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The uncapacitated facility location problem (UFLP) is a popular combinatorial optimization problem with
practical applications in different areas, from logistics to telecommunication networks. While most of the existing
work in the literature focuses on minimizing total cost for the deterministic version of the problem, some degree
of uncertainty (e.g., in the customers’ demands or in the service costs) should be expected in real-life
applications. Accordingly, this paper proposes a simheuristic algorithm for solving the stochastic UFLP (SUFLP),
where optimization goals other than the minimum expected cost can be considered. The development of this
simheuristic is structured in three stages: (i) first, an extremely fast savings-based heuristic is introduced; (ii)
next, the heuristic is integrated into a metaheuristic framework, and the resulting algorithm is tested against the
optimal values for the UFLP; and (iii) finally, the algorithm is extended by integrating it with simulation
techniques, and the resulting simheuristic is employed to solve the SUFLP. Some numerical experiments
contribute to illustrate the potential uses of each of these solving methods, depending on the version of the
problem (deterministic or stochastic) as well as on whether or not a real-time solution is required.

Journal of the Operational Research Society (2017) 68(10), 1161–1176. doi:10.1057/s41274-016-0155-6;

published online 14 December 2016

Keywords: uncapacitated facility location problem; stochastic combinatorial optimization problems; metaheuristics;
simheuristics

1. Introduction

The facility location problem (FLP), originally introduced by

Stollsteimer (1961) and Balinski (1966), involves deciding the

position of an undetermined number of facilities (each

associated with a decision variable) to minimize the sum of:

(i) the setup cost of these facilities and (ii) the cost related to

serving the customers from them. Most versions of the problem

assume that the alternative sites where the facilities can be

located are predetermined, and also that all inputs (e.g., the

demand associated with each customer and the service costs)

are deterministic in the sense that they are known in advance.

Usually, decisions on facility location are difficult to reverse

due to the fixed costs associated with opening a facility. In this

regard, the FLP is useful to model allocation problems in very

diverse application fields, from logistics and inventory plan-

ning (e.g., where to allocate distribution or retailing centers in a

supply chain) to telecommunication and computing networks

(e.g., where to allocate cloud service servers in a distributed

network, cabinets in optical fiber networks, etc.). A simple

example of a FLP instance is shown in Figure 1, where each

customer (circle) is assigned via an active connection to its

closest open facility (dark square).

The uncapacitated version of the FLP (UFLP) assumes that

the capacity of each facility is virtually unlimited or, at least,

far beyond the expected demand. According to Verter (2011),

the UFLP variant is considered to be the simplest version of the

FLP. Nevertheless, even without the capacity constraint, the

FLP has been proved to be NP-hard (Cornuejols et al, 1990).

More formally, the UFLP is defined over an undirected graph

G ¼ ðF;C;EÞ, where F is a non-empty subset of facilities (each

of them with unlimited capacity), C is a non-empty set of

customers to be served, and E is a set of edges connecting each

customer j 2 C with some of the facilities in F (Figure 1).

Delivering a customer j 2 C throughout a facility i 2 F has a

service cost cij � 0. Also, each facility i 2 F has a fixed opening

cost fi � 0. LetX be the decision variable denoting the set of open

facilities, with ; � X � F. Let r : C ! F be a function

assigning to each customer j 2 C a facility rðjÞ 2 F satisfying

crðjÞ;j ¼ mini2Xfcijg. Under these circumstances, the UFLP

consists in minimizing the total cost of providing service to all

customers, i.e., minimize
P

i2X fi þ
P

j2C crðjÞ;j.

In the literature, the UFLP is also called the simple facility

location problem, the simple warehouse location problem, or

the simple plant location problem. Realistic applications of the
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UFLP can be found, for instance, in the lube oil industry

(Brahimi and Khan, 2014), in the bank account location

(Cornuejols et al, 1977), in the self-configuration of wireless

sensor networks (Frank and Römer, 2007), in computer vision

(Lazic et al, 2009), or in health care (Maric et al, 2015).

Having a wide range of applications, the UFLP has been

studied for several decades now (Mallette and Francis, 1972;

Hansen, 1976). However, to the best of our knowledge,

methods that provide robust solutions taking into account

uncertainty conditions are not reported in the literature. This

stochastic environment appears, for example, when inputs

such as the customers’ demands or the service costs are

random variables instead of constant values.

To partially close this gap, we introduce here a novel

simheuristic algorithm (Juan et al, 2015) designed to deal with

the stochastic version of the UFLP (SUFLP). First, the optimal

values for all the classical UFLP benchmark instances are

obtained using the Gurobi commercial solver. This is achieved

after implementing the mixed integer programming (MIP)

model of the UFLP into a Python script. As far as we know,

this is the first time that these optimal values are reported.

Then, since obtaining the optimal solution for a large-sized

instance might take several hours in a standard computer, we

propose a savings-based heuristic for the deterministic UFLP.

This heuristic is able to generate reasonably good solutions in

milliseconds. Next, we integrate this constructive heuristic

inside an iterated local search (ILS) metaheuristic framework.

