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Abstract The stochastic dynamics of a well-stirred mixture of molecular
species interacting through different biochemical reactions can be accurately
modelled by the chemical master equation (CME). Research in the biology and
scientific computing community has concentrated mostly on the development
of numerical techniques to approximate the solution of the CME via many real-
izations of the associated Markov jump process. The domain of exact and/or
efficient methods for directly solving the CME is still widely open, which is
due to its large dimension that grows exponentially with the number of molec-
ular species involved. In this article, we present an exact solution formula of
the CME for arbitrary initial conditions in the case where the underlying sys-
tem is governed by monomolecular reactions. The solution can be expressed in
terms of the convolution of multinomial and product Poisson distributions with
time-dependent parameters evolving according to the traditional reaction-rate
equations. This very structured representation allows to deduce easily many
properties of the solution. The model class includes many interesting exam-
ples. For more complex reaction systems, our results can be seen as a first step
towards the construction of new numerical integrators, because solutions to
the monomolecular case provide promising ansatz functions for Galerkin-type
methods.
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1 Introduction

The growing interest in stochastic models for biochemical reaction systems has
lead to increasing activities in the design of efficient numerical methods for
the solution of the underlying chemical master equation (CME) [1,3,4,10,12,
15,19,20]. Almost all current approaches indirectly approximate the CME by
generating a statistically large number of realizations of the associated contin-
uous-time, discrete state space Markov jump process, e.g. with the so-called
stochastic simulation algorithm, cf. [11,22]. The domain of numerical or analyt-
ical techniques for directly solving the CME is still widely open, which is mainly
due to the fact that the dimension increases exponentially with the number of
molecular species involved. The CME can be understood as a huge system of
coupled ordinary differential equations: There is one differential equation per
state of the system, in contrast to the traditional reaction-rate approach where
only one differential equation per species is required. For example, a rather
small system of only three species with molecule numbers varying between,
say, 0 and 99, contains 1003 different states, and 1, 000, 000 coupled differential
equations have to be solved in order to determine evolution of the probability
density in time! As a consequence, solving the CME with standard numerical
integrators is usually cumbersome and often completely impossible.

Analytical solutions of the CME are only known for special reaction systems
with particular initial conditions; these include, e.g., closed (mass conserving)
linear reaction systems with multinomial initial distributions [6,8], open linear
reaction systems with Poisson initial distribution [9], or a two-component, lin-
ear open system with deterministic initial conditions [21, Chap. 8.4]. Recently,
Gadgil et al. [8] presented evolution equations for the mean and the variance
of a general system of first-order reactions, but did not derive an analytical
solution formula for the probability distribution. Concerning the limit behavior
of the CME, it is known that the equilibrium distribution of a finite closed sys-
tem of linear reactions is multinomial, while the equilibrium distribution of an
open system of linear reactions is Poisson in each component (see, e.g., [8] and
references therein), but to the best of our knowledge, nothing is known about
the general time-dependent transient behavior for arbitrary initial conditions,
including the important class of deterministic initial conditions.

In this article we consider chemical reaction systems with arbitrarily many
species and states, but assume that only monomolecular reactions occur. Under
this condition we derive an explicit formula for the exact solution of the CME.
For the generic case of deterministic initial conditions, the solution turns out
to be the convolution of multinomial and product Poisson distributions with
time-dependent parameters evolving according to the traditional reaction-rate
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equations. All previously derived results on monomolecular reaction systems
can be restated in terms of our representation. Although the vast majority of
biochemical systems includes bimolecular or more complex reactions, many
interesting applications belong to the class of monomolecular reaction systems:
simplified models for the conformational dynamics of proteins and RNA, simple
birth and death processes, bacteriophage dynamics, queing systems, migration
processes, gating of ion chanels, hydrolysis etc. (see, e.g., [7,8] and references
therein).

Moreover, we believe that studying monomolecular reactions is worthwhile
for additional reasons: (1) Recent developments in speeding up the stochas-
tic simulation algorithm by treating isolated subsystems (the so-called virtual
fast process) analytically require the solution of the CME for these subsystems
[5]. The virtual fast process will often be related to systems of monomolec-
ular reactions (with rates depending on slow chemical species), although the
overall system involves bimolecular reactions. (2) The performance of new
numerical methods has to be evaluated, typically by applying the method to
a problem with known solution. In this case, nontrivial, time-dependent solu-
tions of chemical reactions systems are required. (3) The monomolecular case
can be seen as a starting point for the construction of new numerical solv-
ers for the general CME. Many numerical methods are devised in such a way
that they yield the exact solution in special cases, like monomolecular reaction
systems for the CME. Representing the solution as a linear combination of
suitably chosen basis functions and exploiting linearity of the equation, such a
representation would, at the cost of a hopefully small error, reduce the num-
ber of degrees of freedom considerably. Work in this direction is currently in
progress.

Outline: Sect. 2 sets the scene and gives a short summary of the determinis-
tic and the stochastic approach to reaction kinetics. In Sect. 3 explicit solution
formulas for the monomolecular CME under special initial conditions are pre-
sented. For the convenience of the reader, we report two known results, namely
that the solution of the CME for closed systems and multinomial initial con-
ditions stays multinomial [8], and that a corresponding assertion holds for the
Poisson distribution and open systems [9]. In our main theorem, both results
are combined and extended in such a way that for arbitrary initial conditions
an explicit solution formula of the monomolecular CME is obtained. In Sect. 4
we discuss properties of the solution distribution, like expectation, variance,
convergence to steady states and marginal distributions. Our results are illus-
trated in Sect. 5 in application to some simple examples previously discussed
in the literature. The last section sketches possible extensions and provides an
outlook.

2 Stochastic and deterministic reaction kinetics

We study a reaction system with n ∈ N different species or substances S1, . . . , Sn
subject to the following reaction channels:
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Reaction Rjk : Sj
cjk−→ Sk conversion (j �= k)

Reaction R0k : ∗ c0k−→ Sk production from source or inflow

Reaction Rj0 : Sj
cj0−→ ∗ degradation or outflow

(1)

These reactions are referred to as monomolecular reactions. In comparison
to general first-order reactions, we do not include (auto)catalytic reactions
Sj

c−→ Sj + Sk, nor splitting reactions Sj
c−→ Sl + Sk with j �= l, k. For possible

generalisations, see Sect. 6.
The rates cjk are assumed to be nonnegative and can (but need not) be time

dependent, i.e., cjk = cjk(t). For simplicity of notation, let ckk ≡ 0 for all k ∈ N

in order to exclude the trivial reaction Sk
ckk−→ Sk. We suppose that all molecules

are contained in a constant volume at constant temperature, and that the sys-
tem is “well-mixed” in the sense that the molecules are uniformly distributed
in space as explained in [11].

