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Abstract

Accurate numerical solutions for the Schrödinger equation are of utmost importance in
quantum chemistry. However, the computational cost of current high-accuracy methods scales
poorly with the number of interacting particles. Combining Monte Carlo methods with un-
supervised training of neural networks has recently been proposed as a promising approach
to overcome the curse of dimensionality in this setting and to obtain accurate wavefunctions
for individual molecules at a moderately scaling computational cost. These methods cur-
rently do not exploit the regularity exhibited by wavefunctions with respect to their molecular
geometries. Inspired by recent successful applications of deep transfer learning in machine
translation and computer vision tasks, we attempt to leverage this regularity by introducing
a weight-sharing constraint when optimizing neural network-based models for different molec-
ular geometries. That is, we restrict the optimization process such that up to 95 percent of
weights in a neural network model are in fact equal across varying molecular geometries. We
find that this technique can accelerate optimization when considering sets of nuclear geome-
tries of the same molecule by an order of magnitude and that it opens a promising route
towards pre-trained neural network wavefunctions that yield high accuracy even across differ-
ent molecules.

1 Introduction

Using a deep neural network-based ansatz for variational Monte Carlo (VMC) has recently emerged
as a novel approach for highly accurate ab-initio solutions to the multi-electron Schrödinger equa-
tion [1–5]. It has been observed that such methods can exceed gold-standard quantum-chemistry
methods like CCSD(T) [6] in accuracy, with a computational cost per step scaling only with O(N4)
in the number of electrons [4]. This suggests a drastic improvement from classical quantum-
chemistry methods such as CCSD(T), or CISDTQ1, which scale with O(N7) and O(N10), re-
spectively. However, due to the large number of free parameters and the need for Monte Carlo
integration, the constant prefactor for neural network-based methods is typically much larger than
for classical approaches such that even systems of modest size still require days or weeks of compu-
tation when using highly optimized implementations on state-of-the-art hardware [7]. This often
renders deep neural network (DNN)-based ansatz methods unfeasible in practice, in particular
when highly accurate results for a large number of molecular geometries are required.

Among such tasks are computational structure search, determination of chemical transition
states, and the generation of training datasets for supervised machine learning algorithms in quan-
tum chemistry. Latter methods are applied with great success to interpolate results of established
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quantum chemistry methods such as energies and forces [8–10], properties of excited states [11],
underlying objects such as orbital energies [12], or the exchange energy [13]. Given sufficient train-
ing data, these interpolations already achieve chemical accuracy relative to the training method
(e.g. Density Functional Theory) [14], highlighting the need for increasingly accurate ab-initio
methods which can be used to generate reference training data.

The goal of making DNN-based VMC applicable for the generation of such high-quality datasets
for previously untractable molecules is a key motivation for this work. The apparent success of
supervised learning in quantum chemistry suggests a high degree of regularity of the aforementioned
properties and the wavefunction itself within the space of molecular geometries.

Here, we aim to exploit potential regularities of the wavefunction within the space of molecular
geometries already during VMC optimization by applying a simple technique called weight-sharing.
Throughout optimizing instances of the same neural network-based wavefunction model for dif-
ferent molecular geometries, we enforce that for large parts of the model, each instance has the
exact same neural network weights. In particular, this means that on the parts of the model where
weight-sharing is applied, each instance computes precisely the same function. We note that this
idea is reminiscent of (and inspired by) the ML technique deep transfer learning where parts of a
pre-trained model are reused for different similar tasks and which has led to breakthrough results,
for example in natural language processing [15] or computer vision [16].

Weight-sharing can be viewed as a regularization technique which requires large parts of the
optimized model to work equally well for a potentially wide variety of different nuclear, or even
molecular, geometries. Under the assumption that the wavefunctions are sufficiently regular across
geometries, it should therefore have a stabilizing effect on the optimization process and yield
wavefunctions that also generalize well to new molecular geometries when used as an initial guess
before optimization. For a shared weight, each gradient descent update during optimization for a
specific geometry is applied to the complete set of considered geometries. Weight-sharing therefore
has the potential of significantly accelerating the optimization process.

Our main numerical results highlight the benefits of weight-sharing as compared to indepen-
dent optimization (Sec. 2.1) and the applicability of pre-trained shared weights for new calcula-
tions (Sec. 2.2). In particular, we show that by applying these techniques in combination with
second-order optimization, it is possible to consistently reach the energies of MRCI-F12 reference
calculations – up to chemical accuracy – for molecules up to the size of ethene after only O(102) op-
timization epochs per geometry. Note that for most recently proposed DNN-based VMC methods,
wavefunctions are typically being optimized for O(104) - O(105) epochs. To further demonstrate
the applicability of the proposed framework in practice, we calculate the transition path for H+

4 be-
tween two symmetry equivalent minima, wavefunctions for a set of differently twisted and stretched
ethene configurations, as well as the potential energy surface (PES) – including forces – of a H10

chain on a 2D grid of nuclear coordinates (Sec. 2.3). While nuclear forces are also available for
other methods, such as domain-based local pair natural orbital (DLPNO)-Coupled-Cluster [17],
they are not available for all types of systems [18], or come at a significant additional computational
cost, while our approach yields forces at a low incremental cost.