The resulting algorithm allows generating near-optimal solu-

tions for the UFLP in short time. Finally, once the quality of

this approach has been tested in the deterministic version of

the UFLP, we extend it to a simheuristic algorithm in order to

deal with the SUFLP, when optimization goals other than the

minimum expected cost should be considered. In effect, notice

that in a stochastic environment one could be interested in

solutions that offer a good trade-off between total expected

cost and risk or variability.

In this regard, our simheuristic approach is able to generate

several alternative solutions, each of them offering different

values for each of the parameters considered. In particular, for

any given instance of the SUFLP we focus on finding: (i) the

solution with minimum expected cost; (ii) the solution which

minimizes the third quartile of the cost values obtained when it

is run multiple times; and (iii) solutions offering a good trade-

off between expected cost and standard deviation of the cost

values obtained when they are run multiple times (i.e., among

those solutions with low expected costs, we are interested in

identifying the ones showing a relatively low variability or

risk).

Accordingly, the remainder of this paper is structured as

follows: Section 2 reviews the literature on the UFLP,

enumerating the solution approaches available to this problem.

Then, Section 3 reviews the literature on the SUFLP, detailing

previous works that have dealt with this particular problem.

Section 4 explains our implementation of the Erlenkotter

(1978) model for the UFLP and discusses the need for

heuristic and metaheuristic approaches to shorten computing

times in some real-life applications. Section 5 describes our

savings-based heuristic for the UFLP. Section 6 explains how

this heuristic can be integrated into a metaheuristic framework

to generate an efficient algorithm. Section 7 discusses the

quality of the proposed approaches for solving the UFLP.

Section 8 describes how the metaheuristic algorithm can be

extended into a simheuristic one for the SUFLP, and analyzes

some numerical examples of application. Finally, Section 9

highlights the main conclusions of this paper and points out

some open research lines.

Figure 1 Illustrative example of the facility location problem.
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2. Literature review on the UFLP

This section presents a review of the different approaches to

the UFLP. For a more extensive literature review on the FLP,

the reader is addressed to Drezner (1995), Snyder (2006), and

Fotakis (2011). The FLP was introduced by Stollsteimer

(1961) and Balinski (1966), originally referred to as the plant

location problem. In general, the FLP has been studied from

the perspectives of worst-case analysis, probabilistic analysis,

polyhedral combinatory and empirical heuristics (Cornuejols

et al, 1990). In the existing literature, we can also find exact

algorithms for the problem, but its NP-hard nature makes

heuristics a more suitable tool to quickly obtain solutions for

larger and realistic instances.

One of the first works on the FLP was a branch-and-bound

algorithm developed by Efroymson and Ray (1966). They used

a compact formulation of the FLP to take advantage of the fact

that its linear programming relaxation can be solved by

inspection. However, this linear programming relaxation is

known to be weak and therefore does not provide tight lower

bounds. Another of the early approaches proposed for the

problem is the direct search or implicit enumeration method

proposed by Spielberg (1969). The author defined two different

algorithms based on the same directed search, one considering

the facilities initially open and another one considering the

facilities initially closed. Later, Schrage (1975) presented a

tight linear programming formulation for the FLP different

from the one defined by Efroymson and Ray (1966). Schrage

applied to this formulation a specialized linear programming

algorithm for variable upper bound constraints. Beginning with

this tight linear programming formulation, Erlenkotter (1978)

presented a dual-based procedure, differing from previous

approaches by considering a dual objective function. An

improved version of this original algorithm was presented by

Körkel (1989). The main drawback of exact approaches is the

difficulties solving large real instances in short times.

Regarding the use of approximation algorithms for this

problem, one of the earliest was the greedy algorithm proposed

by Hochbaum (1982). In the 1990s, the first constant factor

approximation emerged by the hand of Shmoys et al (1997),

and it was later improved by Chudak (1998), being both of

these algorithms based on LP-rounding and therefore having

high running times. In order to reduce these running times, Jain

and Vazirani (1999) proposed a primal-dual algorithm adapted

for solving several related problems. This same algorithm was

later enhanced in Jain et al (2003), obtaining better results.

More recently, Li (2013) outperformed the former results by

reducing the approximation ratio of the previous approximation

algorithms. Approximation algorithms are very valuable for a

theoretical analysis of the problem. However, these algorithms

are outperformed in practice by more straightforward heuristics

with no performance guarantees.

Constructive algorithms and local search methods have been

used for decades, starting with Kuehn and Hamburger (1963).

