at � = 0.3, 0.5, 0.7.
Table 2: Performance comparison between optimized GPU solu-
tion on Quadro FX 5800 and parallel CPU solution on E5540 with
	xed� = 128.� CPU GPU Speedup

245760 0.58 0.46 1.26

491520 1.23 0.90 1.36

737280 1.95 1.27 1.54

983040 3.27 1.89 1.73

1228800 4.66 2.06 2.26

Table 3: Performance comparison between optimized GPU solu-
tion on Quadro FX 5800 and parallel CPU solution on E5540 with
	xed� = 122880.� CPU GPU Speedup

128 0.29 0.25 1.14

256 1.06 0.84 1.26

512 3.96 2.82 1.40

1024 15.20 9.33 1.63

2048 60.16 33.59 1.79

4.5. Performance Issues of GPU Solution. With� = 491520,� = 128, and thread block size 64, the runtimeofAlgorithm 1
on Quadro FX 5800 is 1.228 seconds.Without the loop of line
9 in Algorithm 1, the runtime is only 0.032 seconds.�at is to
say, about 97.39%of runtime is spent on the loop of line 9.�is
is the reason why we develop the optimized GPU solution
with an optimized CUDA kernel of Algorithm 4.

�e impact of the optimized CUDA kernel on constant
vector multiplication and vector-vector addition with 	xed� = 128 is shown in Table 4. �e performance improvement
with 	xed� = 491520 is shown in Table 5. All thread block
sizes are 64. �e basic GPU solution is Algorithm 1 and the
optimized GPU solution uses the optimized CUDA kernel of
Algorithm 4.
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Table 4: Performance improvement for 	xed� with the optimiza-
tion of constant vector multiplication and vector-vector addition.� Original Optimization Speedup

245760 0.64 0.53 1.21

491520 1.26 1.05 1.20

737280 1.85 1.56 1.19

983040 2.53 2.10 1.20

1228800 3.06 2.59 1.18

Table 5: Performance improvement for 	xed� with the optimiza-
tion of constant vector multiplication and vector-vector addition.� Original Optimization Speedup

256 0.72 0.53 1.36

512 2.86 1.75 1.63

1024 11.36 5.60 2.03

2048 45.32 18.65 2.43

4096 181.01 66.71 2.71

Table 6: Impact of thread block size (BS).

BS Runtime BS Runtime

4 13.5 64 3.35

8 6.84 128 3.61

16 3.59 256 3.55

32 2.82 512 3.47

�e thread block size (BS) is a key parameter for parallel
GPU algorithms.�e impact of BS is shown in Table 6. From
Table 6, we can see that thread block size 32 is the best choice.

5. Conclusions and Future Work

In this paper, the numerical solution of Caputo fractional
reaction-di�usion equation with explicit 	nite di�erence
method is accelerated on GPU. �e iteration of time step
consists of tridiagonal matrix vector multiplication, constant
vector multiplication, and vector-vector addition.�e details
of the GPU solution and some basic CUDA kernels are
presented. �e most time consuming loop (constant vector
multiplication and vector-vector addition) is optimized. �e
experimental results show the GPU solution compares well
with the exact analytic solution and is much faster than
parallel CPU solution. So the power of parallel computing on
GPU for solving fractional applications should be recognized.

As a part of the future work, 	rst, the stability, like Ulam’s
type, of di�erent fractional equations should be paid atten-
tion to [35–37]. Second, parallelizing the implicit numerical
method of fractional di�erential equations is challenging.
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