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Abstract

Background: The chemical master equation (CME) is a system of ordinary differential equations that describes the 

evolution of a network of chemical reactions as a stochastic process. Its solution yields the probability density vector of 

the system at each point in time. Solving the CME numerically is in many cases computationally expensive or even 

infeasible as the number of reachable states can be very large or infinite. We introduce the sliding window method, 

which computes an approximate solution of the CME by performing a sequence of local analysis steps. In each step, 

only a manageable subset of states is considered, representing a "window" into the state space. In subsequent steps, 

the window follows the direction in which the probability mass moves, until the time period of interest has elapsed. We 

construct the window based on a deterministic approximation of the future behavior of the system by estimating 

upper and lower bounds on the populations of the chemical species.

Results: In order to show the effectiveness of our approach, we apply it to several examples previously described in the 

literature. The experimental results show that the proposed method speeds up the analysis considerably, compared to 

a global analysis, while still providing high accuracy.

Conclusions: The sliding window method is a novel approach to address the performance problems of numerical 

algorithms for the solution of the chemical master equation. The method efficiently approximates the probability 

distributions at the time points of interest for a variety of chemically reacting systems, including systems for which no 

upper bound on the population sizes of the chemical species is known a priori.

Background
Experimental studies have reported the presence of sto-

chastic mechanisms in cellular processes [1-9] and there-

fore, during the last decade, stochasticity has received

much attention in systems biology [10-15]. The investiga-

tion of stochastic properties requires that computational

models take into consideration the inherent randomness

of chemical reactions. Stochastic kinetic approaches may

give rise to dynamics that differ significantly from those

predicted by deterministic models, because a system

might follow very different scenarios with non-zero likeli-

hoods.

Under the assumption that the system is spatially

homogeneous and has fixed volume and temperature, at a

each point in time the state of a network of biochemical

reactions is given by the population vector of the involved

chemical species. The temporal evolution of the system

can be described by a Markov process [16], which is usu-

ally represented as a system of ordinary differential equa-

tions (ODEs), called the chemical master equation

(CME).

The CME can be analyzed by applying numerical solu-

tion algorithms or, indirectly, by generating trajectories of

the underlying Markov process, which is the basis of

Gillespie's stochastic simulation algorithm [17,18]. In the

former case, the methods are usually based on a matrix

description of the Markov process and thus primarily

limited by the size of the system. A survey and compari-

sons of the most established methods for the numerical

analysis of discrete-state Markov processes are given by

Stewart [19]. These methods compute the probability

density vector of the Markov process at a number of time

points up to an a priori specified accuracy. If numerical

solution algorithms can be applied, almost always they

require considerably less computation time than stochas-

tic simulation, which only gives estimations of the mea-

sures of interest. This is particularly the case if not only
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means and variances of the state variables are estimated

with stochastic simulation, but also the probability of cer-

tain events. However, for many realistic systems, the

number of reachable states is huge or even infinite and, in

this case, numerical solution algorithms may not be

applicable. This depends mainly on the number of chemi-

cal species. In low dimensions (say <10) a direct solution

of the CME is possible whereas in high dimensions sto-

chastic simulation is the only choice. In the case of sto-

chastic simulation estimates of the measures of interest

can be derived once the number of trajectories is large

enough to achieve the desired statistical accuracy. How-

ever, the main drawback of simulative solution tech-

niques is that a large number of trajectories is necessary

to obtain reliable results. For instance, in order to halve

the confidence interval of an estimate, four times more

trajectories have to be generated. Consequently, often

stochastic simulation is only feasible with a very low level

of confidence in the accuracy of the results.

In this paper, we mitigate the performance problems of

numerical solution algorithms for the CME. Instead of a

global analysis of the state space, we propose the sliding

window method, which comprises a sequence of analyzes

local to the significant parts of the state space. In each

step of the sequence, we dynamically choose a time inter-

val and calculate an approximate numerical solution for a

manageable subset of the reachable states. In order to

identify those states that are relevant during a certain

time period, for each chemical species, we estimate an

upper and lower bound on the population size. This

yields the boundaries of a "window" in which most of the

probability mass remains during the time interval of

interest. As illustrated in Figure 1, the window "slides"

through the state space when the system is analyzed in a

stepwise fashion. In each step, the initial conditions are

given by a vector of probabilities (whose support is illus-

trated in light gray), and a matrix is constructed to

describe the part of the Markov process where the win-

dow (illustrated by the dashed rectangular) is currently

located. Then the corresponding ODE is solved using a

standard numerical algorithm, and the next vector (illus-

trated in dark gray) is obtained.

We focus on two specific numerical solution methods,

the uniformization method and the Krylov subspace

method. We compare their efficiency when they are used

to solve the ODEs that arise during the sliding window

iteration. We also compare the sliding window method to

the numerical algorithms applied in a global fashion, that

is, to all reachable states (not only to the states of the win-

dow), for systems of tractable size. We are interested in

the probability distribution of the Markov process and

not only in means and variances. These probabilities are

difficult to estimate accurately with stochastic simulation.

Therefore, we compare the solution obtained by the slid-

ing window method only to numerical solution algo-

rithms but not to stochastic simulation.

Recently, finite state projection algorithms (FSP algo-

rithms) for the solution of the CME have been proposed

[20,21]. They differ from our approach in that they are

based solely on the structure of the underlying graph,

whereas the sliding window method is based on the sto-

chastic properties of the Markov process. The FSP algo-

rithms start with an initial projection, which is expanded

in size if necessary. The direction and the size of the

expansion is chosen based on a qualitative analysis of the

system in a breadth-first search manner. It is not clear

how far the state space has to be explored in order to cap-

ture most of the probability mass during the next time

step. Thus, if the projection size is too small, the compu-

tation has to be repeated with an expanded projection.

Moreover, for most models, the location of the main por-

tion of the probability mass follows a certain direction in

the state space, whereas the expansion is done in all

directions. Therefore, unnecessary calculations are car-

ried out, because the projection contains states that are

visited with a small probability. By contrast, in the sliding

window approach, we determine the location and direc-

tion of the probability mass for the next computation step

based on the reaction propensities and the length of the

time step. The projection that we obtain is significantly

smaller than the projection used in the FSP whereas the

Figure 1 The sliding window method. In each iteration step, the window Wi captures the set Si of states in which the significant part of the proba-

bility mass is initially located (light gray), the set Si+1 of states that are reached after a time step (dark gray), as well as the states that are visited in be-

tween.
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accuracy of our approach is similar to the accuracy of the

FSP. In this way we achieve large memory and computa-

tional savings, since the time complexity of our window

construction is small compared to the calculation of the

probability distribution of the window. In our simulations

we never had to repeat the computation of the probabili-

ties using a window of larger size.

The Fokker-Planck equation is an approximation of the

CME, for which a solution can be obtained efficiently

[22,23]. This approximation, however, does not take into

account the discrete nature of the system, but changes the

underlying model by assuming a continuous state space.