The authors presented one of the earliest models for the problem

and a heuristic procedure for solving it. Their heuristic

comprised two main phases: first a constructive phase is

considered as the main program, followed by a second,

improvement phase which evaluates the profit implications of

dropping individual warehouses or of shifting them from one

location to another. Following this work, more sophisticated

heuristics have been applied to the FLP. Alves and Almeida

(1992) proposed a simulated annealing algorithm. Kratica et al

(2001) presented a genetic algorithm outperforming previous

works. Ghosh (2003) presented a neighborhood search heuristic

for the problem, using tabu search as local search and obtaining

competitive solutions in very low computational times, com-

pared to exact algorithms. Michel and Van Hentenryck (2004)

defined a simple tabu search algorithm, which demonstrated to

be robust, efficient, and competitive when compared with

previous genetic algorithms applied to the problem. The tabu

search algorithm used a linear neighborhood, which flipped a

single facility at each iteration. Resende and Werneck (2006)

proposed an algorithm based on the GRASPmetaheuristic. This

algorithm combined a greedy construction phase with a local

search procedure and path relinking. It obtained results very

close to the lower bound values for a wide range of different

instance sets. More recently, Lai et al (2010) presented a hybrid

algorithm based on the Benders’ decomposition algo-

rithm (Benders, 1962) and using a genetic algorithm instead

of the costly branch-and-bound method, to obtain good-quality

solutions. According to the computational results reported, the

algorithm seems to be efficient. However, the author only

compared its performance with the Benders’ original algorithm.

Concerning the use of parallel computing techniques, Wang

et al (2008) presented an adaptive version of a parallel multi-

population particle swarm optimization algorithm. The imple-

mentation obtained an important improvement in terms of

execution times, while obtaining competitive results using a

standard computer. However, they only solved small- and

medium-sized instances of the problem. To the best of our

knowledge, there are not approaches in the literature that

optimally solve large instances (between 500 and 3000 facili-

ties) under a real-time setting, i.e., a few seconds using a

standard computer.

Regardless of the solution method, many variants of the

basic FLP have been studied in the literature. An important

source of variations is due to considering uncertainty in the

problem (Snyder, 2006). This is typically taken into consid-

eration by introducing a wide variance on any of the

parameters of the problem (cost, demands, or distances). The

goal in these problems is to find a solution that performs well

under any possible realization of the random variables, i.e., a

robust solution. The random variables can be either continuous

or discrete. As an example, Balachandran and Jain (1976)

presented a FLP model with piecewise linear production costs

that need be neither concave nor convex. Demands are random

and continuous, described by some joint probability distribu-

tions. In this kind of problems, only the first-stage decisions
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are available, so there are no recourse decisions. Thus, once

the locations are set, they cannot be changed after the

uncertainty is resolved. The objectives therefore include the

expected recourse costs. In this paper, we consider the UFLP

with random customers’ demands, which affect the assignment

costs of customers to facilities. Therefore, it can be considered

to involve stochastic costs. An analysis of this uncertainty is

provided as explained in the next sections.

In reference to applications of the FLP in real-time

environments, some examples can be found in the literature.

These examples are usually related to environments with high

mobility, dynamism, or uncertainty. For instance, Gendreau

et al (2001) described a system for the real-time re-allocation

of ambulances to maintain cover after an ambulance responds

to a call. Similarly, Kolesar and Walker (1974) considered the

redeployment of fire companies in New York City while some

of them are responding to a call. An example in digital

network design problems is the equipment allocation for video

on demand (VoD) network deployments (Thouin and Coates,

2008). VoD services are complex and resource demanding, so

deployments involve careful design of many mechanisms

where content attributes and usage should be taken into

account. The high bandwidth requirements motivate dis-

tributed architectures with replication of content. An important

and complicated task during the network-planning phase of

these distributed architectures is resource allocation. An

example of such a distributed infrastructure is the Guifi Net

network (www.guifi.net), an open, free, and neutral telecom-

munication network whose infrastructure is completely sup-

ported by its users. In fact, the growth of peer-to-peer networks

and the use of mobile devices for accessing the contents have

made the problem even more complex.

Another example can be found in Lee and Murray (2010).

These authors introduce an approach for survivable network

design of citywide wireless broadband based on the FLP model.

They address two issues: how to locate the wi-fi equipment to

maximally cover the given demand and how to connect wi-fi

equipment to ensure survivablenetworkingona real case scenario

in the city of Dublin (Ohio, USA). An online FLP (Meyerson,

2001) is encounteredwhenmodeling a network designproblem in

which several servers need to be purchased and each client has to

be connected to one of the servers. Once the network has been

constructed, it may be necessary to add additional clients to the

network. In this case, additional costs will be incurred; e.g., the

cost of connecting a new customer to the cluster, or the cost of

installing additional servers whenever the current capacity cannot

accommodate the increase in demand. Finally, in the telecom-

munication sector, a real-time environment that could require the

quick solution of UFLP concerns the future 5G cellular networks.

The research community, together with standardization organi-

zations, has posed theneed for the densificationof the radio access

network, so that the current set of deployed base stations will be

complemented with a tier of small cells to provide high

capacity (Bartelt et al, 2015; Wang et al, 2015). The right

location and activation of these small cells according to the

customers behavior could involve large energy and monetary

savings.

3. Literature review on stochastic location problems

This section presents a review of some approaches to the

different variants of the SUFLP. Usually the values that can

take the inputs of combinatorial optimization problems are not

deterministic in real life. In the case of the UFLP, a variety of

sources of uncertainty may appear. In this regard, Snyder

(2006) reviewed the FLP with stochasticity, illustrating both

the rich variety of approaches for optimization under uncer-

tainty that have appeared in the literature and their application

to facility location problems. Later, Arabani and Farahani

(2012) reported some aspects and characteristics of the

dynamics of FLPs, dedicating a section to the probabilistic,

fuzzy, and stochastic versions of the problem in the literature.

