
Solving the Constant-Degree Parallelism
Alignment Problem

Claude G. Diderich 1~ and Marc Gengler 2

1 Swiss Federal Institute of Technology - Lausanne, Computer Science Department,
CH-1015 Lausanne, Switzerland, E-mail: diderich@di.epfl.ch

2 Ecole Normale Sup4rieure de Lyon, Laboratoire de l'Informatique du Parall41isme,
F-69364 Lyon, France, F_~mail: Marc. Gengler�9 ens-lyon, f r

Abstract . We describe an exact algorithm for finding a computation map-
ping and data distributions that minimize, for a given degree of parallelism,
the number of remote data accesses in a distributed memory parallel com-
puter (DMPC). This problem is shown to be NP-hard.

1 T h e a l i g n m e n t p r o b l e m

An important problem when compiling nested loops towards DMPCs is how to map
the computation and the data onto processors. This problem can be subdivided into
two subproblems: 1) the alignment problem which assigns computation and data to
a set of virtual processors, and 2) the mapping problem which folds the set of virtual
processors onto the physical ones. In this paper we address the alignment problem.
Following the linear algebra formulation of the alignment problem by Huang and
Sadayappan [6] in 1991, researchers have primarily focused on finding linear or affine
computation and data alignment functions requiring no remote data accesses [3] or
on developing heuristics for minimizing communication [2].

The alignment problem is the problem of finding an alignment of loop iterations
with the array elements accessed, that is, mappings of the loop iterations and array
elements to a set of virtual processors. The alignment should acldress the two needs:
i) maximize the degree of parallelism, i.e. use as many processors as possible, ii)
minimize the number of non local data accesses, i.e. distribute the array elements
such that a processor owns a maximal number of the elements it accesses. Depending
on how the needs i) and ii) are verified, various subproblems can be defined. When
allowing only local data accesses, we talk about the communication-free alignment
problem. Another subproblem is defined by minimizing the number of remote data
accesses for a given degree of parallelism. This subproblem is called the constant-
degree parallelism alignment problem. We consider array access functions that are
linear or affine and use the approach presented by Bau et al. [3] for expressing the
alignment problem. Access l to array k is described by a function F~. The unknown
computation mappings Cj and data mappings Dk can also be written as matrix
functions. Z represents the index domain defined by the loop bounds, :Dk the array
access domain and P the virtual multi-dimensional grid of processors.

* Supported by a grant from the Swiss Federal Institute of Technology - Lausanne.

452

F~:Z , O k : i ,) F ~ (i) = F ~ i + f ~
Cj:2: ~P : i , > C j (i) = C j i + c j
Dk:~k) P : a, ~ Dk(a) = D k a + d k

C d (i) represents the processor on which iteration i of assignment instruction j is
executed. Similarly, the function Dk indicates on which processors the elements
of array k are located. The requirements i) and ii) can be formulated as follows.
Eqns. (1) are called alignment or locality constraints.

maxcj,cj (min d (rank (CJ))) .

V i E 2:: Cj i + c d = Dk (F~ i + f~) + dk. (1)

The algorithm for solving the communication-free alignment problem presented
by Bau et al. [3], called LINEAR-ALIGNMENT, is defined as follows. The set of eqns. (1)
is rewritten in the following equivalent form.

with Cd=(Cd C d) , D k = (D k d k) , F ~ = (F O k ~)

To simplify the problem we require that eqns. (2) hold for any vector i, regardless
of whether or not it belongs to the iteration domain 22 The alignment constraints
then become equations of the form (3). Allowing no communication imposes that all
locality constraints (3) are verified simultaneously, leading to (4).

0 '~ = 0 (4)

where O=(Cl . . .G I~1...I~,),9=(9~,~,~...9,,y,~)

9 . , , = (o ... o I o . . . o o . . . 0)

The sub-matrix 9d,k,l, where I is the jth block and -~'~ the (t + k) th block,
represents the alignment constraint of data access l of array k in statement j and
the processor using that data. Eqn. (4) is equivalent to V3. 03. = 0. Therefore, the
column vectors of the unknown matrix 03. are in the null space of the known V3..

2 T h e c o n s t a n t - d e g r e e p a r a l l e l i s m a l i g n m e n t p r o b l e m

Often, the degree of parallelism of a communication-free alignment is non-existing.
This leads us to define the constant-degree parallelism alignment problem (CDPAP),
which consists of finding communication and data mappings such that the degree of
parallelism obtained is at least equal to the input parameter d and the communica-
tions are minimized. The constant-degree parallelism alignment algorithm (CDPAA)
solves the CDPAP.

453

Assume that it is possible to find a communication-free alignment of parallelism
degree d ~ for a given problem V. We simplify "v" by finding a minimal set of alignment
constraints from (1) to be left unsatisfied such that the simplified problem has a
solution of degree of parallelism d when solved by the LINEAR-ALIGNMENT algorithm.
To increase the parallelism introduced by the LINEAR-ALIGNMENT algorithm by d" =
d - d ~, we have to construct a modified problem ~rJ such that the size of the basis
of the null space of that problem is increased by d" compared to the size of the
null-space of the original problem.