2.1 Deterministic reaction kinetics

In the traditional approach the concentration Ck(t) of the substance Sk is the
solution of the reaction-rate equation

Ċk(t) = c0k(t) +
n∑

j=1

cjk(t)Cj(t) −
n∑

j=0

ckj(t)Ck(t). (2)

Hence, the vector C(t) = (
C1(t), . . . , Cn(t)

)T of all concentrations evolves
according to

Ċ(t) = A(t)C(t) + b(t) (3)

where b(t) ∈ R
n is the vector

b(t) = (
c01(t), c02(t), . . . , c0n(t)

)T (4)

and A(t) is the matrix with entries ajk(t) defined by

ajk(t) = ckj(t) for j �= k ≥ 1, akk(t) = −
n∑

j=0

ckj(t). (5)

The definition of A implies that the sum of each column is nonpositive, because

n∑

j=1

ajk(t) = −ck0(t) ≤ 0. (6)



Solving the chemical master equation

A matrix with property (6) and nonnegative off-diagonal elements is called a
compartmental matrix [2]. Compartmental matrices have many nice features
(see Proposition 4), for example that the solution C(t) has nonnegative entries
if the initial vector C(0) has nonnegative entries. This can be readily seen from
(2), because Ck(t) = 0 implies Ċk(t) ≥ 0. Moreover, mass balance shows that∑n

k=1 Ck(t) ≤ ∑n
k=1 Ck(0) for each t = 0, and “≤” can be replaced by “=” if

ck0 = 0 for all k.

2.2 Stochastic reaction kinetics

At any time t the state of the system is described by the number of molecules of
each species. Since no positional information is available the state of the system
is to be understood as a random variable X(t) = (

X1(t), . . . , Xn(t)
)

where Xk(t)
is the number of molecules of the kth species at time t.

The reactions are entirely defined by the stoichiometric vectors and the pro-
pensities. The stoichiometric vector ν(jk) ∈ N

n corresponds to the state change
that occurs whenever the reaction channel Rjk fires. In case of the reaction
system (1) we have

ν(jk) = εk − εj, ν(0k) = εk, ν(j0) = −εj,

where εk denotes the kth column of the identity matrix in R
n×n. The propensity

αjk(t, x) is related to the reaction probability in the following way: If the system
is in state X(t) = x ∈ N

n at time t, then αjk(t, x)dt is the probability that in the
next ”infinitesimal” time interval [t, t + dt) the reaction channel Rjk will fire.
According to [11] the propensities are given by

αjk(t, x) =
⎧
⎨

⎩

cjk(t)xj for reaction Rjk
c0k(t) for reaction R0k
cj0(t)xj for reaction Rj0

.

For ease of notation we define αjk(t, x) = 0 if x �∈ N
n.

In this article, we give an explicit formula for the probability distribution

P(t, x) = P

(
X1(t) = x1, . . . , Xn(t) = xn

)

of the random variable X(t). For convenience, we define P(t, x) = 0 for all
x �∈ N

n. The distribution P is the solution of the chemical master equation
(CME)

∂tP(t, x) =
n∑

j=0

n∑

k=0

(
αjk(t, x − νjk)P(t, x − νjk) − αjk(t, x)P(t, x)

)
, (7)
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which can be rewritten as

∂tP(t, x) =
n∑

k=1

c0k(t)
(

P(t, x − εk) − P(t, x)
)

+
n∑

k=1

ck0(t)
(
(xk + 1)P(t, x + εk) − xkP(t, x)

)

+
n∑

j=1

n∑

k=1

cjk(t)
(
(xj + 1)P(t, x + εj − εk) − xjP(t, x)

)
. (8)

The first sum of the CME (8) corresponds to the inflow reactions R0k, the sec-
ond one to the degradation Rk0, and the double sum represents the conversions
Rjk.

We suppose that the molecule numbers at time t = 0 are specified in terms
of some initial probability distribution µ, i.e.

P(0, x) = µ(x) for all x ∈ N
n. (9)

By superposition, the problem of solving the CME for arbitrary initial distri-
butions can be reduced to the corresponding problem with deterministic initial
conditions, i.e.,

P(0, x) = δξ (x) =
{

1 if x = ξ

0 otherwise
(10)

with δξ (x) denoting the Kronecker symbol. To be more precise, if Pξ (t, ·) denotes
the solution of (8) with initial condition (10), then the solution of (8) with initial
condition (9) is given by

P(t, x) =
∑

ξ∈Nn

µ(ξ)Pξ (t, x), (11)

because the CME is linear and any µ(x) can be represented as

µ(x) =
∑

ξ∈Nn

µ(ξ)δξ (x).

Hence, our aim is to find a formula for the exact solution of the CME (8) with
deterministic initial conditions (10).
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3 Explicit solution formulas for the monomolecular chemical master equation

To start with, we briefly list some basic definitions. The convolution P1 � P2 of
two probability distributions P1 and P2 on the state space N

n is defined by

(P1 � P2)(x) =
∑

z

P1(z)P2(x − z) =
∑

z

P1(x − z)P2(z),

where the sum is taken over all z ∈ N
n such that (x − z) ∈ N

n.
Let |x| := ∑n

k=1 |xk| be the 1-norm of the vector x. For any x ∈ N
n and

any p = (p1, . . . , pn) ∈ [0, 1]n with |p| ≤ 1, the multinomial (or polynomial)
distribution M(x, N, p) is given by

M(x, N, p) =

⎧
⎪⎨

⎪⎩
N! (1 − |p|)N−|x|

(N − |x|)!
n∏

k=1

pxk
k

xk! if |x| ≤ N and x ∈ N
n

0 otherwise.