Other approaches to approximate the probability distri-

butions defined by the CME are based on sparse grid

methods [24], spectral methods [25], or the separation of

time scales [26,27]. The latter approach uses a quasi-

steady state assumption for a subset of chemical species

and calculates the solution of an abstract model of the

system. In contrast, we present an algorithm that com-

putes a direct solution of the CME. Our method is also

related to tau-leaping techniques [18,28], because they

require estimates of the upper and lower bounds on the

population sizes of the chemical species, just as our

method. The time leap must be sufficiently small such

that the changes in the population vector do not signifi-

cantly affect the dynamics of the system. Our method dif-

fers from the calculation of the leap in predicting the

future dynamics for a dynamically chosen time period.

More precisely, we determine the length of the next time

step while approximating the future behavior of the pro-

cess.

Here, we present the sliding window method in more

detail and provide an additional comparison between

uniformization and Krylov subspace methods for the

solution of the window. Moreover, we have improved our

implementation of the algorithm and evaluated it on

more examples, such as the bistable toggle switch, which

is reported in detail.

The remainder of this paper is organized as follows. We

first describe the theoretical framework of our modeling

approach in the Background Section. In the Results Sec-

tion we present the sliding window method, and numeri-

cal solution approaches for the CME. Experimental

results are given at the end of Section Results.

Stochastic model

We model a network of biochemical reactions as a

Markov process that is derived from the stochastic chem-

ical reaction kinetics [16,29]. A physical justification of

Markovian models for coupled chemical reactions has

been provided by Gillespie [17]. We consider a fixed reac-

tion volume with n different chemical species that is spa-

tially homogeneous and in thermal equilibrium. A state

of the system is given by a vector x  , where the i-th

entry, denoted by xi describes the number of molecules of

type i. We assume that molecules collide randomly and

chemical reactions occur at random times. By R1, ..., Rk,

we denote the different types of chemical reactions and

with each type Rm, m  {1, ..., k}, we associate a propensity

function αm :  T �≥0. The propensity function is of the

form

where cm > 0 is a constant and li is the number of mole-

cules of type i that are consumed by a reaction of type Rm.

The propensity αm(x) determines the "speed" of the reac-

tion Rm in x, as explained below. Note that 

equals the number of all distinct combinations of reac-

tants. Besides the propensity function, we associate a

change vector v(m)  ?n with Rm that describes the effect of

reaction type Rm. If x is the current state and αm(x) > 0

then x + v(m) is the state of the system after a reaction of

type Rm. Note that αm(x) > 0 implies that x + v(m) contains

no negative entries.

We denote the initial state of the system by y   and

define S   as the set of all states reachable from y via

an arbitrary number of reactions, that is, S is the smallest

subset of  such that y  S and x'  S iff there exists m 

{1, ..., k} and x  S with αm(x) > 0 and x + v(m) = x'. Note

that S is countable but possibly infinite.

Example 1 We describe an enzyme-catalyzed substrate

conversion by the three reactions R1 : E + S T ES, R2 : ES T

E + S, R3 : ES T E + P. This network involves four chemical

species, namely, enzyme (E), substrate (S), complex (ES),

and product (P) molecules. The change vectors are v(1) = (-

1, -1, 1, 0), v(2) = (1, 1, -1, 0), and v(3) = (1, 0, -1, 1). For (x1,

x2, x3, x4)  , the propensity functions are
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As above, the set of states reachable from the initial state

y = (y1, y2, y3, y4) is finite because of the conservation laws

y1 = x1 + x3 and y2 = x2 + x3 + x4, where we assume that y3 =

y4 = 0.

Example 2 We consider a gene expression model [12],

which involves two chemical species, namely, mRNA (M)

and protein (P). Transcription of a gene into mRNA is

modeled by reaction R1 : ? T M, translation of mRNA into

protein by R2 : M T M + P, degradation of mRNA by R3 : M

T ?, and degradation of proteins by R4 : P T ?. A state is a

pair (xM, xP)  . If we assume that initially there are no

mRNA molecules and no proteins in the system, i.e., y = (0,

0), then S = and thus infinite. The propensity functions

are

Chemical master equation

We define a time-homogeneous, regular Markov process

[30] (CTMC) (X(t), t  �≥0) with state space S  . We

assume that the state changes of X are triggered by the

chemical reactions. Let y be the initial state of X, which

means that Pr(X(0) = y) = 1. We assume that the probabil-

ity of a reaction Rm occurring in the next infinitesimal

time interval [t, t + τ), τ > 0 is given by

For x  S we define the probability that X is in state x at

time t by p(t)(x) = Pr(X(t) = x | X(0) = y). The chemical

master equation (CME) describes the behavior of X by

the differential equation [29]

In the sequel, a matrix description of Eq. (2) is more

advantageous. It is obtained by defining the infinitesimal

generator matrix Q = (Q(x, x'))x, x' S of the CTMC X by

where we assume a fixed enumeration of the state

space. Note that the row sums of the (possibly infinite)

matrix Q are zero and λx = -Q(x, x), the exit rate of state x,

is the reciprocal value of the average residence time in x.

Let T(0) be equal to the identity matrix I, and, for τ > 0,

let T(τ) be the transition probability matrix for step τ with

entries T(τ)(x, z) = Pr(X(t + τ) = z | X(t) = x). The elements

of T(τ) are differentiable and Q is the derivative of T(τ) at τ
= 0. If Q is given and X is known to be regular, T(τ) is

uniquely determined by the Kolmogorov backward and

forward equations

with the general solution T(τ) = eQτ. Let p(t) be the row

vector with entries p(t)(x) for x  S. Then the vector form

of the CME is

If supx S λx < ∞, Eq. (4) has the general solution

where the matrix exponential is given by eQt =

.

In the sequel, we will exploit the fact that the set {T(τ)|τ

≥ 0} is a transition semi-group and satisfies the Chapman-

Kolmogorov equations [30]  for all

τ1, τ2 ≥ 0. Let t0, ..., tr  �≥0 be such that t0 < � <tr. Then,
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This means that, for t0 = 0 and tr = t, we obtain p(t) by

the iterative scheme in Eq. (3) for t1 - t0, t2 - t1, ..., tr - tr-1.

If the state space if infinite we can only compute

approximations of p(t). But even if Q is finite, several fac-

tors can hamper the efficient solution of the matrix expo-

nential in Eq. (5). First of all, the size of the matrix Q

might be large because it grows exponentially with the

number of state variables. However, usually Q is sparse, as

the number of reaction types is small compared to the

number of states. But even when Q is sparse often only an

approximate solution can be computed efficiently. Add-

ing up a sufficiently large number of terms of the infinite

sum  is numerically unstable, as Q contains

strictly positive and negative entries, leading to severe

round-off errors [31]. Various numerical solution meth-

ods exist for systems of first-order linear equations of the

form of Eq. (4). However, many of them are not useful as

they do not preserve the sparseness of Q. Several surveys

and comparisons exist in literature [19,32,33]. Most pop-

ular are methods based on uniformization [34,35],

approximations in the Krylov subspace [36], or numerical

integration [37,38]. We will describe the former two

methods in more detail in the section on numerical solu-

tion methods.

Results
Sliding window method

The key idea of the algorithm proposed in this paper is to

calculate an approximation  of p(t) in an iterative

fashion, as described in Eq. (6). More precisely, we com-

pute a sequence of approximations  such

that for a subset Wj of the state space, j  {1, ..., r},

 for all x  Wj. The sets W1, ..., Wr are

called windows, and we assume that Wj contains the

states at which (most of ) the probability mass is concen-

trated during the time interval [tj-1, tj). We discuss the

construction of the window Wj later.