We will use the notation of V to represent the vector space spanned by the column
vectors of the matrix V. V represents the space of all the alignment constraints. In
order to increase the degree of parallelism by at least d ' , we need to find a subspace
~r, of V such that dim(~ r) - dim(~') _> d". Let d = dim(~ r) - d". There exist an
infinite number of such subspaces V' of dimension d, but only finitely many are of
interest to us. In fact, all subspaces of ~r that contain less than d vector columns
of V are uninteresting, because we know that there exists at least one subspace
containing at least d column vectors of V. Furthermore, the set of all the subspaces
of degree at most d containing at least d column vectors can be easily enumerated.
To do so, we select d column vectors of V. Then, for each valid subset of column
vectors of V, we compute a basis and count the number of alignment constraints
that can be expressed in that basis. Finally, we select a subspace V* that contains
the largest number of alignment constraints.

2.1 S o m e i m p o r t a n t aspec ts

Data dependences. As long as all alignment constraints are verified, data depen-
dences are as well. As soon as alignment constraints are dropped this may no longer
be true. Removing alignment constraints that represent part of data dependences
may increase the degree of parallelism without reducing the execution time. In [4] we
characterize the relation between the computed alignment and the iteration schedul-
ing, that is, the relation between processor and time parallelism. Essentially, we show
that a sufficient, but not necessary, condition to get a non constant number of active
processors during each time step consists of imposing that there be at least two
fulfilled alignment constraints that correspond to a data dependence.
Cost function. In the CDPAA we use a counting argument based on the number of
non local data accesses as optimization function for computing efficient alignment
functions. Another possibility would be to assign different weights to the differ-
ent alignment constraints depending on their importance and then minimize the
weighted sum of remote data accesses. Such a cost function even allows the user
of the algorithm to require some alignment constraints to be verified by assigning
to them an infinite weight. For example, the owner computes rule can be imposed
by assigning a weight of +oo to the alignment constraint (~j = I)kF~, where F~
represents the element of array k being modified by instruction j. Furthermore, a
weighting function may also be used, in principle, in order to ignore constant offsets
or not, prefer non local constant accesses to non-local linear ones, etc.
Complexity and optimality. The following results are extracted from [4]. The input
size of any CDPAP is characterized by four parameters, which are the number of
data accesses n, the larger of the maximal dimension of any array and the maximal

454

loop nest depth e, the number of assignment statements c and the number of arrays
a. When considering all these parameters variable, we have the following theorem,
obtained by reduction from the homogeneous, bipolar MAX FLS = problem [1].
T h e o r e m 1 The CDPAP is NP-hard.
T h e o r e m 2 The CDPAA finds communication and data alignments that need a
minimal number of non local data accesses for a given degree of parallelism.
T h e o r e m 3 The CDPAA needs O(n 4+e (c+a)) time to find an optimal alignment.

2.2 Experimental results and related work

To show the performance of the CDPAA, we apply the algorithm to various loop
nests of different sizes extracted from various programs and benchmarks. In each ex-
ample, which does not have a communication-free alignment, we search for alignment
functions having at least one degree of parallelism. Results are given in [4].

Many techniques for solving the alignment problem proposed by different research
teams [2, 3, 5] are related to the approach taken in this paper. Anderson and Lam [2]
define necessary conditions for the data being local. These conditions admit a direct
translation into the framework defined by Baue t al. [3] and are particular cases. The
problem considered by Dion and Robert in [5] is also a particular case of [3]. Dion
and Robert find an optimal solution to their problem. Our technique for constructing
a maximal set of alignment constraints that can be verified while providing a given
degree of parallelism is more general than [5], as we allow any access function, rather
than restricting ourselves to access functions of full rank.

3 Conclusion

In this paper we presented an extension to the communication-free alignment al-
gorithm of B a u e t al. to remove a minimal number of unsatisfiable constraints to
increase the degree of parallelism up to a given constant. In our future work, we
are investigating the possibility to incorporate into our framework the notion of
scheduling vector so as to be able to optimize a single function when solving both
the scheduling and the alignment problem.

R e f e r e n c e s

t. E. Amaldl and V. Kann. The complexity and approximability of finding maximum
feasible subsystems of linear relations. Theoret. Cornput. Sci., 147(1-2):181-210, t995.

2. J .M. Anderson and M. S. Lain. Global optimizations for parallelism and locality on
scalable parallel machines. In Proc. PLDI '93, pages 112-125, 1993.

3. D. Bau, I. Kodukula, V. Kotlyar, K. Pingali, and P. Stodghill. Solving alignment using
elementary linear algebra. In Proc. LCPC '9,~, LNCS 892, pages 46-60, Springer, 1994.

4. C. G. Diderich and M. Gengler. Solving the constant-degree parallelism alignment prob-
lem. Research Rep. DI-96/195, Swiss Fed. Inst. of Tech. - Lausanne, Switzerland, 1996.

5. Mich~le Dion and Yves Robert.. Mapping affme loop nests: New results. In Proc. HPCN
'95, LNCS 919, pages 184-189, Springer, 1995.

6. C.-H. Huang and P. Sadayappan. Communication-free hyperplane partitiomng of nested
loops. In Proc. LCPC '91, LNCS 589, pages 186-200, Springer, 1991.