2 Results

To investigate weight-sharing for neural network-based models in VMC, we consider a framework,
dubbed DeepErwin, where the trial wavefunction is modeled similar to the recently proposed
PauliNet [2], with modifications leading to an overall smaller network that yields higher accuracies.
The basic idea behind this model is to enhance a Slater determinant ansatz with deep neural
networks, where initial orbitals are obtained from a CASSCF (complete active space self-consistent
field) calculation with a small basis set and a small active space. The resulting wavefunction is then
modified by applying a backflow transformation to the orbitals as well as to the electron coordinates,
and via an additional Jastrow factor. All these enhancements depend on an embedding of the
electron coordinates into a high-dimensional feature space which takes into account interactions
with all other particles. This embedding is based on Electronic SchNet [19] and PauliNet. Cusp
correction is performed explicitly [20]. In contrast to PauliNet, we use an additional equivariant
backflow shift for the electron coordinates, smaller embedding networks, and no residual in the
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Figure 1: (a) Overview of the neural network parts of the wavefunction model implemented in the
DeepErwin framework, including a top-level visualization of the two weight-sharing setups consid-
ered in our experiments. (b) Energy of optimized wavefunctions relative to reference calculations
[4] for DeepErwin with first-order optimization (ADAM), second-order optimization (K-FAC),
and PauliNet [2]. DeepErwin baseline solutions without weight-sharing significantly outperform
PauliNet across the tested systems despite a smaller number of parameters.

embedding layers. For a realization of the wavefunction model implemented in the DeepErwin
framework, the energy can be approximated through Monte Carlo integration. To eventually obtain
the wavefunction of the ground state for a specific molecule, this energy is minimized by applying
gradient descent steps to the free parameters of the wavefunction model. A detailed description of
our architecture and the optimization procedure can be found in the methods section.

A top-level overview of the neural network parts of DeepErwin is shown in Figure 1a. In com-
parison with PauliNet, we find that, without using weight-sharing constraints, we achieve superior
results with significantly fewer trainable weights for the small systems tested in [2] when training
for the same number of epochs (see Fig. 1b). This indicates that the architecture implemented
in DeepErwin provides a meaningful baseline to investigate the effects of weight-sharing on the
optimization process. The application of weight-sharing is of course not limited to this specific
model but could equally well be adapted for any neural network-based wavefunction model.

All subsequently reported results were obtained via second-order optimization using the Kronecker-
factored approximate curvature (K-FAC) [21] which was already implemented for FermiNet [4]. To
show that our findings are consistent across different types of optimization, we also report results
for the experiments from Sec. 2.1 and Sec. 2.2 when using the well-known ADAM algorithm [22]
in the supplementary materials.

2.1 Accelerated optimization through weight-sharing

The implemented architecture as well as the hyperparameters used in our experiments are designed
to allow for a maximum number of free parameters to be potentially shared across geometries. Two
parts of the model that should be particularly well-suited for weight-sharing are the electron coor-
dinate embedding and the generalized part of the backflow factor. Both basically serve as feature
extractors that compute high-dimensional embeddings of electron coordinates and are therefore
not necessarily required to perform geometry-specific computations. The orbital-specific part of
the backflow factor, on the other hand, has a one-to-one correspondence to the orbitals yielded by
CASSCF for a given geometry, suggesting that the neural network weights defining it cannot be
shared across geometries in a meaningful way.

When weight-sharing is restricted to the embedding and the generalized part of the backflow
factor, usually about 75 % of the weights in the model are covered by weight-sharing constraints.
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Figure 2: Mean evaluation error relative to the reference calculation (MRCI-F12(Q)/cc-pVQZ-
F12) as a function of training epochs per geometry for four different sets of nuclear geometries.
Shadings indicate the area between the 25 % and the 75 % percentile of considered geometries. For
each method, we plot intermediary and final results for optimizations that ran for a total number
of 16,384 epochs per geometry, respectively 8,192 epochs per geometry for shared optimization of
H10 and ethene. Note that for H10, the reference energies here differ slightly from the reference
energy in Figure 1b, which was not available for the complete set of 49 geometries.

In the most extreme case, when all weights are being shared – except the ones defining the orbital-
specific backflow – this number grows to roughly 95 % (cf. Fig. 1a). Note that precise counts for
the numbers of total and shared model parameters used for the experiments in this section slightly
differ between different molecules (see Table 2).

We evaluate both these setups in four cases by computing the PES of four different molecules,
namely H+

4 , the linear hydrogen chains H6 and H10, and ethene. For H+
4 , we consider a diverse

set of 112 different configurations, covering both low-energy relaxed geometries, as well as strongly
distorted configurations. For both hydrogen chains, we calculate the wavefunction of the ground
state for 49 different nuclear geometries that lie on a regular grid with respect to a parametrization
based on the distance a of two adjacent H-atoms and the distance x between these H2 pairs. In
the case of twisted ethene, the set of 30 geometries iterates over ten different twist angles and
three different bond lengths for the carbon-carbon double bond. Figure 5a depicts the resulting
PES for H10. Figure 4b plots the obtained energies for the minimum-energy-path from the non-
twisted equilibrium geometry to the 90◦ rotated molecule, considering for each twist angle the CC
bond-length with the lowest energy.

For all four molecules, we compare the optimization of the wavefunction models when applying
weight-sharing with the respective independent optimizations. The results of these experiments
are compiled in Figure 2. Across all physical systems, the optimization converges fastest when
95 % of the weights are being shared. In particular, we find that in this case, the reference energy
(MRCI-F12(Q)/cc-pVQZ-F12; see Methods section for computational details) can be reached, up
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Figure 3: Mean evaluation error relative to a reference calculation (MRCI-F12(Q)/cc-pVQZ-F12
(Molpro)) as a function of training epochs per geometry for four different sets of nuclear geometries.
Plots show energy errors for two different pre-training schemes, compared to a standard non-
pretrained optimization: Pre-training on different geometries of the same molecules, and pre-
training on geometries of a smaller molecule (methane for ethene and H6 for H10). Shadings
indicate the area between the 25 % and the 75 % percentile of considered geometries. For each
method, we plot intermediary and final results for independent optimizations that ran for a total
number of 16,384 epochs.

to chemical accuracy, between 6 and 13 times faster than when optimizing the respective geometries
independently of each other.

To test our findings in this section against a more difficult benchmark, we also performed
an additional experiment where independent optimizations for different ethene configurations were
fully initialized with weights from a wavefunction that had already been optimized for a similar but
different molecular configuration using an independent optimization scheme. While this approach
seems to be advantageous during early optimization as compared to a scheme that applies a
weight-sharing constraint for 95 % of the weights in the model, at the time the wavefunctions reach
chemical accuracy, shared optimization without pre-training outperforms this new baseline to a
degree comparable with the results shown in Figure 2. Detailed results for this experiment can be
found in Figure S3 in the supplementary materials.