Let Qj be the matrix that refers to Wj, i.e., we define

Qj(x, x') = Q(x, x') if x, x'  Wj, and Qj(x, x') = 0 otherwise.

Note that for the simplicity of our presentation we keep a

fixed enumeration of S and assume that each Qj has the

same size as Q. However, the implementation of the

method considers only the finite submatrix of Qj that

contains entries of states in Wj. For τj = tj - tj-1, we define

where  = (1y)
T and Dj is the diagonal matrix whose

main diagonal entries are one for x  Wj and zero other-

wise. The row vector (1y)
T is one at position y and zero

otherwise.

In the j-th step, the matrix  contains the probabil-

ities to move in τj time units within Wj from one state to

another. As initial probabilities, Eq. (7) uses the approxi-

mations  for all states x  Wj. The diagonal

matrix ensures that the probability mass located in Wj-

1\Wj is ignored during the computation, that is, only ele-

ments of the intersection Wj-1  Wj can have nonzero

entries in the vector Dj. This is necessary because

Qj does not contain the transition rates of states outside

of Wj (these states are absorbing). Intuitively, the vector

 describes the location of the probability mass after

moving within Wj.

Although Qj is not the generator of a CTMC, Eq. (7) has

a simple interpretation for all states x  Wj. Let us fix j for

the moment, and let the CTMC  be identical to X,

except that all states x'  Wj are absorbing (i.e., once x' is

reached, it cannot be left). Let the initial probability dis-

tribution of  be such that  for

all x  Wj. Then , for all x 

Wj. For all j, the vectors  are substochastic, and the

sum of their entries decreases in each step, i.e,

( )
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Probability mass is "lost", because we do not consider

the entries  for x  Wj-1\Wj, as we multiply with

Dj. In addition, we lose the probability to leave Wj within

the next τj time units because  is a substochastic

matrix. If, for all j, during the time interval [tj-1, tj) most of

the probability mass remains within Wj, then the approxi-

mation error  is small for all x  S. The

probability mass that is lost after j steps due to the

approximation is given by

Thus, if Eq. (7) is solved exactly, the total approxima-

tion error of the sliding window method is ηr. Note that

the error in Eq. (8) is the sum of the errors of all compo-

nents of the vector .

Window construction

In each step of the iteration the window Wj must be cho-

sen such that the error ηj is kept small. This is the case if

Wj satisfies the following conditions: (a) with a suffi-

ciently high probability X(tj-1)  Wj, (b) the probability of

leaving Wj within the time interval [tj-1, tj) is sufficiently

small.

Requirement (a) implies that Wj contains a significant

part of the support of , that is, a subset Sj  S such

that  is small. In the first step we set S1

= {y}. For j > 1, the window Wj is constructed after 

is calculated. We fix a small δ > 0 and choose Sj = {x |

 > δ}. If the support of  is large and dis-

tributes almost uniformly, it may be necessary to con-

struct Sj such that  is smaller than

some fixed threshold. However, our experimental results

show that using a fixed threshold yields good results,

which makes the additional effort of sorting the support

of  unnecessary in practice. Note that requirement

(a) implies that Wj and Wj-1 intersect. Thus, in each step

we "slide" the window in the direction that the probability

mass is moving.

The sequel of this section focuses on requirement (b),

where it is necessary to predict the future behavior of the

process. One possibility to find a set Wj that satisfies the

requirements is to carry out stochastic simulation for tj -

tj-1 time units with initial states in Sj. This may be costly if

we aim at an accurate approximation. Most simulation

runs correspond to the average behavior of the system.

However, there may be events that are less frequent, but

that still have a significant probability. Therefore, we pro-

pose an idea that relies on a state-continuous determinis-

tic approximation that, given an initial state z  Sj,

estimates the maximal and minimal values each state

variable can take during the next τj = tj - tj-1 time units.

More precisely, for each dimension d  {1, 2, ..., n}, we cal-

culate values ,   ? such that

is small, where Xd(τ) is the d-th component of the ran-

dom vector X(τ).

The computation of the extreme values ,  is

carried out for several states z, which are chosen uni-

formly at random. Our experimental results indicate that

the accuracy of our results does not increase when more

than 10 states are considered. Let Aj  Sj be the set of ran-

dom states. By computing  and

, we obtain estimates for the maximal

and minimal values of each state variable during the time

interval [tj-1, tj) under the condition that X(tj-1)  Sj. Win-

dow Wj is now constructed as the union of Sj and all states

within  and , that is, Wj equals
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Table 1: The method ContDetApprox (left) and the main procedure sWindow (right)

ALGORITHM ContDetApprox (z, τ, b+, b-) ALGORITHM sWindow(y, t, ?, δ)

Input: initial state z, length τ of time interval, old boundaries Input: initial state y, times t = (t0, ..., tr), error ? > 0, threshold δ > 0

Output: new boundaries Output: probability vectors p0, ..., pr

1 for each branch i  {1, ..., 2n} do 1 p0 = (1y)T; //start with probability one in y

2 x�i�:= z; //z is initial state of all branches 2 for j := 1 to r do

3 end 3 τj := tj - tj-1; //length of next time step

4 time := 0; //define Sjfor construction of Wj

5 Δ := step_size; //choose length of time steps 4 Sj := {x | pj-1(x) >δ};

6 while time <τ do 5 numStates := min(10, size(Sj));

7 for each branch i  {1, ..., 2n} do //choose numStates random states from Sj

//compare current state variables with boundaries 6 Aj := rand(Sj, numStates);

8 for d = 1 to n do 7 b+: -∞; b- : +∞; //initial boundaries

9 if then
8 for each z in Aj do

10 ; //adjust upper bound
//run continuous determ. approximation

11 end //on z and update boundaries

12 if then
9 (b+, b-) := ContDetApprox (z, τj, b+, b-);

13 ; //adjust lower bound
10 end

14 end 11 Qj := generator (Sj, b
+, b-); //construct Qj

15 end //construct diagonal matrix for Wj (cf. Eq. (7))

16 for m := 1 to k do 12 Dj := diag(Sj, b
+, b-);

//choose more/fewer transitions of type Rm
13 ; //solve Eq. (7)

//depending on branch i 14  end

17 κm := choose(αm(x�i�)·Δ, i);

18 end

b b b b b bn n
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b b b b b bn n
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For a fixed state z  Aj we exploit the regular structure

of the Markov chain for the computation of  and

. We start in state z and update the state variables

one by one. We assume that for a small time interval of

length Δ the rate of reaction type Rm remains constant,

i.e., is equal to αm(z). Then the number of Rm-transitions

within the next Δ time units is Poisson distributed with

parameter αm(z)Δ. We can approximate this number by

the expectation αm(z)Δ of the Poisson distribution. Note

that the above assumption is warranted since in the case

of coupled chemical reactions the propensities αm(x) are

linear or at most quadratic in x, if only elementary reac-

tions are considered, i.e. reactions that correspond to a

single mechanistic step and have therefore at most two

reactants. In general, reactions may have intermediate

products and/or parallel reaction pathways. They can,

however, always be decomposed into elementary reac-

tions. As we are interested in an upper and a lower

bound, we additionally consider the standard deviation

 of the Poisson distribution. We assume that, if

the current state is x, within Δ units of time

• at least ,

• at most 

transitions of type Rm are taken. Note that if, for

instance, αm(z)Δ = 1, then we have a confidence of 91.97

percent that the real number of reactions lies in the inter-

val

Let κm   and l = 0, 1,.... The iteration

yields continuous deterministic worst-case approxima-

tions of X(t + Δ), X(t + 2Δ),... under the condition that

X(t) = z. For functions αm that grow extremely fast in the

state variables, the iteration may yield bad approxima-

tions because it is based on the assumption that the pro-

pensities are constant during [0, Δ).