Finally, let P denote the product Poisson distribution

P(x, λ) = λ
x1
1

x1! . . .
λ

xn
n

xn! · e−|λ|, x ∈ N
n

with parameter vector λ = (λ1, . . . , λn) ∈ R
n containing nonnegative entries,

and for ease of notation let P(x, λ) = 0 if x �∈ N
n.

3.1 Closed systems with multinomial initial distribution

In this section we assume that the system is closed1 in the sense that all inflow
reactions R0k : ∗ −→ Xk are excluded by assuming c0k = 0 for all k. More-
over, suppose that instead of the deterministic initial data (10), P(0, x) is a
multinomial distribution. Then, this is one of the few cases where the CME (8)
can be solved analytically, cf. [8].

Proposition 1 Consider the monomolecular reaction system (1) with a total num-
ber of N ∈ N molecules and suppose that c0k = 0 for all k. If the initial distribution
is the multinomial distribution

P(0, x) = M(x, N, p0)

1 We call such a system closed in spite of the fact that some molecules can leave the system via the
degradation reactions Rj0 : Sj −→ ∗. We do so because, upon introducing a fictitious species S∗,
reactions of type Rj0 can be considered as conversion reactions Sj −→ S∗, and as a consequence
the total number of molecules stays constant. The only particular thing about S∗ is that there is no
reaction from S∗ back to any other species.
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for some p0 ∈ [0, 1]n, then the probability distribution at time t > 0 is still a
multinomial distribution

P(t, x) = M(
x, N, p(t)

)

with parameter vector p(t) = (
p1(t), . . . , pn(t)

)T evolving according to the differ-
ential equation

ṗ(t) = A(t)p(t)

p(0) = p0

(12)

with A defined in (5).

Remark The differential equation (12) is the familiar deterministic rate equa-
tion (3) in the inflow-free case b(t) ≡ (0, . . . , 0)T. If all rates cjk are constant the
solution of (12) is simply p(t) = exp (tA) p0. If some of the rates are time-depen-
dent, the matrix exponential exp (A(t)) does generally not provide the solution,
but the differential equation (12) can be solved numerically by using, e.g., a
Magnus method [16].

Proof A proof based on random walks can be found in [8] (for constant rates).
We give a different proof by verifying directly that M(

x, N, p(t)
)

solves indeed
the CME (8). The initial condition is obviously met. Let x ∈ N

n be fixed, put
y = N − |x| and define q(t) = 1 − |p(t)|. We first consider the case that xk �= 0
and y �= 0. Taking the derivative of the probability distribution gives

d
dt

M(
x, N, p(t)

) = N! d
dt

(
qy(t)

y!
n∏

k=1

pxk
k (t)

xk!

)

= N! qy−1(t)
(y − 1)! q̇(t) ·

n∏

k=1

pxk
k (t)

xk! + N!qy(t)
y!

n∑

j=1

p
xj−1
j (t)

(xj − 1)! ṗj(t) ·
∏

k �=j

pxk
k (t)

xk! .

From (12) we obtain

ṗj =
n∑

i=1

cijpi −
(

n∑

i=0

cji

)
pj, q̇ = −

n∑

i=1

ṗi =
n∑

i=1

ci0pi

because pi(t) ≥ 0 for all i (cf. Sect. 2). This yields
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d
dt

M(
x, N, p

) = N! qy−1

(y − 1)!

(
n∑

i=1

ci0pi

)
·

n∏

k=1

pxk
k

xk!

+ N!qy

y!
n∑

j=1

p
xj−1
j

(xj − 1)!

(
n∑

i=1

cijpi

)
·
∏

k �=j

pxk
k

xk!

− N!qy

y!
n∑

j=1

p
xj−1
j

(xj − 1)!

(
n∑

i=0

cji

)
pj ·

∏

k �=j

pxk
k

xk!

= N! qy−1

(y − 1)!
n∑

i=1

ci0(xi + 1)
pxi+1

i

(xi + 1)! ·
∏

k �=i

pxk
k

xk!

+ N!qy

y!
n∑

j=1

n∑

i=1

cij
p

xj−1
j

(xj − 1)! (xi + 1)
pxi+1

i

(xi + 1)! ·
∏

k �=j,k �=i

pxk
k

xk!

−
n∑

j=1

n∑

i=0

cjixjM(x, N, p)

=
n∑

i=1

(xi + 1)ci0M(x + εi, N, p)

+
n∑

j=1

n∑

i=1

(xi + 1)cijM(x + εi − εj)

−
n∑

j=1

n∑

i=0

cjixjM(x, N, p).

Rearranging these expressions gives

d
dt

M(
x, N, p

) =
n∑

i=1

ci0

(
(xi + 1)M(x + εi, N, p) − xiM(x, N, p)

)

+
n∑

j=1

n∑

i=1

cij

(
(xi + 1)M(x + εi − εj) − xiM(x, N, p)

)

which is the CME (8) in the case c0k = 0 for all k = 1, . . . , n. If y = 0 and/or
xk = 0 for some k, then some of the terms in the above formulas vanish because
pk(t)0/0! ≡ 1 and d

dt pk(t)0/0! ≡ 0, but the same calculation can be carried out
mutatis mutandis. �	

Proposition 1 states an explicit formula for the probability distribution under
the assumption that there is no inflow into the system and that the initial distribu-
tion is multinomial. Both conditions, however, are very restrictive. Nevertheless,
Proposition 1 will be helpful in the proof of our main result (Theorem 1).
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3.2 Open systems with product Poisson initial distribution

In a next step towards this aim, we admit inflow reactions and quote a result
similar to Proposition 1 for the Poisson distribution, cf. [9].

Proposition 2 Consider the monomolecular reaction system (1). If the initial
distribution is given by a product Poisson distribution

P(0, x) = P(
x, λ0

)

with some parameter vector λ0 ∈ R
n of nonnegative entries, then the probability

distribution at time t > 0 is still a product Poisson distribution

P(t, x) = P(
x, λ(t)

)

with parameter vector λ(t) evolving according to the reaction rate equation

λ̇(t) = A(t)λ(t) + b(t)

(13)

λ(0) = λ0

with A(t) and b(t) defined in (5) and (4).