Recently, Correia and da Gama (2015) discussed different

modeling frameworks for the facility location under uncer-

tainty, distinguishing between robust optimization, stochastic

programming, and chance-constrained models. None of these

three surveys are specifically devoted to review the UFLP, but

the different variants of the FLP, dealing with the UFLP in

some marginal parts. Here, we will focus on the stochasticity

in the UFLP and some of its most interesting variants.

Our proposal solves the UFLP where service costs are

considered stochastic. A similar stochastic variant of the

problem is tackled by Verma et al (2010), who adopt fuzzy

theory for dealing with the uncertainty. However, only very

small instances of the problem can be solved with their

approach due to the complexity of the problem. Although

other approaches in the literature dealt with the UFLP under

stochastic environments, they work with other features and

variants of the uncapacitated version. Thus, for instance, Ravi

and Sinha (2004) formulated the problem in the framework of

two-stage stochastic optimization so that the demand of each

customer in the UFLP is not known at the first stage. In each

scenario, a customer has a demand which may be zero. Each

facility has a first-stage opening cost and recourse costs in

other scenarios. These may be infinity, reflecting the unavail-

ability of the facilities in various scenarios. These authors

provided a nearly tight approximation algorithm to solve it.

Disruptions are other features incorporated in some UFLP.

Drezner (1987) introduced them in some FLPs for the first time.

One interesting recent research in this line was developed in Lu

et al (2015). In their work, authors used a model that allows

disruptions to be correlated with an uncertain joint distribution,

and they applied distributionally robust optimization to mini-

mize the expected cost under the worst-case distribution with

given marginal disruption probabilities.

Another variant of the problem with uncertainty is the

competitive FLP, used for commercial facilities, e.g., shops

and stores. In this case, the objective of a decision maker is

mainly to obtain as many demands for his/her facilities as

1164 Journal of the Operational Research Society Vol. 68, No. 10

http://www.guifi.net


possible. Uno et al (2010) presented a fuzzy method to address

this problem with stochastic demands. The demands for

facilities are represented as fuzzy random variables. For a

review of competitive location models, see the book by

Drezner (1995), and the review by Eiselt et al (1993).

In Contreras et al (2011), the uncapacitated hub location

problem is addressed. In this variant of the problem, it is assumed

that flows originating at the same node but having different

destination points can be routed through different sets of hub

nodes, i.e., a multiple assignment pattern applies. This way the

objective is tominimize the sumof the hub fixed costs and demand

routing costs. These authors demonstrate that the stochastic

problems with uncertain demands or dependent transportation

costs are equivalent to their associated deterministic expected

value problem in which random variables are replaced by their

expectations. In the case of uncertain independent transportation

costs, the corresponding stochastic problem is not equivalent and

specific solution methods need to be developed.

In order to incorporate the level of risk aversion into the

decision-making process, some works use a mean–variance

objective function. Thus, Jucker and Carlson (1976) used it in a

stochastic formulation of the UFLP in which selling price (and

hence demand) may be random. Later, Hodder and Jucker

(1985) extended this model to allow for correlation among

random prices. Wagner et al (2009) provided an exact method

for a problemwhere demands are probabilistic and correlated. It

is a mean–variance approach that balances two often conflicting

objectives: profit and associated uncertainty. The objective of

locating the facilities is to maximize the lower limit of future

earnings based on a stated confidence level.

Finally, some papers place constraints on the maximum

regret that may be attained by the solution (Kouvelis et al,

1992). The term of p-robustness to measure it was introduced

by Snyder and Daskin (2006). In Snyder et al (2007), they

combined the minimum-expected-cost and p-robustness mea-

sures for the UFLP with the aim of finding the minimum-

expected-cost solution that is p-robust. They solved their

models using Lagrangian decomposition.

Notice that none of these works in the literature dealing with

variants of the stochastic UFLP applied the combination of

simulation and metaheuristics proposed in this work, which

means that our approach is novel in this field.

4. Optimal solutions for the UFLP

In order to evaluate the quality of the results provided by

heuristic algorithms, different authors have used lower bound

values of the optimal values as a reference. However, to the

best of our knowledge, the optimal values for some of the

largest instances in the literature have not been reported so far.

Therefore, another contribution of this paper is the publication

of these optimal values, for all the classical benchmarks,

through the application of a MIP model which uses the Gurobi

state-of-the-art solver (see Table 1). In order to use this solver,

we have implemented the MIP model into a Python script. By

comparing against optimal values instead of lower bounds, we

can assess more accurately the quality of the solutions

obtained via approximate methods.