In the context of biochemical reaction networks, αm is

at most quadratic and therefore the approximation given

by Eq. (11) yields adequate results. For a given system, we

perform the approximation in Eq. (11) for all possible

combinations . It is possible to

skip combinations that treat preferentially transition

types leading to opposite directions in the state space,

because they will not give a worst-case bound. Consider,

for instance, Example (1) with c1 = c2 = c3 = 1, z = (10, 10,

100, 0), and Δ = 0.01. If we assume that more reactions of

type R2 and R3 happen (than on average) and fewer of R1,

we get

, and

. This

means that the number of complex molecules decreases

and x(1) = (14,12, 96, 2). We can omit combinations that

contain both  and . As R1 equates R2 and vice

versa, these combinations will not yield good approxima-

tions of the extreme values of the state variables. In gen-

eral, the dependency graph of the reaction network may

be helpful to identify those combinations that maximize a

b zd
+( )

b zd
−( )

am z( )∆

k a am m mx x x− = −( , ) max( , ( ) ( ) )∆ ∆ ∆0

k a am m mx x x+ = +( , ) ( ) ( )∆ ∆ ∆
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k1 10 10 0 01 10 10 0 01 0− = ⋅ ⋅ − ⋅ ⋅ =( , ) . .z ∆

k1
+ k 2

+

19 ; //update state (cf. Eq. (11))

20 end

21 time := time + Δ;

22 end

Table 1: The method ContDetApprox (left) and the main procedure sWindow (right) (Continued)
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m
m
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certain population (see also the section on experimental

results).

In the sequel, each chosen combination is referred to as

a branch because, for fixed z, the corresponding iterations

lead to different successors x(l+1). Note that for a particu-

lar branch, for each m  {1, ..., k} we fix κm = , or κm =

 for all l. The iteration ends after Lτj/ΔO steps (where

the length of the last time step is the remainder instead of

Δ), and the extreme values  and  are given by

the minimal and maximal values of the state variables

during the iteration. More specifically,

 and , where 1 ≤

d ≤ n, x(l) = , and z = x(0).

The calculation of  and  is described in

pseudocode in Table 1 (left column), called ContDetAp-

prox. Note that the superscript i refers to the current

branch and not to the iteration in Eq. (11) which is car-

ried out in line 19. The number of branches is 2n as max-

imal and minimal values for each dimension are

necessary. In line 17, we decide, depending on the current

branch i, whether κm is set to , or .

Regarding the choice of the time step Δ, we suggest to

choose Δ dynamically such that for each m the interval in

Eq. (10) covers at least, say, 80% of the probability mass of

the corresponding Poisson distribution. Clearly, the accu-

racy of the method increases in the case of larger inter-

vals covering more probability mass. For our

experimental results, we chose Δ such that λx·Δ = 1

yielded sufficiently accurate results.
Sliding window algorithm

In the right column of Table 1 we describe the main pro-

cedure, called sWindow, in pseudocode. The for loop in

lines 2-14 implements the approximations of

 by successively computing vector pj from

pj-1. Input ? is a bound for the total approximation error

caused by the solutions of the ODEs in line 13. The array t

contains the time instances t0, ..., tr. For our experimental

results, we compare two different time stepping mecha-

nisms that are explained below. The parameter δ is the

threshold that is used to remove those states in the sup-

port of pj-1 having a smaller probability than δ. We define

Sj as the set of all states x for which pj-1(x) is greater than δ

in line 4. Note that for j = 1 the set S1 contains only the

initial state y. In line 6, rand(Sj, numStates) returns a set

of numStates random elements from Sj that are used to

construct the vectors b+ and b- in lines 7-10. The rate

entries of all states in the window Wj (cf. Eq. (9)) are cal-

culated in line 11, and all remaining entries in Qj are set to

zero. A solution method is invoked in line 13 to calculate

pj from pj-1. This can be, for instance, the uniformization

method, an ODE solver or a method based on an approx-

imation in the Krylov subspace. We pass a time step of

length τj and the corresponding fraction  of the

approximation error.

We can calculate the overall loss of probability mass

from the output pr by ηr = 1 - xpr(x). This value includes

both approximation errors of the algorithm: (1) the prob-

ability of leaving window Wj during the time interval [tj-1,

tj) and (2) the probability  that is lost due

to the sliding of the window, obtained by the multiplica-

tion with Dj (cf. Eq. (7)).

Note that it is always possible to repeat a computation

step in order to increase the obtained accuracy. More

precisely, we can determine a larger window by increas-

ing the confidence of the interval in Eq. (10), i.e. by

choosing the time step Δ such that for each m the maxi-

mal/minimal number of transitions of type Rm lies in the

interval with a certain confidence (e.g. with a confidence

of 80%). For our experimental results, however, we did

not repeat any computation step since we always

obtained sufficiently accurate results.
Time intervals

For our experimental results, we compare two different

time stepping mechanisms for Algorithm sWindow (see

Table 1, right). We either choose equidistant time steps τj

= τ, for all j, or we determine τj during the construction of

the window Wj (adaptive time steps). The latter method

yields faster running times. Depending on the dynamics

of the system, long time steps may cause three problems:

(1) the window is large and the size of the matrix Qj may

exceed the working memory capacity, (2) the dynamics of
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the system may differ considerably during a long time

step and Qj has bad mathematical properties, (3) the win-

dow may contain states that are only significant during a

much shorter time interval. If, on the other hand, the

time steps are too small then many iterations of the main

loop have to be carried out until the algorithm termi-

nates. The windows overlap nearly completely, and even

though each step may require little time, the whole proce-

dure can be computationally expensive. One possibility is

to fix the size of the windows and choose the time steps

accordingly. But this does not necessarily result in short

running times of the algorithm either. The reason is that

the time complexity of the solution methods does not

depend only on the size of the matrix representing the

window but also on its mathematical properties.

The problems mentioned above can be circumvented

by calculating τ1, ..., τr during the construction of the win-

dow Wj as follows. We compute the number of the states

that are significant at time tj-1 and pass it to ContDetAp-

prox in line 9 (see Table 1). We run the while loop in

Algorithm ContDetApprox (see Table 1, left) until (1) the

window has at least a certain size and (2) the number of

states in the window exceeds twice the number of the

states that are significant at time tj-1. The first condition

ensures that the window exceeds a certain minimum size

of, say, 500 states. The second condition ensures that the

new window is just big enough to move the probability

mass to a region outside of Sj. More precisely, it ensures

that the sets S1, S2,...are not overlapping and that subse-

quent sets are located next to each other (as illustrated in

Figure 1). Note that this ensures that the resulting win-

dow does not contain many states that are only signifi-

cant during a much shorter time interval.