Proof This result is derived in [9] using moment generating functions. For con-
venience of the reader, we give a direct proof. Let x ∈ N

n and, as in the proof
of Proposition 1, assume first that xk �= 0 for all k. Since

d
dt

λ
xk
k

xk! e−λk = −λ̇k
λ

xk
k

xk! e−λk + λ̇k
λ

xk−1
k

(xk − 1)!e−λk

the derivative of the Poisson distribution is

d
dt

P(x, λ) = −
n∑

k=1

λ̇kP(x, λ) +
n∑

j=1

λ̇jP(x − εj, λ). (14)

From (13) and (6) we have

λ̇j =
n∑

i=1

ajiλi + bj =
n∑

i=1

cijλi −
n∑

i=0

cjiλj + c0j

and n∑

k=1

λ̇k = −
n∑

k=1

ck0λk + |b|
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which turns the first term on the right-hand side of (14) into

−
n∑

k=1

λ̇kP(x, λ) =
(

n∑

k=1

ck0λk − |b|
)

P(x, λ)

=
n∑

k=1

ck0(xk + 1)P(x + εk, λ) −
n∑

k=1

c0kP(x, λ). (15)

Using the relation λjP(x − εj, λ) = xjP(x, λ) we find that the second term of
(14) equals

n∑

j=1

λ̇jP(x − εj, λ)

=
n∑

j=1

n∑

i=1

cijλiP(x − εj, λ) −
n∑

j=1

n∑

i=0

cjiλjP(x − εj, λ) +
n∑

j=1

c0jP(x − εj, λ)

=
n∑

j=1

n∑

i=1

cij(xi + 1)P(x + εi − εj, λ) −
n∑

j=1

n∑

i=1

cjixjP(x, λ)

−
n∑

j=1

cj0xjP(x, λ) +
n∑

j=1

c0jP(x − εj, λ). (16)

Substituting (15) and (16) into (14) yields

d
dt

P(x, λ) =
n∑

j=1

c0j

(
P(x − εj, λ) − P(x, λ)

)

+
n∑

k=1

ck0

(
(xk + 1)P(x + εk, λ) − xkP(x, λ)

)

+
n∑

j=1

n∑

i=1

cij

(
(xi + 1)P(x + εi − εj, λ) − xiP(x, λ)

)
,

which is exactly the CME (8). Now suppose that xk = 0 for one or more k.
Without loss of generality, it can be assumed, possibly after a suitable permuta-
tion of the indices, that there is an m ∈ N such that xk = 0 for all m < k ≤ n and
xk �= 0 for all 1 ≤ k ≤ m. Then, the formula (14) for the derivative of P(x, λ) has
to be adapted such that the second sum is only taken from 1 to m. Accordingly,
(16) remains valid if “

∑n
j=1 . . .” is replaced by “

∑m
j=1 . . .” everywhere, and since

we have defined P(x, λ) = 0 for x �∈ N
n the CME (8) is again recovered. �	

Remarks 1. It is worth noticing that Proposition 2 remains valid if all inflow rates
c0k are set to zero, i.e. if the system is closed. In view of Proposition 1 this means
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that, in case of a closed system, multinomial distributions stay multinomial
whereas Poisson distributions stay Poisson. However, the occurrence of Pois-
son distributions for closed systems seems not to be very natural because in
closed systems a finite state space is typically considered.

2. If X1, . . . , Xn are independent Poisson variables with parameters λ1, . . . , λn,
then it is known that the conditional distribution of X(t) = (X1, . . . , Xn) given∑n

i=1 Xi = N is multinomial with parameters N and pi = λi/
∑n

i=1 λi (see, e.g.,
[17]). Combining this fact with Proposition 2 could also be used to prove Prop-
osition 1 in a different way. However, we do not state any details here because
the alternative proof is not shorter and requires some technical efforts.

3.3 General systems with arbitrary initial distribution

The above propositions state that “Poisson stays Poisson” and, in closed systems,
that “multinomial stays multinomial”. Though these results provide solutions
of the CME their practical use is limited because in typical applications the
initial data is neither a multinomial nor Poisson distribution but a deterministic
condition of the form P(0, x) = δξ (x). However, for some special parameter
values the multinomial and Poisson distribution are indeed of this form, namely

P(x, λ) = δ0(x) ⇐⇒ λ = 0
M(x, N, p) = δ0(x) ⇐⇒ p = 0
M(x, N, p) = δNεj(x) ⇐⇒ p = εj

where the symbol 0 denotes the zero vector 0 = (0, . . . , 0)T ∈ R
n. The first two

lines correspond to the situation where no molecules exist at all, i.e. P(X =
0) = 1. The third line is the situation where all N molecules belong to the same
species Sj. Based on this observation we now derive an explicit formula for the
solution P(t, x) that holds if the initial condition is deterministic.

Theorem 1 Consider the monomolecular reaction system (1) with initial distri-
bution P(0, ·) = δξ (·) for some ξ ∈ N

n. Then, the probability distribution at time
t > 0 is

P(t, ·) = P(·, λ(t)
)
� M(·, ξ1, p(1)(t)

)
� · · · � M(·, ξn, p(n)(t)

)
. (17)

The vectors p(k)(t) ∈ [0, 1]n and λ(t) ∈ R
n are the solutions of the reaction-rate

equations

ṗ(k)(t) = A(t)p(k)(t), λ̇(t) = A(t)λ(t) + b(t),
p(k)(0) = εk, λ(0) = 0,

(18)

with A(t) and b(t) defined in (5) and (4), respectively.
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Remark If the deterministic initial condition P(0, ·) = δξ (·) is replaced by
P(0, ·) = µ(·) for some arbitrary probability distribution µ, the solution can
be obtained by superposition, as already mentioned in Sect. 2.2.

Proof Since only monomolecular reactions are considered, the evolution of
each molecule does not depend on the evolution of the other molecules; cf. [8].
Therefore, we can split the set of all molecules into n + 1 disjoint subsets: A
molecule belongs to the k-th subset if and only if it was a molecule of the species
Sk (1 ≤ k ≤ n) at time t = 0. The zeroth subset contains all molecules that do
not exist yet at t = 0 but are generated at some later time via one of the inflow
reactions of type R0k. As time evolves, any molecule can be transformed by one
of the reactions to a molecule of some other species, but it will forever belong
to the same subset determined by its initial state.

The molecule numbers within each subset of molecules is described by a
vector valued-random variable denoted by X(k)(t) for all k = 0, 1, . . . , n. By
definition, the random variable X(t) of the entire system is the sum

X(t) = X(0)(t) + X(1)(t) + · · · + X(n)(t).