A mathematical model for the UFLP was provided by

Erlenkotter (1978). The set of clients is I, and the set of

possible locations for the facilities is J. Costs fj are the fixed

costs for installing facility j, and cij are the costs incurred if

customer i is served from facility j. Binary variables yj will be

1 if location j is used, and 0 otherwise, for j 2 J. Variables xij,

also binary, take the value of 1 if customer i is served from

facility j, and 0 otherwise, for i 2 I; j 2 J. The objective (1a) is

to minimize the sum of both fixed and variable costs.

Constraints (1b) state that all the customers must be satisfied

by exactly one facility. Constraints (1c) impose that if a

facility is used to serve some customer, then it must be opened.

minimize
X

j2J
fjyj þ

X

i2I

X

j2J
cijxij ð1aÞ

subject to:
X

i2I
xij ¼ 1 8i 2 I ð1bÞ

xij � yj 8i 2 I; j 2 J ð1cÞ

xij 2 f0; 1g 8i 2 I; j 2 J ð1dÞ

yj 2 f0; 1g 8j 2 J ð1eÞ

We have developed a Python-based implementation of this

mathematical model ready to be used in the Gurobi commer-

cial solver. As it will be shown in the experimental section, for

some of the largest instances several hours of computation are

required in order to obtain the optimal value. In some real-life

UFLP applications (e.g., in the telecommunication or com-

puting sectors), a solution might be required after a few

milliseconds or seconds. These applications justify the need

for fast heuristics. Additionally, these heuristics can be further

extended to simheuristics in order to account for the uncer-

tainty behavior that characterizes most real-life applications.

5. A savings-based heuristic for the UFLP

As the initial stage in the process of developing a simheuristic

algorithm is able to deal with the SUFLP, we have designed a

novel constructive heuristic for the deterministic UFLP.

Unlike the few heuristics available in the UFLP litera-

ture (Hoefer, 2014), our heuristic is relatively easy to under-

stand. Also, as shown in Table 1, it offers an outstanding

performance in terms of computing times, providing quite

competitive results even for the largest instances in the

literature (average gap around 3% with respect to the optimal

solutions) in just a few milliseconds. Thus, this heuristic

constitutes a good alternative for real-life UFLP applications

in which real-time solutions might be required.
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Notice that, in general, closing a facility is computationally

less expensive than opening a facility. Indeed, if an open facility

is closed, only the customers that were assigned to it need to be

re-allocated to alternative open facilities. On the contrary, if a

closed facility is open, then all customers in the system need to

be evaluated in order to decide which of them should be assigned

to it. Accordingly, the proposed heuristic is based on the concept

of cost savings associated with closing a given facility in the

current configuration of open facilities. The savings of closing a

given facility can be either a positive or a negative value. In

particular, the savings related to closing a facility in the current

configuration are computed as follows: the cost of opening the

facility, plus the assignment cost of its customers, minus the re-

allocation cost of its customers to alternative facilities. For each

customer, its best alternative facility is the open facility with a

minimum re-allocation cost in case its current facility is closed.

Thus, for example, in Figure 2, customers c1, c2, and c3 are

assigned to facilityF1, but ifF1 is closed they will be assigned to

F2 and F3, respectively. In this case, we would save the opening

cost of F1, as well as the assignment cost of c1, c2, and c3 to F1;

however, we would have to account for the re-allocation cost of

c1 and c3 to F3, as well as the re-allocation cost of c2 to F2.

Our constructive heuristic works as follows (Figure 3). Given

an UFLP instance, we consider an initial system configuration

in which all the facilities are open. Then, using this initial

configuration as a reference, we compute the cost savings

associated with closing each individual facility while keeping

all the others open. This way, we obtain a list of possible

closures, which is then sorted by decreasing savings value. This

is henceforth called the savings list. Afterward, starting from the

initial system configuration (the one with all facilities open), the

savings list is iteratively traversed from the beginning and until

Figure 2 Best and best alternative assignments for a customer.

Figure 3 Flow chart of the proposed heuristic approach.
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no more positive savings are obtained. At each iteration, the

corresponding facility is closed and the savings list is updated

according to the new configuration of open facilities. In order to

make the savings re-computation process efficient, every

customer keeps updated information about its best alternative

facility in case the currently assigned one gets closed. Thus,

every time an open facility F is closed, the customers directly

affected (i.e., the customers that were assigned to F) are quickly

re-allocated to their best alternative facilities. Additionally, the

customers indirectly affected (i.e., those customers that had F as

their best alternative facility) update the information about their

best alternative open facility. This way, the savings only need to

be re-computed for a reduced set of facilities, the ones associated

with the affected customers, which speeds up the computation.

6. Combination with a metaheuristic framework

In this section, we describe how the previous heuristic is

integrated into a metaheuristic framework. This allows

improving the quality of the generated solution whenever

more computing time is allowed. In this paper, the ILS

metaheuristic has been chosen. This selection is based on the

following criteria: (i) it offers a well-balanced combination of

efficiency and relative simplicity (Juan et al, 2014; Domin-

guez et al, 2016) and (ii) it can be easily extended to a

simheuristic (Grasas et al, 2016). Being an algorithm with few

parameters, our ILS-based approach represents an interesting

alternative to other state-of-the-art approaches.