2.2 Shared optimization as pre-training

Results from the previous section show that even in a setting where ground state wavefunctions
are being closely approximated for a wide range of nuclear geometries by different instances of
our model, the overwhelming number of free parameters can in fact be identical across those
instances. This suggests that parts of our model that were successfully optimized using a weight-
sharing constraint encode general computational building blocks that are highly suitable for the
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approximation of different wavefunctions. In particular, one could hope that those building blocks
also generalize well to molecular geometries for which they were not previously optimized.

To test this hypothesis, we consider for each of the four molecules from the previous experiment
a small new set of nuclear geometries that were not part of the original shared optimization. For
these sets, we compare two types of independent optimization. In one case, a default random
method is used to initialize the weights of the neural networks before optimization. In the second
case, we reuse results from the previous optimization in the sense that all weights of the model
that were shared in the first experiment are now initialized from the result of this optimization.
For the remaining 5 % of weights, default random initialization is applied.

Pushing this approach even further, we also use previously optimized shared weights to initialize
wavefunction models for an entirely different molecule. In particular, we use shared weights that
were optimized for the hydrogen chain H6 to initialize models for H10, and weights that were
optmized for methane to initialize models for ethene. This is possible because the embedding
network architecture is independent of the number of particles in the respective molecule. If
successful, this method can be used to pre-train weights for large and expensive molecules by
solving the Schrödinger equation for smaller, computationally cheaper systems.

The results of these experiments are shown in Figure 3. For all four considered molecules, we
used weights that were optimized with a shared-weight constraint on a set of different geometries
(cf. Fig. 2) for 8,192 optimization epochs per geometry. Across all systems, pre-training via
shared optimization with different geometries of the same molecules dramatically accelerates the
subsequent optimization such that the reference energy can be consistently reached up to chemical
accuracy after little more than a hundred optimization epochs. In the case of H10, the usage of
weights that were pre-trained on different configurations of a smaller molecule also yields significant,
albeit much smaller improvements. When using methane configurations to pre-train a wavefunction
model for ethene, however, we could only find slight improvements during early optimization.

2.3 Calculating transition paths and forces

The significant speed-ups obtained through weight-sharing enable efficient computational studies
for systems that consist of many different geometries of the same molecule. We demonstrate the
capabilities of our approach on two exemplary tasks: Finding transition paths and calculating
potential energy surfaces. As a first example, we calculate the transition path for H+

4 between two
symmetry equivalent minima via a specific transition state previously proposed in the literature
[23]. For all 19 points along the transition path, wavefunctions are optimized simultaneously
for 7,000 epochs per geometry using a weight-sharing constraint that covers about 95 % of total
weights in the model. We furthermore compute the energies along a reaction path for twisted
ethene which describes a rotation of the twist by 90◦. The ten geometries considered in this task
are a subsample of the 30 geometries previously used in the computations shown in Fig. 2. As
a baseline, we consider independent optimization without a weight-sharing constraint as well as
classical methods from computational chemistry.

The results of these calcualations are shown in Figure 4a and Figure 4b, respectively. We find
our method to be in superior agreement with high-accuracy reference calculations: DeepErwin with
weight-sharing predicts barrier heights that agree with MRCI within 1µHa (0.02%) for H+

4 , and 3.3
mHa (3%) for ethene. This leads us to believe that the barrier height for H+

4 has been underesti-
mated by approximately 1 mHa in previous high-accuracy calculations [23]. For the electronically
challenging case of twisted ethene, both Hartree-Fock as well as CCSD(T)-F12 overestimate the
energy of the 90◦ twisted molecule. DeepErwin, however, yields barrier energies that are in much
closer agreement with the MRCI-D-F12 calculations.

For calculating the transition paths, we used predefined sets of geometries as a given input.
In many cases, however, it is not a-priori clear which nuclear geometries are of interest in a given
task, and a careful exploration of the respective PES is required. To do this efficiently, not only
energies, but also forces on the nuclei, that is, gradients of the energy with respect to the nuclear
coordinates, are required. For realizations of the DeepErwin wavefunction model, these forces can
be calculated in a straightforward and computationally efficient fashion via the Hellman-Feynman
theorem [24] and by applying established variance correction schemes to accelerate convergence of
the Monte Carlo integration (see Methods section). The PES and the corresponding forces for the
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Figure 4: (a) Energy of H+
4 along reaction path between symmetry equivalent minima, via transi-

tion state 1 as defined in [23]. DeepErwin with weight-sharing constraints is in perfect agreement
with MRCI-F12(Q) and CCSD(T)-F12 after 7,000 optimization epochs per geometry. (b) Ener-
gies for ten geometries that describe a rotation of the twist for twisted ethene by 90◦. Results
for DeepErwin with and without weight-sharing are plotted after 8,192 optimization epochs per
geometry.

linear hydrogen chain H10, evaluated on a regular grid of 49 geometries, are depicted in Figure 5a
and Figure 5b, respectively. The corresponding wavefunctions were optimized for 8,192 epochs per
geometry using a weight-sharing constraint for approximately 95 % of the model weights. We find
that the energetic minimum is given by the dimerization into five H2 molecules with a covalent
bond of a = 1.4 Bohr each, rather than for an equally spaced arrangement of atoms. This is an
instance of the well-known Peierls distortion [25].

Figure 5c shows that the force vectors obtained by DeepErwin via the Hellman-Feynman theo-
rem are in perfect agreement with the forces computed from finite differences of MRCI-F12 refer-
ence calculations. Our computational experiments do not show any signs of spurious Pulay forces
[26], which occur when the approximated wavefunction is not an eigenfunction of the Hamiltonian.
This suggests that DeepErwin yields not only highly accurate energies, but also highly accurate
wavefunctions.