The random variables X(k)(t) are independent: each subset of molecules evolves
independently because only monomolecular reactions are considered. Thus, the
joint probability distribution is given by the convolution

P(t, ·) = P(0)(t, ·) � P(1)(t, ·) � · · · � P(n)(t, ·) (19)

(see, e.g., [14]) where

P(k)(t, x) = P

(
X(k)

1 (t) = x1, . . . , X(k)
n (t) = xn

)

is the probability distribution of X(k)(t). These probability distributions, how-
ever, are immediately obtained from the previous propositions.

For k > 0 the evolution of the kth subset is a closed system, because by
definition any molecules generated by the inflow reactions R0j does not belong
to the kth subset. At the beginning, the subset contains exactly ξk molecules of
Sk and no molecules of any other species. Hence, the initial distribution for the
kth subset (1 ≤ k ≤ n) is

P(k)(0, x) = δξkεk(x) = M(x, ξk, εk),

and according to Proposition 1 we have

P(k)(t, x) = M
(

x, ξk, p(k)(t)
)

(20)

where p(k) is the solution of the left differential equation in (18).
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The zeroth subset is the only open system, because here all molecules gener-
ated by any of the inflow reactions are collected. The initial distribution of this
subset is

P(0)(0, x) = P(x, 0) = δ0(x),

since the subset is empty at the beginning. Hence, Proposition 2 states that the
probability distribution is

P(0)(t, x) = P(
x, λ(t)

)
(21)

with λ being the solution of the right differential equation in (18). The proof
is now completed by inserting (21) and (20) into (19). Note that for t = 0 the
formula yields the correct initial distribution because

P(0, ·) = δ0(·) � δξ1ε1(·) � · · · � δξnεn(·) = δξ (·).

�	

Remark Of course, Theorem 1 can also be shown by inserting (17) into the
CME (8), but this requires long and tedious calculations. For a direct proof, it
is more favourable (yet still quite lengthy) to use generating functions.

Our main result represents the exact solution of the CME (8) in terms of
well-known probability distributions with parameters evolving according to
reaction-rate equations. This very structured representation allows to deduce
many properties of the solution, as exemplified in the next section.

4 Properties of the solution distribution

4.1 Marginal distributions

When the exact solution of the CME (8) is to be visualized, one is restricted to
low-dimensional projections. Therefore, we derive mariginal distribution for-
mulas for the solution distribution in this subsection.

For a vector-valued random variable X = (X1, . . . , Xn)T ∈ N
n and any num-

ber j ∈ 1, . . . , n − 1 we define two lower-dimensional random variables

Y = (
X1, . . . , Xj

)T ∈ N
j, Z = (

Xj+1, . . . , Xn
)T ∈ N

n−j

such that X = (Y, Z)T. Any other partition of X can be obtained by an appro-
priate permutation of the indices. Moreover, let

P(y, z) = P(Y = y, Z = z), FY(y) = P(Y = y), FZ(z) = P(Z = z)
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be the corresponding probability distributions. Then FY and FZ are called mar-
ginal distributions of P and are given by

∑

z∈Nn−j

P(y, z) = FY(y),
∑

y∈Nj

P(y, z) = FZ(z),

cf. [14]. We show that the marginal distribution of the solution of (8) has the
same form as the distribution (17) itself, but in a lower dimension.

Proposition 3 Let P(t, x) be the solution (17) of the CME (8). Moreover, fix
j ∈ 1, . . . , n − 1 and define x = (y, z) with y = (

x1, . . . , xj
)

and z = (
xj+1, . . . , xn

)
.

Then, the marginal distribution

FY(t, y) =
∑

z∈Nn−j

P
(
t, (y, z)

) =
∑

xj+1

∑

xj+2

· · ·
∑

xn

P(t, x)

of P(t, x) is given by

FY(t, y) =
(

P
(
·, λ̃(t)

)
� M

(
·, ξ1, p̃(1)(t)

)

� · · · � M
(
·, ξn, p̃(n)(t)

))
(y) (22)

where p̃(k) = (p(k)

1 , . . . , p(k)
j )T and λ̃ = (λ1, . . . , λj)

T only contain the first j entries

of the parameter vectors p(k)(t) ∈ [0, 1]n and λ(t) ∈ R
n defined by the differential

equations (18).

Remark Note that (22) does not depend explicitly on neither p(k)

j+1, . . . , p(k)
n nor

λj+1, . . . , λn, but these values still have to be computed because they are coupled
with the other entries via the differential equations (18).

Proof The marginal distributions of the multinomial and the Poisson distribu-
tion are

∑

z∈Nn−j

M(
(y, z), N, p

) = M(y, N, p̃),

∑

z∈Nn−j

P(
(y, z), λ

) = P
(

y, λ̃
)

with p̃ = (p1, . . . , pj)
T and λ̃ = (λ1, . . . , λj)

T (cf. [17]). Now, the statement fol-
lows from the fact that computing the convolution and passing to the marginal
distribution commutes. �	
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4.2 Expectation and variance

The expectation E(X) and covariance Cov(Xj, Xk) = E(Xj − EXj)(Xk − EXk)

of the probability distribution P(t, x) can easily be calculated. It is known that
an n-dimensional random variable Y with multinomial distribution M(x, N, p)

has

E(Y) = Np, Cov(Yj, Yk) =
{ −Npjpk if j �= k

Npk(1 − pk) if j = k

(see [17]). If Y is distributed according to the product Poisson distribution
P(x, λ), then

E(Y) = λ, Cov(Yj, Yk) = 0 if j �= k, Cov(Yk, Yk) = λk.