On termination of the while-loop, we pass the value of

the variable time from ContDetApprox to sWindow and

set τj to the value of time. Obviously, in sWindow we add a

variable representing the time elapsed so far, and the for

loop in line 2 is replaced by a while loop that stops when

the time elapsed so far exceeds t. Later, we present exper-

imental results of the sliding window method where we

use adaptive time steps in the way described above.

Numerical solution methods

In this section, we present the theoretical basis of two

numerical solution algorithms, namely the uniformiza-

tion method and the Krylov subspace method. We

approximate a global solution of the CME (cf. Eq. (5)), as

well as the local solutions that are required in line 13 of

Algorithm sWindow (see also Eq. (7)).
Uniformization

The uniformization method goes back to Jensen [34] and

is also referred to as Jensen's method, randomization, or

discrete-time conversion. In the performance analysis of

computer systems, this method is popular and often pre-

ferred over other methods, such as Krylov subspace

methods and numerical integration methods [19,39].

Recently, uniformization has also been used for the solu-

tion of the CME [40-42].

Global uniformization Let (X(t), t  �≥0) be a CTMC

with finite state space S. The basic idea of uniformization

is to define a discrete-time Markov chain (DTMC) and a

Poisson process. The DTMC is stochastically identical to

X, meaning that it has the same transient probability dis-

tribution if the number of steps within [0, t) is given, and

the Poisson process keeps track of the time as explained

below.

Recall that λx is the exit rate of state x  S, and I is the

identity matrix. We define a uniformization rate λ such

that λ ≥ maxx S λx and construct , the transi-

tion matrix of the DTMC associated with X. Note that a

diagonal entry in P defines the self-loop probability 1 - λx/

λ of a state x, which is nonzero if and only if λ > λx. For k ≥

1, the stochastic matrix Pk contains the k-step transition

probabilities and, if p(0) is the initial distribution of X, the

vector w(k) = p(0)Pk contains the state probabilities after k

steps in the DTMC. The number of steps within time

interval [0, t) has a Poisson distribution with parameter

λt, i.e.,

Now, the solution of the transient state probabilities in

Eq. (5) can be rewritten as [19,32,43]

Eq. (13) has nice properties compared to Eq. (5). There

are no negative summands involved, as P is a stochastic

matrix and λ > 0. Moreover, w(k) can be computed induc-

tively by

If P is sparse, w(k) can be calculated efficiently even if

the size of the state space is large. Lower and upper sum-
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mation bounds L and U can be obtained such that for

each state x the truncation error [44]

can be a priori bounded by a predefined error tolerance

? > 0. Thus, p(t) can be approximated with arbitrary accu-

racy by

as long as the required number of summands is not

extremely large.

Time complexity and stiffness As λt grows the Poisson

distribution flattens, and the left truncation point L in Eq.

(16) grows linearly in λt, while the number of significant

Poisson probability terms is [44]O( ). If the vectors

w(L), w(L+1), ..., w(U) are computed using U matrix-vector

multiplications (cf. Eq. (14)), then the complexity of the

uniformization procedure is O(νλt) where ν is the num-

ber of nonzero elements in P.

All analysis methods (simulation-based or not) encoun-

ter serious difficulties if the underlying model is stiff. In a

stiff model the components of the underlying system act

on time scales that differ by several orders of magnitude

and this arises in various application domains, especially

in systems biology. For a stiff model, the uniformization

rate λ ≥ maxx S λx will correspond to the fastest time scale.

By contrast, a significant change of the slow components

can be observed only during a period of time that corre-

sponds to the slowest time scale. The uniformization

method is then extremely time consuming because of a

very large stiffness index [45]t·maxx S λx.

In the sequel, we show how uniformization can be

applied in a local fashion such that stiffness has a less

negative effect on the performance of the method. In

other words, the sliding window technique enables uni-

formization to perform well even for stiff systems.

Local uniformization We now combine uniformization

and the sliding window method. Assume that S may be

infinite, and that we iteratively apply uniformization to

solve Eq. (7). More specifically, in line 13 of Algorithm

sWindow (see Table 1, right), we invoke the uniformiza-

tion method to approximate

Thus, Pj = I +  is a substochastic transition

matrix, where λj = . By using the same calcu-

lation as in Eq. (16), we obtain a substochastic vector

where L and U are the truncation points depending on

λjτj, and . Moreover, as λj depends only

on Wj, the uniformization rate is usually smaller than the

global one, supx S λx, which means that fewer terms are

required in Eq. (17) than in Eq. (16).

The computational complexity of the whole procedure

is O( ), and thus, we save computation time,

compared to global uniformization, if

, where λ = supx S λx and νj is the num-

ber of nonzero elements in Pj.

Krylov subspace

Krylov subspace methods are widely used for large eigen-

value problems, for solving linear equation systems, and

also for approximating the product of a matrix exponen-

tial and a vector [46,47]. We are interested in the latter

approximation and show how it can be used to solve the

CME, either in a global fashion or in combination with

the sliding window method. Recently, Krylov subspace

methods have been applied to the CME by Sidje et al.

[21].

Global Krylov subspace method Recall that a global

solution of the CME is given by p(t) = p(0)eQt. In the sequel,

we describe the approximation of etAv, where A is an N ×
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N square matrix and v is a column vector of length N. We

obtain an approximation of p(t) by choosing A = (Q)T and

v = (p(0))T. Let us first assume that t = 1. The main idea is

to generate a basis of the m-th Krylov subspace

and to seek an approximate solution for eAv from this

subspace. Let qmin be the nonzero monic polynomial of

lowest degree such that qmin(A)v = 0. We choose m  �

such that the degree of qmin is greater or equal to m. In

this case, the vectors v, Av, ..., Am-1v are linearly indepen-

dent, and for every element x  Km there exists a polyno-

mial q of degree at most m - 1 with x = q(A)v. Note that in

practice we choose m = 30 or m = 20, because the degree

of qmin is usually greater than 30. However, if not, the

problem can be solved exactly in the d-th Krylov sub-

space, where d is the degree of qmin. Working directly

with the basis {v, Av, ..., Am-1v} is numerically unstable.

Therefore, we construct an orthonormal basis {v1, v2, ...,

vm} for Km by applying Arnoldi's algorithm to v, Av, ..., Am-

1v. Let Hm be the m × m upper Hessenberg matrix com-

puted by the Arnoldi algorithm and let hm+1, m be the last

normalization value. By Vm we denote the N × m matrix

with column vectors v1, v2, ..., vm. Then

where ek is a column vector of appropriate size whose k-

th component is one and all other components are zero.

Intuitively, Eq. (18)(b) states that Hm is the matrix projec-

tion of A onto Km w.r.t. the basis defined by Vm. An

approximation of eAv in Km expressed using Vm is eAv ≈

Vmy, where y is a vector of size m.

We choose

which yields the approximation error [46]

where ρ = ||A||2 is the spectral norm of A. The approxi-

mation in Eq. (19) still involves the computation of the

matrix exponential of Hm, but as Hm is of small dimension

and has a particular structure (upper Hessenberg), this

requires a smaller computational effort. For the matrix

exponential of small matrices, methods such as Schur

decomposition and Padé approximants may be applied

[31].