3 Discussion

Sharing the weights of realizations of a neural network-based wavefunction model across differ-
ent nuclear geometries can significantly reduce the computational cost of VMC optimization. For
several molecules, we found that weight-sharing can in fact decrease the number of required op-
timization epochs per geometry to reach a given reference energy up to chemical accuracy by a
factor between 6 and 13. Our approach yields the best results when an overwhelming majority
of network weights is being shared, suggesting a strong regularity of wavefunctions of the consid-
ered molecules within the space of nuclear geometries. Further evidence for this regularity is also
provided by a concurrent method named PESNet, which was released shortly after DeepErwin
was first available as a preprint [27]. PESNet is based on the FermiNet model and employs a
meta graph neural network (GNN) to simultaneously learn wavefunctions for a complete potential
energy surface (PES) such that after optimization, the model parameters for a new geometry can
be predicted via a simple forward pass through the meta GNN. The fact that this approach reli-
ably yields high-accuracy results for different configurations that were sampled from a PES further
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Figure 5: (a) Potential energy surface (PES) for the H10 chain. The variable a is representing
the distance between two H-atoms and x is the distance between two H2 molecules. The lowest
ground state of the PES describes the dimerization. (b) Cubic interpolation of the PES with
force vectors for the H10 chain. Red arrows depict force vectors computed by DeepErwin via the
Hellmann-Feynman theorem, whereas black arrows represent numerical gradients that are based on
finite differences of MRCI-F12 reference calculations. (c) Forces computed by DeepErwin plotted
against the respective forces obtained from finite differences of the MRCI-F12 reference calculation.

underlines our observation that the regularity of wavefunctions within the space of geometries can
be heavily exploited for DNN-based QMC methods by also enforcing regularity on large domains
of the parameter space.

We found that optimized shared weights yield highly applicable initial weights when consid-
ering nuclear geometries for which the wavefunction model was not previously optimized. Even
for molecules such as ethene, pre-training with shared optimization makes it possible to reach
an MRCI-F12(Q)/cc-pVQZ-F12 reference calculation up to chemical accuracy after only a few
hundred optimization epochs. A possibly attractive route towards making VMC optimization
tractable for more complex molecules could be to pre-train large parts of a wavefunction model
on small, computationally cheap, systems. In our experiments, we found that the optimization
of H10 wavefunctions can in fact be improved significantly when using shared optimization for
a set of H6 geometries to pre-train the respective models. In the case of ethene, however, we
could only see small improvements during early optimization when parts of the respective model
were pre-trained on sets of smaller methane geometries. Due to the fact that any optimization of
DNN-based wavefunction models is highly sensitive to changes in the architecture and optimiza-
tion hyperparameters, we would consider our findings as preliminary evidence that merits further
research towards the development of a kind of universal wavefunction, whose neural network parts
were optimized for a great number of diverse molecular geometries and which is therefore capable
of closely of approximating wavefunctions of the ground state for many physical systems after only
a brief step of additional optimization.

Our results do not provide a conclusive answer whether for the investigated sets of molecular
geometries, the considered weight-sharing setups actually limit the capability of our model to
approximate the true wavefunctions of the ground state. In general, we would expect this to
be the case, but judging from our experimental results, the loss of expressiveness introduced by
weight-sharing regularization might often be negligible. This is evidenced by the fact that across
all experiments, sharing 95 % of model weights yields the same or even lower energies than the
respective independent optimizations. It is furthermore not clear yet, what an optimal algorithm
that exploits weight-sharing for a given task could look like. Based on our results so far, for an
exhaustive study of the PES of a molecule, we would suggest a procedure where – possibly guided
by estimates of the forces on the nuclei – geometries of interest are iteratively included in a shared
optimization, and which is eventually concluded by an additional step of independent optimization
for some or all of the considered geometries.

The proposed method of weight-sharing is not limited to the specific architecture used in this
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work but could potentially be exploited for any neural network-based wavefunction model. Due
to the interesting regularization properties, it could even be beneficial to apply weight-sharing in
a context where only the wavefunction for a single molecular geometry is of interest.

A potential drawback of the proposed method in practice is that shared optimization can
not easily be parallelized across multiple devices (GPUs or CPUs), because each geometry is
dependent on updates from all other geometries. One possibility to overcome this issue would be
to consider an average loss across all geometries during gradient descent. Such a loss could easily
be parallelized by using a separate device for each geometry. In our current implementation of
the DeepErwin framework, however, for each epoch only a single geometry is considered during
shared optimization, and it is therefore only possible to distribute the Monte Carlo samples within
a batch across multiple devices, as it is common practice [7].

4 Methods

For a molecule with nnuc nuclei, n↑ spin-up electrons, and n↓ spin-down electrons, we write
r = (r1, . . . , rn↑ , . . . , rn↑+n↓) to denote the set of Cartesian electron coordinates, and R =
(R1, . . . , Rnnuc

) for the set of coordinates of nuclei. The electron coordinates r are always as-
sumed to be ordered such that the first n↑ entries correspond to spin-up electrons, while the last
n↓ entries are coordinates of spin-down electrons. We write nel = n↑ + n↓ for the total number of
electrons and Zi for the charge of the i-th nucleus.

4.1 Wavefunction model

The model implemented in DeepErwin is closely related to the recently proposed PauliNet [2].
Let θ denote the set of all free (trainable) parameters in the model and ndet the number
of enhanced Slater determinants. With a high-dimensional embedding of electron coordinates
x(r;R) = (x1, . . . , xn↑ , . . . , xn↑+n↓) and an explicit term γ(r) for cusp correction in the Jastrow
factor, a realization ψθ of the DeepErwin wavefunction model can be written as

ψθ(r) = eJ(x(r;R))+γ(r)
ndet∑

d=1

αd det
[
Φ↑d (r,x(r;R))

]
det
[
Φ↓d (r,x(r;R))

]
, (1)

where αd ∈ R is a trainable weight, the scalar function J defining the Jastrow factor is represented
by two fully connected feedforward neural networks, and Slater determinants for spin-up electrons
are defined via

Φ↑d (r,x(r;R)) =



ϕ↑,d1

(
r1 + s1(r,x;R)

)
η↑,d1 (x1) · · · ϕ↑,d1

(
rn↑ + sn↑(r,x;R)

)
η↑,d1 (xn↑)

...
. . .