The sum of two independent random variables Y1 and Y2 has expectation
E(Y1+Y2) = E(Y1)+E(Y2) and covariance Cov(Y1, Y2) = 0 (cf. [14]). Together
with the (bi-)linearity of Cov and E, this yields

E
(
X(t)

) = λ(t) +
n∑

k=1

ξkp(k)(t)

Cov(Xj, Xk) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

ξip
(i)
j (1 − p(i)

j ) + λj if j = k

−
n∑

i=1

ξip
(i)
j p(i)

k otherwise

with p(k) and λ(t) from (18). It is well known that the expectation E(X) of the
monomolecular reaction system (1) evolves according to the deterministic rate
equation (3) used in traditional reaction kinetics. This can also easily be seen
from the above expression: At t = 0 we have

E
(
X(0)

) = λ(0) +
n∑

k=1

ξkp(k)(0) =
n∑

k=1

ξkεk = ξ , (23)

and taking the derivative of E
(
X(t)

)
yields via (18)

d
dt

E
(
X(t)

) = λ̇(t) +
n∑

k=1

ξkṗ(k)(t) = A(t)λ(t) + b(t) +
n∑

k=1

ξkAp(k)(t)

= A(t)E
(
X(t)

) + b(t). (24)

This equation and a differential equation for the variance have been derived in
[8].
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4.3 Steady states and convergence

In this section we study the limit behaviour of the CME, in particular the con-
vergence of its solution to a equilibrium distribution. For the remainder of
this section we impose two additional and natural assumptions on the reaction
system:

(A1) All reaction rates cjk are constant.
(A2) The matrix A is irreducible, i.e., there is no permutation of indices such

that A takes the form

A =
(

A11 0
A21 A22

)
.

Concerning (A1), a steady state might not exist if the rates are time-dependent,
while (A2) guarantees that the system cannot be decomposed into two or more
completely separated parts (see, e.g., [2]).

Under these conditions it is well–known that the equilibrium distribution
of a finite closed system is multinomial, while it is product Poisson for open
systems, cf. [8]. We show that these results can easily derived from Theorem 1.
To do so, we quote some useful results about compartmental matrices.

Proposition 4 (Theorems 12.1, 12.3, 13.1, and 13.2 in [2])

– The real part of any eigenvalue σk of A is nonpositive and there are no purely
imaginary eigenvalues:

Re(σk) ≤ 0 and Re(σk) = 0 ⇐⇒ σk = 0.

– Let σ1 be the eigenvalue with the smallest absolute value, i.e. |σ1| ≤ |σk| for
all k. Then σ1 = Re(σ1) is real and nonpositive, and there is a corresponding
eigenvector containing only nonnegative entries. Moreover, Re(σk) < σ1 ≤ 0
for all k > 1.

– If ck0 �= 0 for one or more k, then σ1 < 0 and A is invertible. All entries of
A−1 are nonpositive.

The proof is based on the Gerschgorin Circle Theorem and on the Perron-
Frobenius Theorem, see [2, p. 55ff].

4.3.1 Closed systems

Suppose that there are no inflow reactions R0k, i.e., c0k = 0 for all k. If any
of the degradation rates ck0 is nonzero, all molecules will disappear sooner or
later and the system will tend to the trivial steady state limt→∞ P(t, x) = δ0(x).
Therefore, we only consider the more interesting case that ck0 = c0k = 0 for all
k.
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Proposition 5 Let ck0 = c0k = 0 for all k. Under the assumptions (A1) and (A2)
the solution of the CME (8) with initial data P(0, ·) = δξ (·) for ξ ∈ N

n converges
to a multinomial distribution:

lim
t→∞ P(t, x) = M(

x, |ξ |, p̄
)
.

The vector p̄ ∈ [0, 1]n is uniquely determined by the relations Ap̄ = 0 and |p̄| = 1.

A similar result can be found in [8].

Proof It follows from (6) that
∑n

j=1 ajk = 0 for each k. Hence, σ1 = 0 is an
eigenvalue with left eigenvector (1, . . . , 1). For b = 0 and constant A the solu-
tions of (18) are simply

p(k)(t) = exp(tA)εk = T exp(tJ)T−1εk, λ(t) ≡ 0

where A = TJT−1 is the decomposition provided by the Jordan normal form
(see, e.g., [18]). Thanks to the block structure of J we can treat the matrix
exponential of each Jordan block separately. Since the eigenvalue σ1 is simple
according to Proposition 4, the first Jordan block consists of only one entry,
namely σ1 = 0, and hence

exp(tJ1) = exp(σ1t) = 1.

For any other Jordan block it can be shown that

lim
t→∞ exp(tJk) = 0

(where “0” denotes the corresponding zero matrix) because Re(σk) < 0 for all
k > 1 by Proposition 4. Hence, limt→∞ exp(tA) = TLT−1 with

L = lim
t→∞ exp(tJ) =

⎛

⎜⎜⎜⎜⎝

1 0 · · · 0

0 0
...

...
. . . 0

0 · · · 0 0

⎞

⎟⎟⎟⎟⎠
.

As a consequence, the parameter vectors p(k)(t) tend to well-defined limits and
the system converges to a unique steady state. The fact that exp(tA) converges
implies that its derivative vanishes and thus

0 = lim
t→∞

d
dt

exp(tA) = lim
t→∞ exp(tA)A = TLT−1A.

If v(k) is the k-th row of TLT−1, then v(k)A = (0, . . . , 0) which means that either
v(k) = (0, . . . , 0) or v(k) is a left eigenvector of A to the eigenvalue σ1 = 0. Since



Solving the chemical master equation

this eigenvalue is simple, the corresponding left eigenspace is one-dimensional
and only consists of vectors of the form r · (1, . . . , 1) with some r ∈ R. This yields
that

TLT−1 =

⎛

⎜⎜⎜⎝

r1 r1 · · · r1
r2 r2 · · · r2
...

...
...

rn rn · · · rn

⎞

⎟⎟⎟⎠

has n identical columns and all parameter vectors p(k)(t) converge to the same
limit:

lim
t→∞ p(k)(t) = lim

t→∞ exp(tA)εk = TLT−1εk =
⎛

⎜⎝
r1
...

rn

⎞

⎟⎠ =: p̄

The limit p̄ lies in the kernel of A because Ap̄ = TJLT−1εk = 0. Moreover,
it follows from (6) and ck0 = 0 that |p̄| = 1. We insert p̄ into the solution
distribution given in Theorem 1 and use that

M(·, ξ1, p̄
)

� M(·, ξ2, p̄
) = M(·, ξ1 + ξ2, p̄

)

(cf. [17]). This shows that the only steady state distribution is a multinomial
distribution with parameters p̄ and |ξ |. �	