Assume now that the time instant t is arbitrary, i.e., we

want to approximate etAv for some t > 0. In order to con-

trol the approximation error, we calculate etAv stepwise

by exploiting that  for τ1, τ 2 ≥ 0.

For a step size τ, we approximate eτAv by ||v||2 

because the Krylov subspaces associated with A and τA

are identical and . It follows from Eq.

(20) that we have a small error bound if ||Aτ||2 is small.

To summarize, the Krylov subspace method approxi-

mates eAtv by an iteration stepping forward in time with

dynamically chosen step sizes τ1, τ2,.... In each iteration

step, we compute a vector

where initially u0 = v. The matrices  and 

result from the i-th execution of Arnoldi's algorithm for

the construction of an orthonormal basis of the subspace

Span{ui-1, Aui-1, ..., Am-1ui-1}. When the elapsed time

equals t, we obtain an approximation of eAtv.

For the step size of the Krylov subspace method, a pop-

ular heuristic is to choose τi+1 depending on an estimate

of the error ?i of the previous step. Let tol > 0 be an a pri-

ori specified tolerance. A common scheme consists of

three steps [36]. (1) Define , (2)

compute ui and the error estimation ?i. (3) If ?i > 1.2 tol

K Span A Am
m= −{ , , , },v v v…

1

( ) ,

( ) ,

,a AV V H h

b V AV H

m m m m m m m
T

m
T

m m

 

 

= +

=

+ +1 1v e
(18)

y v e=|| || ,2 1eHm (19)

|| || || || || ||
!

,e V e
me

m

A
m

Hmv v e v− ≤2 1 2 22
r r

(20)

e e eA A A( )t t t t1 2 2 2+ = ⋅v v

V em
Hmt

e1

V A V Hm
T

m m( )t t=

u u ei i m
i HV e i m

i

= −|| || ,( ) ( )

1 2 1
t

Vm
i( ) Hm

i( )

t ti

m

i
tol

i
= ( )− −0 9

1

1

1.
/

²

Figure 2 Parameters and results of the sliding window method.

parameters results

name of example
time

horizon
δ

sWindow +

uniform.

sWindow +

Krylov

window

construction

error times in sec perc.
average

wind. size

1 Enzyme (pset a) 70 10−8 1.4 × 10−5 6 5 1% 977

2 Enzyme (pset b) 12 10−10 3.3 × 10−5 134 98 14% 4777

3 Enzyme (pset c) 5 10−10 3.5 × 10−7 8 6 37% 5038

4 Gene (pset a) 104 10−10 1.6 × 10−5 103 102 36% 32248

5 Gene (pset b) 104 10−10 1.8 × 10−5 137 123 32% 38282

6 Goutsias’ model 300 10−11 7.6 × 10−5 15943 8412 15% 538815

7 Toggle switch 104 10−15 2.7 × 10−5 31 10 1% 63001
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reject ui, replace ?i-1 with ?i, and go to step (1). For our

experimental results, we used the Expokit software [48]

where the small exponential, , is computed via the

irreducible Padé approximation [49].

Local Krylov subspace method Assume now that we

use the Krylov subspace method in line 13 of Algorithm

sWindow (see Table 1, right), to approximate

 (cf. Eq. (7)). By letting v = , A =

, and t = τj we can apply the same procedure as in the

global case. Note that this yields a nested iteration

because the time steps τj are usually much bigger than the

time steps of the Krylov subspace method. For the Krylov

subspace method, using the matrix Qj instead of Q offers

important advantages. The Arnoldi process is faster as Qj

usually contains fewer nonzero entries than Q. As well,

the sliding window method is likely to provide matrices

with a smaller spectral norm ||Qj||2. This allows for big-

ger time steps during the Krylov approximation, as can be

seen in our experimental results.

Experimental results

We coded both algorithms in Table 1 in C++ and ran

experiments on a 3.16 GHz Intel dual-core Linux PC. We

discuss experimental results that we obtained for Exam-

ple 1 and Example 2, as well as Goutsias' model [50] and a

bistable toggle switch [51]. Goutsias' model describes the

transcription regulation of a repressor protein in bacte-

riophage λ and involves six different species and ten reac-

tions. The bistable toggle switch is a prototype of a

genetic switch with two competing repressor proteins

and four reactions. All results are listed in Figure 2.

As explained in detail below, we also implemented the

method proposed by Burrage et al. [21] in order to com-

pare it to our algorithm in terms of running time and

accuracy. Moreover, for finite examples we compare our

method to a global analysis, i.e. where in each step the

entire state space is considered. We do not compare our

method to Gillespie simulation or approximation meth-

ods based on the Fokker-Planck equation. The former

method provides only estimates of the probability distri-

bution and becomes infeasible if small probabilities are

estimated [52]. The latter type of methods do not take

into account the discreteness of the molecule numbers

and are known to provide bad approximations in the case

of small populations as considered here [53].
Parameters

We fixed the input ? = 10-8 of Algorithm sWindow for all

experiments (see Table 1, right). We chose the input δ in a

dynamical fashion to ensure that in the j-th step we do

not lose more probability than 10-5·τj/(tr - t0) by restrict-

ing to significant states, that is, we decrease δ until after

line 4 of Algorithm sWindow the set Sj contains at most

10-5·  less probability than the former set Sj-1. In Fig-

ure 2, we list the average value that we used for δ.

In the sequel, we give details about the parameters used

for the results that we obtained for Example 1 and Exam-

ple 2. For the remaining two examples, we list the corre-

sponding chemical reactions and the parameters that we

chose for the results in Figure 2.

Enzyme example We tried different parameter sets,

referred to as pset a)-c), for Example 1 (see Figure 2). For

parameter combination a) we have c1 = c2 = 1, c3 = 0.1 and

start with 1000 enzymes and 100 substrates. In this case

the number of reachable states is 5151. For parameter set

b) and c) we have c1 = c2 = c3 = 1 and start with 100

enzymes and 1000 substrates and 500 enzymes and 500

substrates, which yields 96051 and 125751 reachable

e Hmt
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Figure 3 Parallelogram shape. For the enzyme reaction example, the set of reachable states is finite and delimited by the diagonal, which is repre-

sented by the line ES = 100 - P if 100 is the initial number of enzyme molecules. For certain parameter sets, the window has a parallelogram shape 

which corresponds to the direction in which the probability mass is moving.
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states, respectively. Each time we choose the time hori-

zon according to the time until most of the probability

mass is concentrated in the state in which all substrate

molecules are transformed into products. For the time

steps τj in Algorithm sWindow, we apply the condition

described above.

We consider four branches for the iteration in Eq. (11)

in order to determine upper and lower bounds on the

state variables. (1) To obtain an estimate for the maximal

number of complex molecules (and a minimum for the

enzyme population), we enforce more reactions of type

R1 than on average (κ1 = ), and fewer of types R2 and R3

(κ3 =  and κ2 = ). (2) By considering fewer reactions

of type R1 (κ1 = ), and more of types R2 and R3 (κ3 = 

and κ2 = ) the complex population becomes minimal

(and the enzyme population maximal). (3) An estimate

for the minimal number of type P molecules (and the

maximal number of type S molecules) is obtained by

enforcing more reactions of type R2 (κ2 = ), and fewer

of types R1 and R3 (κ1 =  and κ3 = ). (4) Finally, more

reactions of types R1 and R3 (κ1 =  and κ3 = ), and

fewer of type R2 (κ2 = ) gives a maximal increase of the

number of product molecules (and minimizes the num-

ber of substrate molecules).