The proposed ILS-based approach is detailed in Algorithm 1.

It receives the following input parameters: (i) the facilities and

customers of the instance; (ii) the limits for the percentage of

facilities to be deleted from the current base solution during the

perturbation phase; and (iii) a stopping criterion (maximum

number of iterations to run). The algorithm works as follows:

first, the savings list is created and sorted (line 1). Then, an

initial solution is generated using our savings-based heuristic

(line 2) or, alternatively, a biased-randomized version of it as

described in Juan et al (2011b) (this option might be preferred if

parallel computing strategies are required). A local search

procedure is applied to refine this initial solution (line 3). This

procedure combines closing and opening movements. The

solution generated will be used by the ILS framework as the

initial base solution. During the ILS iterative process (lines

7–19), the current base solution is perturbated in order to

generate a new feasible solution. After a local search process,

this new solution is compared against the current base solution

and if the former is better or an acceptance criterion is met, then

the latter is updated to resume the search from a more promising

point in the solution space. At any time, the best solution found

so far is also saved, since this is the solution that will be returned

at the end. Notice that during the perturbation stage, a random

percentage of the current base solution is destroyed (i.e., a

random percentage of closed facilities are opened) and then

reconstructed (by closing some facilities) to generate a new

solution. Also, notice that the acceptance criterion is based on

the concept of credit. Whenever the current base solution is

improved, a credit is assigned by the algorithm. This credit has

the same value of the improvement, and it poses a limit on the

quantity that the current base solution could be worsened during

the next iteration.
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For implementation purposes, the pseudocodes of the

auxiliary methods employed by the approach are included

and briefly explained next. The createSavingsList

method (Algorithm 2) is used to create and sort the list of

savings. The genInitSol method (Algorithm 3) is

responsible for generating the initial solution, which serves

as a starting point for the algorithm. The perturbate

method (Algorithm 4) implements the perturbation operator

used within the main loop of the algorithm. First, it starts a

destruction phase, so that a set of new facilities are
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randomly chosen to be included in the current base solution.

Their number is determined by the minimum destruction

percentage and the maximum destruction percentage.

Finally, a reconstruction phase is applied, using the

pathRelinking procedure. Path relinking was originally

proposed in the context of the tabu search metaheuris-

tic (Glover, 1997), and it is based on the generation of

new solutions by exploring trajectories that connect high-

quality solutions. Here, the pathRelinking method

(Algorithm 5) applies a simple form of path relinking

between two solutions. The localSearch method (Algo-

rithm 6) relies on a loop structured in two different blocks

that are kept running consecutively until a non-improving

iteration is reached. In the first block, an open facility is

tentatively removed from the solution to search for an

improvement in total cost. In the second block, a closed

facility is tentatively incorporated to the configuration of

open facilities.
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7. Computational experiments for the UFLP

To evaluate and assess the performance of the proposed

algorithms, several computational experiments were per-

formed. The proposed algorithms have been implemented as

Javar 7SE applications. All tests have been executed on a

standard desktop computer with an Intelr CoreTM i5 at 2.4

GHz and 8 GB RAM running on Windows 7. The largest

instances in the UFLP literature have been used, since they are

the most challenging ones. To the best of our knowledge, the

results of these instances have not been improved from 2006

(Resende and Werneck, 2006). Therefore, they are the perfect

benchmarks to test the quality of our algorithm. This set of

instances is called MED. They were originally proposed for

the p-median problem by Ahn et al (1988) and later used in the

context of the UFLP by Barahona and Chudak (1999). Each

instance is a set of n points picked uniformly at random in the

unit square. A point represents both a user and a facility, and

the corresponding Euclidean distance determines connection

costs. The set consists of six different subsets, each with a

different number of facilities and customers (500, 1000, 1500,

2000, 2500, and 3000), and three different opening cost

schemes for each subset (
ffiffiffi

n
p

=10;
ffiffiffi

n
p

=100, and
ffiffiffi

n
p

=1000

corresponding to 10, 100, and 1000 instance suffixes, respec-

tively). In order to introduce customer demands in these

instances (since they will be used later during the stochastic

experiments), we have divided the assignment costs of each

customer to each facility by the expected customer demand, so

that the assignment cost per unit is obtained.

As mentioned before, our MIP model implementation has

been run in order to generate the optimal solutions for this set of

instances. Afterward, we have executed the proposed savings-

based heuristic for each problem instance. Finally, our ILS-

based approach has been run. In particular, each instance has

been run 30 times, each time employing a different seed for the

pseudorandom number generator. Both the best and average

solutions found by our algorithm are reported jointly with the

average time for the 30 runs. Table 1 depicts all these results

using the benchmarks mentioned above. Each row corresponds

to a single instance. The first two columns show the Gurobi

results, the next three columns depict the savings-based

heuristic results, five columns are used for the ILS-based

approach results, and finally Resende and Werneck (2006)

results are in the last three columns. Times are shown in

seconds and gaps are calculated as follows:

GapðCost;CostOptimalÞ ¼ 100
Cost � CostOptimal

CostOptimal

� �

ð2Þ

Notice that our savings-based heuristic approach provides

reasonably good solutions in just a few milliseconds, with and

average gap of 3.15% with respect to the optimal values.