...
ϕ↑,dn↑

(
r1 + s1(r,x;R)

)
η↑,dn↑ (x1) · · · ϕ↑,dn↑

(
rn↑ + sn↑(r,x;R)

)
η↑,dn↑ (xn↑)


 . (2)

Matrices Φ↓d (r,x(r;R)) for spin-down electrons can be defined analogously. The single electron

orbitals ϕ↑,di are obtained from the ndet most significant Slater determinants from a CASSCF
method and remain fixed throughout optimization. The backflow shifts si as well as the backflow
factors η↑,di are represented by fully connected feedforward neural networks. The embedded coor-
dinate xi of the i-th electron takes into account all particle positions in the system independent of
particle type and spin. An overview of the model given by eq. (1) is shown in Figure 6. Further
details regarding our implementation of the coordinate embedding, the Jastrow factor, backflow
transformation, as well as cusp correction are given below.

4.1.1 Electron coordinate embedding

The embedding x(r;R) is a slightly simplified version of the SchNet embedding used for PauliNet
[2, 19]. For brevity, we extend our notation to also include the nuclear coordinates in the coor-
dinates rj by defining rj = Rj−nel

for nel < j ≤ nnuc. To embed the coordinates ri of the i-th
electron, we consider input features based on pairwise differences and distances with respect to all
other particles in the system. Let i ∈ {1, . . . , nel}, j ∈ {1, . . . , nel + nnuc}, and nrbf denote the

9



Figure 6: Overview of the computational architecture implemented in DeepErwin. Spin depen-
dance has been omitted for clarity, but in practice there are two parallel streams for spin-up and
spin-down respectively.

number of radial basis features. We use #»r ij = ri−rj , and rij = | #»r ij | to denote pairwise differences
and distances, respectively, and define the pairwise feature vector

hij =

(
e−(rij−µ1)2/σ2

1 , . . . , e−(rij−µnrbf
)2/σ2

nrbf ,
1

rij + 0.01

)
∈ Rnrbf+1+3, (3)

where the mean and variance parameters are defined as

µk = cq2
k, and σk =

1

7
(1 + cqk), (4)

respectively, for an index k ∈ {1, . . . , nrbf}, a parameter qk that is chosen from an equidistant grid
of the interval [0, 1], and a cutoff parameter c ∈ R.

For a fixed integer L and an embedding dimension nemb, let
(
gl, wlsame, w

l
op, w

l
nuc

)L
l=0

and
(
f lsame, f

l
op

)L
l=1

denote sequences of vector-valued functions, where each function is represented
by a fully connected feedforward neural network with output dimension nemb. To embed the
coordinates of the i-th electron based on the pairwise feature vectors hij , we use � to denote
element-wise multiplication and define for i ∈ {1, . . . , nel}

x0
i = g0




nel∑

j=1
j 6=i

w0
σij

(hij)� f0
σij

+

nel+nnuc∑

j=nel+1

w0
nuc(hij)� f0

Zj−nel


 , (5)

xli = gl




nel∑

j=1
j 6=i

wlσij
(hij)� f lσij

(xl−1
j ) +

nel+nnuc∑

j=nel+1

wlnuc(hij)� f lZj−nel


 with 1 ≤ l ≤ L, (6)

where σij = ’same’ for same-spin pairs of electrons and σij = ’op’ for pairs of electrons with
opposite spin, and where f0

same, f0
op, and f0

Zj−nel
, . . . , fLZj−nel

denote trainable vectors of length

nemb. The embedding of the i-th electron coordinates ri is eventually defined as

xi = xLi . (7)
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The embedding originally applied in PauliNet has an additional residual term in eq. (6) and

considers specific functions
(
gl
)L
l=0

for same-spin, opposite-spin, and nuclear input channels.

4.1.2 Backflow transformation

Based on the embedding x(r;R), our model applies spin-dependent backflow shifts and factors to
the single electron orbitals in the Slater determinants (cf. eq. (2)). For simplicity, this section only
considers the spin-up case.

Let η↑gen denote a vector-valued function that is represented by a fully connected feedforward
neural network, and ωbf ∈ R a single spin-independent trainable weight. For the i-th orbital and
the j-th electron in the d-th Slater determinant, the backflow factor is computed as

η↑,di (xj) = 1 + ωbfη̂
↑,d
i

(
η↑gen(xj)

)
, (8)

where η̂↑,di denotes an orbital-specific function that is also represented by a feedforward neural
network.

The inner function η↑gen can be seen as an extension of the embedding layer. Apart from
electron spin orientation, it remains unchanged across electrons and determinants and is hence
called general backflow factor. The outer function η̂↑,di , on the other hand, is specific to the i-th
orbital in the d-th determinant obtained from a CASSCF method. The motivation behind defining
the backflow factor via the composition of these two functions was to maximize the number of
neural networks weights than can possibly be shared across nuclear geometries. Note that for two
distinct nuclear geometries, CASSCF does in general not yield the same number of unique orbitals.
While this does not raise an issue for the general backflow factor η↑gen, it implies that sharing the

neural network weights that define η̂↑,di across nuclear geometries is in general not possible in a
meaningful way.