For the enzyme example, if the initial conditions are

fixed a state is uniquely determined by at least two

entries, say, the population of complex and product mole-

cules. However, a rectangular window shape yields poor

results if the expected number of complex molecules is

high. The reason is that in this case the probability mass

is located on a diagonal (cf. Figure 3). If the set of signifi-

cant states is captured by a rectangular window it may

contain many states that are not significant. This problem

can be circumvented by considering bounds for all state

variables during the window construction as well as the

conservation laws. More precisely, the parallelogram in

Figure 3 is constructed by computing for each value

 of P upper and lower bounds on ES by

 and

, where y = (y1, y2, 0, 0) is

the initial population vector and 

and  are the upper and lower bounds

on the populations of E, S, ES, and P.

Note that the parallelogram in Figure 3 was induced by

the conservation laws of the system. In general, conserva-

tion laws should be taken into account since otherwise

the window may be inconsistent with the conservation

laws, i.e. it may contain states that are not reachable.

Gene expression example In Figure 2 we present results

for Example 2. The difference between parameter set a)

and parameter set b), referred to as pset a) and pset b), is

that for a) we start with the empty system and for b) we

start with 100 mRNA molecules and 1000 proteins. For

both variants, we choose rate constants c1 = 0.5, c2 =

0.0058, c3 = 0.0029, c4 = 0.0001. The time steps that we

use are determined by the condition in the section on

time intervals. Note that we cannot solve this example

using a global method because the number of reachable

states is infinite. The column error contains the total

error ηr (see Eq. (8)) and times in sec refers to the running

time in seconds. In column perc. we list the percentage of

the total running time that was spent for the window con-

struction. The column average wind. size refers to the

average number of states in the window.

For the gene expression example, we use four branches:

We maximize the number of mRNA molecules by choos-

ing  and  and minimize it with  and . Reac-

tions R2 and R4 are irrelevant for this species. We

maximize the protein population by choosing

k1
+

k3
− k 2

−

k1
− k3

+

k 2
+

k 2
+
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k 2
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x b b4 4 4∈ − +[ , ]

min{ , , }b y b y x b3 1 1 2 4 2
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b b b b b− − − − −= ( , , , )1 2 3 4

k1
+ k3

− k1
− k3

+

Figure 4 Dependencies between the reactions of Goutsias' mod-

el.
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, and  and minimize it with ,

and .

Goutsias' model The model, referred to as Goutsias'

model in Figure 2, is composed by the following chemical

reactions [50]:

1: RNA T RNA + M

2: M T ?

3: DNA.D T RNA + DNA.D

4: RNA T ?

5: DNA + D T  DNA.D

6: DNA.D T DNA + D

7: DNA.D + D T DNA.2D

8: DNA.2D T DNA.D + D

9: M + M T D

10: D T M + M

We used the same kinetic constants as Goutsias [50]

and Sidje et al. [21], as well as the same initial state.

Below, we list the branches for upper bounds on the

state variables. Lower bounds are obtained if the opposite

combination is considered, respectively. We refer to Fig-

ure 4 for an illustration of the dependencies between the

reactions that simplifies the choice of the branches. We

maximize the RNA population by choosing the combina-

tion . We maxi-

mize the monomer population by choosing the

combination . We

maximize the number of dimer molecules by choosing

the combination .

Note that although dimers are consumed by reaction 5,

choosing  maximizes the number of dimers in the sys-

tem. This is because reaction 5 is necessary to produce

monomers and therefore also dimers. We never run out

of memory with the sliding window method, but the run-

ning times can be huge for a long time horizon. The rea-

son is that the windows are large since the system

contains many monomers and dimers at later time

instances. For the results in Figure 2 we considered the

system till time t = 300, whereas for Sidje et al. [21], the

longest time horizon is t = 100. In Figure 5 we plot the

distribution of the species M and D.

Bistable toggle switch The toggle switch involves two

chemical species A and B and four reactions. Let x = (x1,

x2)  . The reactions are ? T A, A T ?, ? T B, B T ? and

their propensity functions α1, ..., α 4 are given by α1(x) =

c1/(c2 + ), α2(x) = c3·x1, α3(x) = c4/(c5 + ), α4(x) =

c6·x2. Note that in this example the propensity functions

are not of the form described in Eq. 1. For our experimen-

tal results, we chose the same parameters as Sjöberg et al.

[23], that is, c1 = c4 = 3·103, c2 = c5 = 1.1·104, c3 = c6 = 0.001,

and β = γ = 2. The initial distribution is a Gaussian distri-

bution (μ, σ2) with μ = (133, 133)T and

. We consider the obvious four

branches each of which is intended to minimize/maxi-

mize one of the two components. The branch minimizing

k k k1 2 3
+ + −, , k 4

− k k k1 2 3
− − +, ,

k 4
+

k k k k k k k k k k1 2 3 4 5 6 7 8 9 10
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Figure 5 The probability distribution of monomers (left) and dimers (right) during the time interval [0, 300).
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A for example will have less of the first reaction and more

of the second.

Discussion
In this section, we discuss our algorithm w.r.t. accuracy

and running time where we consider different solution

methods and different time step mechanisms. Moreover,

we compare our method with a global analysis.

Accuracy

The column labeled by error in Figure 2 shows the total

error ηr (cf. Eq. (8)) of the sliding window method plus the

uniformization error (which is bounded by ? = 10-8). The

error using the Krylov subspace method instead yields

the same accuracy because for both, uniformization and

the Krylov subspace method, the error bound is specified

a priori. For all examples, the total error does not exceed

1 × 10-4, which means that not more than 0.01 percent of

the probability mass is lost during the whole procedure. It

would, of course, be possible to add an accuracy check in

the while loop of Algorithm sWindow, expand the current

window if necessary, and recalculate. But as the method

consistently returns a small error, this has been omitted.

We also considered relative errors, that is,

 for states x  Wj with

 > 10-5. We approximate the value  by

solving Eq. (13) via global uniformization, where we use

truncation error ? = 10-8. Since this is only possible if the

state space is finite, we compared relative errors only for

the enzyme example. Our calculations show that the rela-

tive errors are always smaller than 10-4.

In order to support our considerations in the window

construction section, we carried out experiments in

which we exclusively chose the average in line 17 of Algo-

rithm ContDetApprox (see Table 1, left). More precisely,

for the construction of the window we do not consider

the deviations in the numbers of reactions but only the

average number. In this case, we called the method Cont-

DetApprox with input 2τ to make sure that on average the

probability mass moves to the center of the window and

not too close to the borders. For this configuration, the

total error is several orders of magnitude higher, e.g., for

parameter set a) of the enzyme example the total error is

0.0224.

Finally, we test the size of the windows constructed in

lines 7-10 of Algorithm sWindow. We change Algorithm

sWindow by decreasing the size of the window by 5%

between lines 10 and 11. In this case, the total error ηr

increases. For instance, ηr = 0.35% for parameter set a) of

the enzyme example. These results substantiate that the

size and the position of the sliding window is such that

the approximation error is small whereas significantly

smaller windows result in significantly higher approxima-

tion errors.