Combining the above result with the representation (11), we obtain for every
initial distribution µ and every x ∈ N

n

lim
t→∞ P(t, x) =

∑

ξ∈Nn

µ(ξ) M(
x, |ξ |, p̄

) =
∞∑

N=0

µN M(
x, N, p̄

)
, (25)

where p̄ ∈ [0, 1]n is uniquely determined by the relations Ap̄ = 0 and |p̄| = 1,
and µN is defined by

µN =
∑

|ξ |=N

µ(ξ)

for N ∈ N. Equation (25) allows three interesting observations: (i) The steady
state is not unique and does depend on the initial distribution µ, unless c0k > 0
for some k. (ii) Fix some N ∈ N. Then the limit distribution is unique and
multinomial for the sub-class of initial distributions µ satisfying µN = 1. (iii)
Closed systems may evolve to Poissonian steady states (cf. Remark 1 following
Proposition 2). As an example, consider the initial distribution µ = P(·, λ)

for
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some λ ∈ [0, ∞)n. Then, µ can be interpreted as the joint probability distribution
of n independent Poisson random variables X1, . . . , Xn. As a consequence

µN = P

(
X1 + · · · + Xn = N

)

and

P

(
X1 = x1, . . . , Xn = xn | X1 + · · · + Xn = N

)
= M(

x, N, p
)

for x ∈ N
n, see Remark 2 on p. 12. Now, by Bayes formula, we obtain

lim
t→∞ P(t, x) =

∞∑

N=0

µN M(
x, N, p̄

) = P(
x, λ̄

)

with λ̄ = |λ| · p̄i for i = 1, . . . , n.

4.3.2 Open systems

Proposition 6 Let ck0 �= 0 for one or more k and assume that (A1) and (A2)
hold. Then, the solution of the CME (8) with initial data (10) converges to a
Poisson distribution

lim
t→∞ P(t, x) = P(

x, λ̄
)

where λ̄ is the solution of Aλ̄ = −b and contains only nonnegative numbers.

Remark This agrees with a result proven in [8] which states that the station-
ary distribution of any species in an open first-order conversion network is a
Poisson distribution.

Proof By Proposition 4 the matrix A is invertible and all eigenvalues have
negative real part. The solutions of the differential equations (18) are

p(k)(t) = exp(tA)εk, λ(t) = (
exp(tA) − I

)
A−1b

and since limt→∞ exp(tA) = 0 (use the Jordan normal form as above) we obtain

lim
t→∞ p(k)(t) = 0, lim

t→∞ λ(t) = −A−1b =: λ̄.

All entries of λ̄ are nonnegative because of Proposition 4. Inserting the limits
into the solution distribution yields limt→0 P(t, x) = P(

x, λ̄
)
. �	
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Combining the above result with the representation (11), we obtain for any
given initial distribution P(0, ·) = µ(·) and every x ∈ N

n,

lim
t→∞ P(t, x) = lim

t→∞
∑

ξ∈Nn

µ(ξ)Pξ (t, x) =
∑

ξ∈Nn

µ(ξ) P(
x, λ̄

) = P(
x, λ̄

)
,

where λ̄ is the solution of Aλ̄ = −b and contains only nonnegative num-
bers. Hence, for open systems the convergence and limit behavior is drastically
different from that of closed systems. While in the latter case, the stationary
distribution depends on the initial distribution, it is unique for open systems.

5 Some simple examples

In this subsection we illustrate our result by means of two well-known examples.

5.1 First example

Consider one single substance S1 and the two reaction channels

Reaction R01 : �
c01−→ S1 production from source or inflow

Reaction R10 : S1
c10−→ � degradation or outflow

with constant reaction rates c01 > 0 and c10 > 0. Suppose that at t = 0 there
are ξ molecules (ξ ∈ N) and let P(t, x) be the probability that at time t there are
x ∈ N molecules of S1. According to Theorem 1 this probability is given by

P(t, x) =
min{ξ ,x}∑

k=0

(
ξ

k

)
pk(t)(1 − p(t))ξ−k · λx−k(t)

(x − k)!e−λ(t)

where p(t) = e−c10t and λ(t) = c01(1 − e−tc10)/c10 are the solutions of the
differential equations

ṗ(t) = −c10p(t), λ̇(t) = −c10λ(t) + c01,
p(0) = 1, λ(0) = 0.

This result is stated in the books of Todorovic [21, Sect. 8.4] and Gardiner [9,
Sect. 7.1]. Since limt→∞ p(t) = 0 and limt→∞ λ(t) = c01/c10, the limit distribu-
tion

lim
t→∞ P(t, x) = λ̄x

x! e−λ̄

is the Poisson distribution with parameter λ̄ = c01/c10.
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5.2 Second example

Now we consider the isomerization process with two species S1 and S2 and the
two conversions

Reaction R12 : S1
c12−→ S2

Reaction R21 : S2
c21−→ S1

with constant reaction rates c12 > 0 and c21 > 0. Suppose that at t = 0 there are
ξ1 molecules of S1 and ξ2 molecules of S2. Let P(t, x) be the probability that at
time t ≥ 0 there are x1 molecules of S1 and x2 molecules of S2. Then, according
to Theorem 1,

P(t, ·) = M(·, ξ1, p(1)(t)
)

� M(·, ξ2, p(2)(t)
)

with parameter vectors p(1)(t) and p(2)(t) given by

p(1)(t) = exp(tA)ε1, p(2)(t) = exp(tA)ε2, A =
(−c12 c21

c12 −c21

)
.

The above formulas can be simplified if the diagonalisation A = TDT−1 with

T =
(

1 c21
−1 c12

)
, D=

(−d 0
0 0

)
, T−1 = 1

d

(
c12 −c21
1 1

)
, d=c12 + c21

is used to compute the matrix exponential exp(tA) = T exp(tD)T−1. This yields

p(1)(t) = 1
d

(
e−tdc12 + c21
(1 − e−td)c12

)
, p(2)(t) = 1

d

(
(1 − e−td)c21
e−tdc21 + c12

)
.

Since |p(1)(t)| = |p(2)(t)| = 1 we find that

(
1 − |p(k)|

)ξk−|x| = 0ξk−|x| = δξk(|x|).

As a consequence,

M(
x, ξk, p(k)

) = ξk!
x1!x2!(1 − |x|)!