Based on ideas from [28], the backflow shift is based on rotation-invariant features and rotation-
equivariant pairwise differences. It is furthermore split into an electron-electron and an electron-
nucleus part. Besides the embedding, we additionally use side products of the embedding network
as inputs and define the following feature vectors

f el
i =

(
wLσi1

(hi1)� fLσi1
(xL−1

1 ), . . . , wLσinel
(hinel

)� fLσinel
(xL−1
nel

)
)

(9)

and

fnuc
i =

(
wLnuc(hi(nel+1))� fLZ1

, . . . , wLnuc(hi(nel+nnuc))� fLZnnuc

)
(10)

for i ∈ {1, . . . , nel}. All features are obtained without additional cost at the end of the embedding
loop (cf. 6). The electronic part of the shift for the i-th electron is defined as

sel
i (r, xi, f

el
i ) =

nel∑

k=1
k 6=i

ŝel

(
xi, f

el
i

) #»r ik
1 + r3

ik

. (11)

In contrast to the backflow factor, we do not differentiate between different spins to reduce com-
plexity. Similarly, the electron-nuclear shift is computed via

snuc
i (r,R, xi, f

nuc
i ) =

nnuc+nel∑

k=nel+1

ŝnuc

(
xi, f

ion
i

) #»r ik
1 + r3

ik

, (12)

where ŝel and ŝnuc are represented by feed-forward neural networks. A decay in the vicinity of
nuclei ensures that the applied backflow shifts do not lead to a violation of the Kato cusp condition
[29]. The complete backflow shift is computed by

si(r,R, xi, f
el
i , f

nuc
i ) = ωsh

∏

n

tanh (2Zn|ri −Rn|)2(
sel
i (xi, f

el
i ) + snuc

i (xi, f
nuc
i )

)
, (13)

with a spin-independent trainable weight ωsh ∈ R.
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4.1.3 Jastrow factor

With two spin-dependent scalar functions J↑ and J↓, that are both represented by fully connected
feedforward neural networks, the Jastrow factor (cf. eq. (1)) is defined as

J (x(r;R)) =

n↑∑

i=1

J↑(xi) +

nel∑

i=n↑+1

J↓(xi). (14)

4.1.4 Cusp correction

The Kato cusp condition [29] is a necessary condition for eigenstates of the Hamiltonian H. It
ensures that the local energies of a wavefunction ψ are finite by forcing the kinetic energy term
∇2ψ to diverge in such a way that it exactly cancels the divergence caused by the potential
energy term Zn/|ri − Rn| when the i-th electron approaches the n-th nucleus. The orbitals ϕ↑,di ,

respectively ϕ↓,di , yielded by a CASSCF method (cf. eq. 2), do in general not lead to enhanced
Slater determinants that satisfy the cusp condition. To address this issue, we follow the approach
outlined in [20]: Within a radius Rcusp around the nuclei, we replace the molecular orbitals by
an exponentially decaying function which satisfies the Kato cusp condition, transitions smoothly
into the orbitals at Rcusp, and minimizes the variance of the local energy of this orbital. Cusp
correction for the enhanced Slater determinants is performed after the initial set of orbitals has been
obtained from a CASSCF calculation and remains fixed during the optimization of the wavefunction
parameters θ.

To account for electron-electron cusps in the Jastrow factor (cf. eq. 1), we use an explicit term

γ(r) =

nel∑

i=1

nel∑

j=i+1

rij
rij + 1

, (15)

similar to the one applied in [1].

4.2 Variational Monte Carlo

We use a standard variational Monte Carlo approach to optimize our wavefunction ansatz. Let

H = Ekin + Epot (16)

denote the electronic Hamiltonian as obtained within the Born-Oppenheimer approximation, with

Ekin = −1

2

∑

i

∇2
ri , (17)

Epot =
∑

i>j

1

|ri − rj |
+
∑

n>m

ZnZm
|Rn −Rm|

−
∑

i,n

Zn
|ri −Rn|

, (18)

where Ekin accounts for the kinetic energy of the electrons, and Epot accounts for the attraction
and repulsion between particles in the system. By the Rayleigh-Ritz variational principle, it holds
for any wavefunction ψθ that its energy Eθ is greater than or equal to the ground state energy E0

of the eigenfunction of H associated to the smallest eigenvalue, that is

Eθ =

∫
ψθ(r)Hψθ(r)

Ωθ
dr ≥ E0, (19)

where Ωθ =
∫
ψθ(r)2dr denotes a normalization factor.

To evaluate the energy Eθ for a given set of parameters θ, we use Markov chain Monte Carlo
integration (MCMC) and sample electron coordinates according to the probability density

pθ(r) =
ψθ(r)2

Ωθ
. (20)
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This allows us to express the total energy Eθ as the expected value of a local energy

Eloc(r) =
Hψθ(r)

ψθ(r)
, (21)

in the sense that

Eθ =

∫
Eloc(r)pθ(r)dr = 〈Eloc〉 ≈

1

N

N∑

k=1

Eloc(rk), (22)

where N denotes the number of sampled electron coordinates and rk ∼ pθ.
To optimize the parameters θ, we use K-FAC [21] which was already implemented in FermiNet

[4] to minimize the local energy Eloc(rk) at the location of electron coordinates rk. DeepErwin
also supports the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS [30]),
which is another second-order method, as well as standard first-order stochastic gradient descent
(SGD) as implemented by the ADAM algorithm [22]. After each optmization epoch, that is, after
each sample of coordinates was used exactly once for a gradient descent step, the coordinates rk are
resampled to reflect the updated probability distribution pθ. By applying this procedure iteratively
for a large number of epochs, we eventually obtain parameters θ such that the wavefunction ψθ
closely approximates the wavefunction of the ground state for the considered molecule.

To increase numerical stability, the implementation of our ansatz does not directly model ψθ,
but the logarithm of its square. The local energy can then be computed as

Eloc(r) = Epot(r)− 1

4
∇2

rφθ(r)− 1

8
(∇rφθ)

2
(r), (23)

where φθ = log(ψ2
θ).