Running time

For the time complexity analysis, we concentrate on three

main issues.

• Sliding window method vs. global analysis: We com-

pare the sliding window method with a global solu-

tion in one step, and with another window method,

where the size of the window is doubled if necessary.

• Solution method (uniformization vs. Krylov sub-

space method): In Algorithm sWindow, we vary the

solution method by exchanging uniformization with

the Krylov subspace method.

• Time intervals (equidistant vs. adaptive time steps):

We use different methods to determine the length τj

of the next time step in line 3 of Algorithm sWindow.
Sliding window method vs. global analysis

We used the enzyme example to compare the sliding win-

dow solution with a global solution (global uniformiza-

tion and global Krylov subspace method), since it has a

( ( ) ( )) / ( )
( ) ( ) ( )

p x p x p x
t t tj j j−

p x
t j( )

( ) p x
t j( )

( )

Figure 6 Sliding window method vs. global analysis for the finite enzyme example.

global solution sWindow

error uniform. Krylov #states error uniform. Krylov
average

wind. size

Enzyme (pset a) 5.0 × 10−9 44.1 min 4.2 min 5151 1.4 × 10−5 6 sec 5 sec 977

Enzyme (pset b) 1.5 × 10−7 6.4 h 2.7 h 96051 3.3 × 10−5 2.2 min 98 sec 4777

Enzyme (pset c) − > 12 h 5.6 h 125751 3.5 × 10−7 8 sec 6 sec 5038
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finite state space. Note that all other examples cannot

solved using a global method since their state space is

infinite. We list the time needed for the computation of

 (cf. Eq. (3)) with the global method in Figure 6.

Observe that the total error of the global uniformiza-

tion method is smaller (compare the columns labeled by

error) since the only error source is the truncation of the

infinite sum in Eq. (13). In the column with heading

#states we list the number of states that are reachable.

During the global solution we consider all reachable

states at all time whereas in the sliding window method

the average number of states considered during a time

step is much smaller. This is the main reason why the

sliding window method is much faster. Moreover, in the

case of uniformization, the rate for global uniformization

is the maximum of all exit rates, whereas for local uni-

formization, we take the maximum over all states in the

current window. Note that the global maximum can be

huge compared to the local maxima. This explains the

bad performance of the global uniformization method.

When the Krylov subspace method is used for a global

solution, the running times of the global solutions are

also higher than the times of the local Krylov subspace

method (sliding window method combined with the Kry-

lov subspace method). Again, the reason is that a smaller

number of states is considered during the sliding window

iteration. Moreover, the matrices Qj have numerical prop-

erties that facilitate the use of bigger, and thus, fewer time

steps. The total number of iteration steps used to solve

Eq. (6) with the Krylov subspace method and the sliding

window method is indeed small when compared to the

global Krylov subspace method (on average around 20

times fewer steps).

We now focus on a comparison between our sliding

window method and another local method, called dou-

bling window method. For the latter, we compute the

probability vectors in a similar way as Sidje et al. [21]. We

start with an initial window and apply the Krylov algo-

rithm. We do not iterate over the time intervals [tj-1, tj)

but use the step sizes of the Krylov subspace method.

After each time step, we remove those parts of the win-

dow that will not be used for the remaining calculations.

We expand the size of the window if the error exceeds a

certain threshold. Since the performance of the method

depends heavily on the initial window and the directions

in which a window is expanded, we start initially with the

same window as the sliding window method and expand

always in the directions that are most advantageous for

the computation. For this we used information about the

direction in which the probability mass is moving that we

obtained from experiments with the sliding window

method. The expansion of a window is realized by dou-

bling the length of all of its edges.

We applied the doubling window method to the

enzyme example and the gene expression. For all parame-

ter sets that we tried, the sliding window method outper-

forms the doubling window method w.r.t. running time

(with an average speed-up factor of 5). The total number

of iterations of the Krylov subspace approximation is up

to 13 times smaller in the case of the sliding window

method compared to the doubling window method (with

an average of 6.5). Note that for arbitrary systems the

doubling window method cannot be applied without

additional knowledge about the system, i.e., it is in gen-

eral not clear, in which direction the window has to be

expanded.

Our results indicate that the sliding window method

achieves a significant speed-up compared to global analy-

sis, but also compared to the doubling window method.

Moreover, while global analysis is limited to finite-state

systems and the doubling window methods requires addi-

tional knowledge about the system, our method can be

applied to any system where the significant part of the

probability mass is located at a tractable subset of states.

If the dimension of the system is high, then the significant

part of the probability mass may be located at intractably

many states and in this case the memory requirements of

our algorithm may exceed the available capacity.

Solution method

During the sliding window iteration different solution

methods can be applied in line 13 of Algorithm sWindow.

We concentrate on the uniformization method and on

the Krylov subspace method. The running times in Figure

2 (compare the columns labeled by sWindow + uni-

formization with the columns labeled by sWindow + Kry-

lov) show that the Krylov subspace method performs

better (average speed-up factor of around 1.5). The rea-

son is that the Krylov subspace method is more robust to

stiffness than uniformization. For non-stiff systems, uni-

formization is known to outperform the Krylov subspace

method [19,39]. However, since biochemical network

models are typically stiff, the Krylov subspace method

seems to be particularly well suited in this area.

Time intervals

In order to confirm our considerations in the section on

time intervals, we also applied the sliding window

method using equidistant time steps. For all examples,

using equidistant time steps results in longer computa-

tion times compared to using adaptive time steps (with an

average speed-up factor of 3.5). A adaptive choice of the

time steps has also the advantage that we can control the

size of the windows and avoid that the memory require-

ments of the algorithm exceed the available capacity.

p
( )t r
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Conclusions
The sliding window method is a novel approach to

address the performance problems of numerical algo-

rithms for the solution of the chemical master equation.

It replaces a global analysis of the system by a sequence of

local analyzes. The method applies to a variety of chemi-

cally reacting systems, including systems for which no

upper bound on the population sizes of the chemical spe-

cies is known a priori. The proposed method is compati-

ble with all existing numerical algorithms for solving the

CME, and also a combination with other techniques,

such as time scale separation [26,27], is possible.

We demonstrated the effectiveness of our method with

a number of experiments. The results are promising as

even systems with more than two million states with sig-

nificant probability can be solved in acceptable time.

Moreover, for examples that are more complex than those

presented here, it is often sufficient to consider only a rel-

atively small part of the state space. The number of mole-

cules in the cell is always finite and, usually, a biochemical

system follows only a small number of different trends.

Stated differently, it is rarely the case that in biochemical

systems a large number of different scenarios have signif-

icant likelihoods. Thus, we expect that the sliding win-

dow method can be successfully applied to systems with

many chemical species and reactions as long as the signif-

icant part of the probability mass is always located at a

tractable subset of states. In addition, further enhance-

ments are possible, such as a splitting of the windows,

which will be particularly useful for multi-stable systems.

Moreover, we plan to automate our algorithm in a way

that besides the initial conditions and the set of reactions

no further input from the user is necessary, such as com-

binations of reactions that maximize/minimize certain

populations.
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