Additionally, our ILS-based approach provides near-optimal

solutions (average gap of 0.26% with respect to the optimal

values). Also, notice that the best and the average costs

provided are quite similar, which supports the idea that our

algorithm is quite robust in that sense.

Thus, although the performance of the algorithm proposed

by Resende and Werneck (2006) is still somewhat superior, the

difference of performance with respect to our ILS-based

approach seems to be small, which allows us to use it as a base

for our simheuristic approach.

8. Extending to a simheuristic for the SUFLP

Once it has been verified that our ILS-based approach is able

to provide competitive solutions in short computing times

(average gap below 1% after a few seconds in a standard

computer), it can be extended to a simheuristic algorithm for

solving the SUFLP, when solutions offering a good trade-off

between total expected cost and variability or risk might be

desirable. Now, instead of considering a deterministic service

cost di for a customer ið8i 2 f1; 2; . . .; jCjgÞ, this service cost

will be modeled as a random variable Di with E½Di� ¼ di.

As discussed in Juan et al (2015), one natural way to extend

heuristic algorithms, so they can deal with stochastic versions

of combinatorial optimization problems, is by integrating

simulation inside the metaheuristic framework. In the case of

an ILS metaheuristic framework, a detailed discussion of this

hybridization process can be found in Grasas et al (2016).

Accordingly, in this paper we have integrated our ILS-based

approach with Monte Carlo simulation (MCS). The MCS does

not only provide estimates to the expected cost associated with

the solutions generated by the approach, but it also reports

feedback to the stochastic search process. Indeed, the selection

of the current base solution is driven by the results of the MCS.

Algorithm 7 depicts our simheuristic proposal. On the one

hand, the detCost routine returns the deterministic cost of a

solution, i.e., the solution cost using the deterministic service

costs specified by the UFLP instance. On the other hand, the

stochCost routine returns the average cost of the simulations

performed over that solution (i.e., an estimate of its expected

cost). Observe that, after considering that a new solution is

better than the current base solution in the deterministic

environment (lines 11–12 with deltaDet storing the
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difference), a fast simulation is performed (line 13) in order to

check its goodness in the stochastic environment (lines 14–15

with deltaStoch storing the difference).

In case the new solution is better in the stochastic

environment, the current base solution is updated (line 16)

and a credit is fixed (line 17). The best-found solution is also

updated if the new solution improves its performance in the

stochastic environment (lines 18–19). A pool of best-found

solutions (poolBestSol) is kept in order to analyze them later

(line 20). If the new solution is not better than the current base

solution in terms of deterministic cost, we can still consider the

degradation of the current base solution. This allows the

algorithm to escape from stagnation (line 21). In order to avoid

a degradation after another, the credit is reestablished to zero

each time it is used (line 23). Finally, larger simulations are

performed over a reduced set of the best-found solutions. This

allows to obtain more accurate estimates of the different

parameters associated with the stochastic costs generated by

each of these solutions, e.g., standard deviation, quartiles, etc.

(lines 25–26).

In order to test our simheuristic algorithm in the

SUFLP environment, we have extended the deterministic

benchmark instances by employing the log-normal prob-

ability distribution for modeling the stochastic service

costs. In a real-world application, historical data could

be used to model each service cost by a different proba-

bility distribution. As discussed in Juan et al (2011a), the

log-normal distribution is a more natural choice than

the normal distribution when modeling nonnegative ran-

dom variables. The log-normal has two parameters,

namely: the location parameter, li, and the scale parameter,

ri. According to the properties of the log-normal distribu-

tion, these parameters will be given by the following

expressions:
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li ¼ lnðE½Di�Þ �
1

2
ln 1þ Var½Di�

E½Di�2

 !

ri

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln 1þ Var½Di�
E½Di�2

 !

v

u

u

t

�

�

�

�

�

�

�

�

�

�

�

�

As stated before, E½Di� ¼ di; 8i 2 f1; 2; . . .; jCjg. For compu-

tational experiments, we have considered a variance level

(uncertainty) Var½Di� ¼ 50di. Observe that the original UFLP

instances are a particular case of these new instances when

Var½Di� ¼ 0; 8i 2 f1; 2; . . .; jCjg.
During the stochastic searching process, only simulations

with a reduced number of runs (5000 in our experiments) are

employed. This way, we avoid the simulation to jeopardize the

computing time of the ILS-based approach. Once a reduced set

of promising solutions for the SUFLP has been selected, a

simulation with more runs (100,000 in our case) is employed

to obtain more accurate estimates of the different parameters

associated with the stochastic costs generated by each of these

solutions. Actually, simulation is not only used here to

generate estimates of the expected cost associated with each

solution and to guide the searching process of the heuristic

component, but it is also employed to generate observations on

the stochastic behavior of each solution. As suggested in Juan

et al (2015), these observations can then be analyzed to

perform a risk analysis on each of these promising solutions.