Although the local energy already contains second derivatives (with respect to r), calculating
the gradient with respect to θ does not require the calculation of third derivatives, because H is
Hermitian [31]. Precisely, it holds that

∇θEθ = 〈Eloc∇θφθ〉 − 〈Eloc〉 〈∇θφθ〉 (24)

≈ 1

N

N∑

k=1

Eloc(rk)∇θφθ(rk)− 1

N2

(
N∑

k=1

Eloc(rk)

)(
N∑

k=1

∇θφθ(rk)

)
, (25)

for N samples of electron coordinates rk ∼ pθ.
To approximate the distribution of electron coordinates defined by the density pθ, we typically

use about 2k independent MCMC chains (walkers), where each walker is initialized before opti-
mization with a large number (∼ 1k) of burn-in steps. During optimization, walkers are updated
after every epoch with a small number (∼ 10) of additional MCMC steps. To precisely estimate
the energy Eθ after optimization has concluded, we apply a similar procedure, but collect the local
energies for all walkers from roughly 1k intermediate steps in the respective MCMC chain.

For single steps in the MCMC chains, we use a Metropolis Hastings algorithm [32]. Given a
current walker state r, a proposal state rprop for the Metropolis Hastings algorithm is generated
according to the probability density

p(rprop|r) =

nel∏

i=1

pN
(
rprop
i |µ = ri, σ

2 = (di)
2
)
, (26)

where pN denotes the density of a three-dimensional normal distribution and the variance param-
eters di are defined for fixed parameters d0, dmin, dmax, δ ≥ 0 as

di = δmin

(
dmin +

|ri −Rn|
d0

, dmax

)
, (27)

where Rn denotes the position of the nucleus closest to ri, that is, n = argminj=1,...,nnuc
|ri −Rj |.

We then consider the canonical acceptance probability

pacc(rprop|r) = min

{
1,
p(r|rprop)pθ(r

prop)

p(rprop|r)pθ(r)

}
, (28)
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and for a sample α ∈ [0, 1] from a uniform distribution, the proposed sample rprop is accepted in
the case pacc(rprop|r) > α and rejected otherwise.

The parameters di defined in eq. (27) can be seen as step size parameters that regulate the
average distance between electron coordinates r and a proposal rprop. In general, smaller step
sizes lead to higher acceptance rates for proposed samples. The parameter δ is a general step size
parameter that is gradually adapted during optimization to yield an average acceptance rate of
50%. The second factor in eq. (27) was specifically designed to take into account that wavefunctions
are usually most complex in the proximity of a nucleus. That is, the step size di is chosen for each
electron i to depend on its distance to the closest ion to encourage smaller steps close to the nuclei,
where the wavefunction varies rapidly, and larger steps, when an electron is further away from the
nuclei.

Note that the step sizes di, and thus the proposal probability, depend on the electron positions
r. In general it is therefore not true that p(rprop|r) = p(r|rprop). However, due to our choice for
the acceptance probability pacc, the so-called detailed balance condition is still satisfied. That is,
being in a state r and transitioning to rprop is as probable as being in rprop and transitioning to
r.

4.3 Forces

For a given molecule, let ψ0 denote the wavefunction of the ground state, that is, ψ0 is the eigen-
function of the Hamiltonian H associated to the smallest eigenvalue. To calculate the electronic
forces acting on the m-th nuclei, we apply the Hellmann-Feynman theorem [24] and compute

Fm = −∇Rm
E0 = − 1

Ω0

∫
ψ0(r) ((∇RmH)ψ0)(r)dr (29)

= Zm
1

Ω0

∫
ψ0(r)2

(∑

i

ri −Rm
|ri −Rm|3

)
dr −

∑

n 6=m
Zn

Rn −Rm
|Rn −Rm|3

(30)

≈ Zm


 1

N

∑

k

∑

i

rki −Rm
|rki −Rm|3

−
∑

n 6=m
Zn

Rn −Rm
|Rn −Rm|3


 , (31)

for N samples of electron coordinates rk ∼ ψ0(r)2/Ω0, and where Ω0 =
∫
ψ0(r)2dr denotes the

L2-norm of ψ0.
Since it is no longer necessary to compute derivatives of the wavefunction, evaluating eq. (31)

should be relatively easy. However, unlike the local energy (cf. eq. (22)), which has zero variance
for eigenstates of the Hamiltonian, naive Monte Carlo sampling can not be applied in this case due
to the divergence of |ri −Rk|−3 when the i-th electron approaches the k-th nucleus.

This issue can be addressed by observing that for each diverging term on one side of a nucleus,
there is an equally diverging term with the opposite sign on the other side of the nucleus. Different
variance reduction methods have been proposed to exploit this property, such as fitting the force
density close to a nucleus with a function that is constrained to be zero at ri = Rk [33], or antithetic
sampling [33, 34].

We minimize the variance of force samples by combining antithetic sampling with a truncated
1/r potential: For each sample of electron coordinates rk yielded by a Markov chain, we also
consider an additional sample r̂k in which each electron within a distance of Rcore to the closest
nucleus is mirrored to the opposite side of this nucleus.

r̂k,i = rki + 2(Rm − rki ) (32)

for i ∈ {1, . . . , nel}, and m = argminn |ri − Rn|. Therefore, whenever an electron comes close
to a nucleus and thus generates a large force in one direction, there will always be a cancelling
contribution in the opposite direction. Note that the samples r̂k,i do not necessarily have the
same probability as the original sample rk. Their contribution to the Monte Carlo estimate is thus

weighted by ψ(r̂k,i)2

ψ(rk)2
. Additionally we avoid numerical instabilities by replacing the raw Coulomb
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forces with a scaled version that decays towards zero, as electrons approach a nucleus:

rki −Rm
|rki −Rm|3

−→ rki −Rm
|rki −Rm|3

tanh3

( |rki −Rm|
Rcut-off

)
(33)

4.4 Shared optimization of model parameters

For N distinct nuclear geometries R1,R2, . . . ,RN , let θsh denote the set of model parameters
that are shared across all geometries, and θ̂k denote the set of parameters that are specific to the
k-th set of nuclear coordinates Rk. The full set of parameters for the k-th geometry can then
be written as θk = (θsh, θ̂k), and the associated realization of the wavefunction model is denoted
by ψθk . During each shared optimization epoch, we consider a single nuclear geometry Rk and
update the respective model weights θk with respect to the local energies of the wavefunction ψθk
at MCMC walker positions that were sampled from the probability density pθk (cf. eq. (20)). That
is, during each shared optimization epoch, not only the geometry-specific weights are updated, but
also the shared weights θsh, and therefore the wavefunctions for all nuclear geometries.