(
p(k)

1

)x1
(

p(k)
2

)x2
(

1 − |p(k)|
)ξk−|x|

= δξk(|x|) ξk!
x1!(1 − x1)!

(
p(k)

1

)x1
(

1 − p(k)

1

)ξk−x1

= δξk(|x|)B
(

x1, ξk, p(k)

1

)

for k = 1 or k = 2, where B(·, ξk, p(k)

1 ) denotes the binomial distribution.
This means that the total number of particles is constant, which is reasonable
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for the above system. The two-dimensional convolution of two multinomial
distribution now reduces to a one-dimensional convolution of two binomial
distributions:

P(t, x) =
∑

z

δξk(|z|)B
(

z1, ξ1, p(1)

1

)
δξ2(|x − z|)B

(
x1 − z1, ξ2, p(2)

1

)

= δ|ξ |(|x|)
∑

z1

B
(

z1, ξ1, p(1)

1

)
B

(
x1 − z1, ξ2, p(2)

1

)
.

Since both p(1)

1 (t) and p(2)

1 (t) converge to the same value p̄ = c21/(c21 + c12) the
stationary distribution is

lim
t→∞ P(t, ·) = δ|ξ |(|x|)

(
B (·, ξ1, p̄) � B (·, ξ2, p̄)

)
= δ|ξ |(x)B (·, |ξ |, p̄)

because the convolution of two binomials with the same parameter is again a
binomial (cf. [14]). In [13] the same stationary distribution was obtained in a
different way.

6 Further development

In this article we derive an explicit formula for the exact solution of the CME
under the assumption that only monomolecular reactions occur in the underly-
ing reaction system. For the generic case of deterministic initial conditions, the
solution turns out to be the convolution of multinomial and product Poisson
distributions with time-dependent parameters evolving according to the tra-
ditional reaction-rate equations. To our knowlegde this is the first report of a
general solution for arbitrary initial conditions. All previously derived results on
monomolecular reaction systems can be restated in terms of our representation
highlighting the structure of the system, as has been shown in Sect. 5. Exploiting
the structure of the solution, many interesting features of the time-dependent
distribution have been expressed in terms of the time-depending parameters
specifying the multinomial and the product Poisson distribution.

Our results presented so far are applicable to reaction systems including con-
version, production and degradation reactions, as specified in (1). The question
arises whether Theorem 1 can be extended to a larger class of systems including,
e.g.,

Sj
c−→ Sk + Sl splitting reaction (j �= k, l)

Sj
c−→ Sj + Sk catalytic production (j �= k)

Sj
c−→ Sj + Sj autocatalytic production.

As a first step in this direction, we discuss the case of one single species evolving
according to an autocatalytic reaction with nonnegative rate c(t). Theorem 1
cannot be applied to this situation because (26) is not a monomolecular reaction
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in the sense of Sect. 2. Nevertheless, we can state an explicit formula for the
probability distribution that solves the corresponding CME.

Proposition 7 Suppose that at t = 0 there are ξ ∈ N \ {0} molecules of a species
S taking part in the autocatalytic reaction

S
c−→ S + S (26)

with rate c(t) ≥ 0. If P(t, m) denotes the probability to find m ∈ N molecules of S
at time t, then

P(t, m) =
⎧
⎨

⎩

(
m − 1
m − ξ

)
pξ (t)

(
1 − p(t)

)m−ξ for m ≥ ξ

0 for m < ξ

(27)

with parameter p(t) obtained by solving the differential equation ṗ(t) = −c(t)p(t)
with p(0) = 1.

Proof It has to be shown that (27) solves the CME

∂

∂t
P(t, m) = c(t)(m − 1)P(t, m − 1) − c(t)mP(t, m) (28)

with initial data P(0, m) = δξ (m). Taking the derivative of (27) and omitting the
argument “(t)” gives

∂

∂t
P(t, m) =

(
m − 1
m − ξ

) (
ξpξ−1(1 − p

)m−ξ − pξ (m − ξ)
(
1 − p

)m−ξ−1
)

ṗ(t)

=
(

ξ

p
− m − ξ

1 − p

)
ṗP(t, m)

=
(

−cξ + cp
m − ξ

1 − p

)
P(t, m)

= −cmP(t, m) + c
m − ξ

1 − p
P(t, m)

= −cmP(t, m) + c(m − 1)P(t, m − 1)

for all m ≥ ξ , where we have used that 1 − p(t) > 0 and p(t) > 0 for t > 0. At
t = 0 we obtain

(
m − 1
m − ξ

)
pξ (0)

(
1 − p(0)

)m−ξ =
(

m − 1
m − ξ

)
1ξ δξ (m) = δξ (m) = P(0, m).

This proves that (27) is indeed the solution of (28). �	



Solving the chemical master equation

Remark The distribution (27) is a shifted variant of the negative binomial dis-
tribution B̃ defined by

B̃(m, r, q) =
(

r + m − 1
m

)
pr(1 − p)m

for all p ∈ [0, 1] and r > 0, see [14]. It is easy to see that P(t, m) = B̃(m− ξ , ξ , p).
Since it is known that

E

(
B̃(·, r, q)

)
=

∞∑

m=0

mB̃(m, r, q) = qr
1 − q

,

the expectation of P(t, ·) is

E
(
P(t, ·)) =

∞∑

m=0

(m − ξ + ξ)B̃(
m − ξ , ξ , 1 − p(t)

)

= E

(
B̃(·, ξ , 1 − p(t)

)) + ξ

= (1 − p(t))ξ
p(t)

+ ξ = ξ

p(t)
= ξect

which is again the solution of the traditional rate equation ẏ(t) = cy(t) with
initial value y(0) = ξ .

Proposition 7 provides an analytic solution for isolated autocatalytic reac-
tions, but unfortunately we have not yet found a way to treat systems where
autocatalytic reactions occur together with production, conversion or degrada-
tion reactions. For example, the joint probability distribution of the system

∗ c1−→ S

S
c2−→ ∗

S
c3−→ S + S

is beyond the scope of our results. We only know that somehow this distribu-
tion must “interpolate” between the Poisson, binomial and negative binomial
distributions, because each of these is obtained in a special case. We believe,
however, that Proposition 7 and Theorem 1 can be combined and extended in
such a way that analytic solutions of the CME are obtained even when both
monomolecular and autocatalytic reactions are possible.
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