Notice that, in the basic SUFLP with a linear objective

function, the solution minimizing the total expected cost will be

the same as the optimal solution for the deterministic UFLP

(this property will not hold if, for instance, a nonlinear penalty

cost is added in the SUFLP objective function to account for

facilities with a total demand higher than a threshold, etc.).

Nevertheless, even in this basic SUFLP variant, the decision

maker will be interested not only in the solution that minimizes

the total expected cost but also in other solutions that might

offer a better trade-off between total expected cost and

‘robustness’ (in terms of assuming a reasonably low variability

or risk). For this purpose, our approach is able to generate

several alternative solutions, each of them offering different

values for each of the parameters considered. In particular, for

any given instance of the SUFLP we are interested in

obtaining: (i) det, the optimal solution for the deterministic

UFLP when applied to the stochastic environment (as discussed

before, for the basic linear version of the SUFLP this solution

will be also the one with the minimum expected cost); (ii) min-

avg, the solution with minimum expected cost found by the

simheuristic algorithm (for validation purposes, it might be

useful to compare min-avg with det); (iii) min-q3, the solution

with minimum third quartile, where the third quartile refers to

the observed costs after multiple executions of a solution; and

(iv) min-dev, a solution offering a good trade-off between

expected cost and standard deviation, i.e., among those

solutions with a low expected cost, we are interested in

identifying the ones also offering low variability or risk.

For the 1000_10 instance, Figure 4 depicts the aforemen-

tioned four solutions in a radar-like graph. Notice that each

solution offers different values in each of the three dimensions

considered. In particular, (i) the min-avg solution and the det

solution are overlapping, which contributes to validate our

approach; and (ii) both the min-avg and the det solutions offer

a poor performance, in terms of standard deviation and third

quartile, when compared with min-dev and min-q3,

respectively.

As mentioned before, once the simheuristic approach has

found the solutions with best performance for each dimension,

simulation with more runs (100,000 in our case) is employed

in the last step to obtain more accurate values. Therefore, we

can develop a multiple boxplot comparison of the cost

obtained through this large simulation for the aforementioned

four solutions. Figure 5 shows this multiple boxplot compar-

ison for the 1500-10 instance. For each boxplot, it also

includes the number of facilities open in the corresponding

solution.

Again, it can be observed that solution min-avg is quite

similar to solution det, both in average cost and variability as

well as in number of open facilities. However, solution min-q3

seems completely different: by accepting a somewhat higher

expected cost, it offers less variability (risk). In particular,

75% of the times it is applied will provide cost levels that are

considerably lower than the third quartile associated with the

det solution. Notice that this reduction in risk is achieved by

increasing the number of open facilities: by increasing this

number, the network becomes more ’resilient’ to high

demands that could significantly increase service costs if only

a few facilities were open. Finally, the min-dev solution

illustrates how it is possible to find alternative solutions

combining different cost variability and expected cost levels.

According to the results, it seems that in order to reduce the

cost variability more facilities are needed, thus reducing the

Figure 4 Comparison of solutions for instance 1000_10.
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expected service cost (although increasing somewhat the

opening cost and, eventually, the total expected cost).

9. Conclusions

In this paper, a simheuristic algorithm for solving the stochastic

uncapacitated facility location problem (SUFLP) has been

developed. In the SUFLP, service costs are assumed to be

random variables. The simheuristic development process is

based on the following logic: first, we have obtained optimal

solutions for the large-sized instances of the deterministic

version of the problem (UFLP). To the best of our knowledge,

these optimal values had never been reported before in the

UFLP literature. Unfortunately, obtaining optimal values for

large-sized instances requires computing times that are beyond

the available times in some practical applications of the UFLP.

For that reason, we have also developed a fast savings-based

heuristic able to provide reasonably good solutions in a few

milliseconds. This heuristic might be useful in some real-life

applications whenever instantaneous solutions are required.

Then, this heuristic has been extended to a competitive ILS-

based approach, which is able to provide near-optimal solutions

in short time. Finally, we have built a simheuristic algorithm

for the SUFLP by integrating the metaheuristic with Monte

Carlo simulation techniques. The simulation stage is not only

used to estimate the stochastic behavior of the solutions

generated by the ILS-based approach, but its feedback is used

by the approach to drive the stochastic search process.

As illustrated with several examples, even in the case of basic

versions of the SUFLP with linear objective functions, our

simheuristic approachcan beused toprovide alternative solutions

to the one with the minimum expected cost, e.g., the solution that

minimizes a given percentile, or solutionswith different trade-off

levels of expected cost and variability. Themethodology can also

be applied to more advanced versions of the SUFLP with

nonlinear penalty costs and/or probabilistic constraints,where the

optimal solution to the deterministic UFLP might provide a

suboptimal value for the minimum expected cost.

This work can be extended in several directions. In first

place, other more advanced variants of the SUFLP could be

analyzed. Also, similar approaches to the one introduced in

this paper could be used to solve stochastic versions of: (i) the

capacitated facility location problem; (ii) the p-median prob-

lem; or (iii) the location routing problem, where also vehicle

routing plans need to be accounted for.
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