A straightforward way of deciding which geometry to consider for a shared optimization epoch is
to employ a simple round-robin scheme. Note that for each eigenstate of the Hamiltonian, the local
energies defined in eq. (21) have zero variance. Therefore, another approach to select geometries
for a shared optimization epoch is to use the standard deviation of local energies as a proxy of
how closely a realization of the wavefunction model already approximates the wavefunction of
the ground state. By selecting the geometry for which the current wavefunction has the highest
standard deviation in the local energies, we ensure that geometries for which the parameters have
not yet been well optimized get more attention during optimization. In practice, we train a few
initial epochs using the round-robin scheme to obtain a reliable starting point for each wavefunction
and then switch to the standard-deviation-based scheme, to ensure homogeneous convergence of
the accuracy across all geometries.

In our implementation of the shared optimization scheme, we use a single instance of the
optimizer to update the set of shared weights θsh, as well as an additional instance for each of the
geometry-specific sets of model parameters. In particular, due to the fact that geometry-specific
weights receive significantly less gradient descent updates than shared weights, the learning rate
for the geometry-specific optimizers are usually chosen about 10 times larger than the learning
rate for the optimizer of the shared weights (cf. Table 1).

After the shared optimization process, the wavefunctions can again be treated as fully indepen-
dent realizations of our wavefunction model and are not constrained by any additional dependen-
cies. In particular, this means that the evaluation of their exact energy can easily be parallelized
across geometries.

4.5 Reference calculations

In order to validate our deep learning method, we compared the obtained energies to reference
values, which we computed using the MOLPRO package [35, 36]. We employed both single-
and multi-reference explicitly correlated F12 methods: Coupled cluster with singles, doubles and
perturbative triples (CCSD(T)-F12) [37] and multi-reference configuration interaction (MRCI-F12)
[38]. The basis set cc-pVQZ-F12 [39] was used for all geometries of H+

4 , H6, and C2H4. Due to
convergence issues with this basis set for some geometries of H10, the smaller cc-pVTZ-F12 basis
set was employed for this molecular system. For the MRCI-F12 calculations, a CASSCF reference
was used with a full-valence active space (H+

4 : 3 electrons in 3 orbitals abbreviated as (3, 3), H6:
(6,6), H10: (10,10)). A full-valence active space was prohibitively expensive for C2H4, which is why
we resorted to an active space of (2,2). The recommended GEM BETA coefficients were used (i.e.,
for MRCI-F12(Q)/cc-pVQZ-F12 calculations GEM BETA = 1.5 a−1

0 and for MRCI-F12(Q)/cc-
pVTZ-F12 calculations GEM BETA = 1.4 a−1

0 ) [40]. The Davidson-corrected [41] energy values
(MRCI-F12(Q)) were extracted, as provided by the energyd variable in MOLPRO.

We note that these accurate methods and basis sets were only used to validate our results, but
not as a starting point for our deep learning method. The orbitals used as a starting point for our
method were generated using the CASSCF method implemented in PySCF [42], using a 6-311G
Pople basis set.
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4.6 Computational settings for DeepErwin

Reference values for the results shown in Fig. 2 were obtained via MRCI-F12(Q)/cc-pVQZ-F12.
See Sec. 4.5 for more details.

In all cases, we used as reference the described method from section 4.5. However, for the
initialization from the H10 run two geometries were excluded from the reference set, since these
were also included in the pre-trained geometry grid.

The main hyperparameters used for all computations are listed in Table 1. Detailed counts
of total, trainable, and shared parameters for the used wavefunction models for the four main
molecules considered in our numerical experiments are compiled in Table 2.

The DeepErwin package alongside a detailed documentation is available on the Python Package
Index (PyPI) and github (https://github.com/mipunivie/deeperwin).

5 Acknowledgements

L.G. gratefully acknowledges support from the Austrian Science Fund (FWF I 3403) and the
WWTF (ICT19-041). R.R. gratefully acknowledges support from the Austrian Science Fund (FWF
M 2528). The computational results presented have been achieved using the Vienna Scientific
Cluster (VSC).

References

1. Han, J., Zhang, L. & E, W. Solving many-electron Schrödinger equation using deep neural
networks. J. Comput. Phys. 399, 108929. issn: 0021-9991. http://dx.doi.org/10.1016/j.
jcp.2019.108929 (Dec. 2019).
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Table 1: Hyperparameter settings for DeepErwin.

Baseline method (CASSCF)
# determinants 20

Basis set 6-311G

Embedding

# radial basis features nrbf 16

# hidden layers g 1

# hidden layers w 2

# hidden layers f 2

# neurons per layer f, w, g 40

# iterations L 2

Embed ding dimension x 64

Backflow / Jastrow

# hidden layers ηgen, s, J 2

# neurons per layer ηgen, s, J 40

# hidden layers ηi 0

# neurons per layer ηi 1

MCMC

# walkers 2048

# decorrelation steps 5

Target acceptance probability 50%

Optimization general

Optimizer KFAC

Damping 5× 10−4

Norm constraint 1× 10−3

Batch size 512

Independent optimization
Initial learning rate lr0 2× 10−3

Learning rate decay lr(t) = lr0
1+t/1000

Shared optimization
(Sec. 2.1)

lr0 for non-shared weights 5× 10−3

lr0 for shared weights 5× 10−4

Learning rate decay lr(t) = lr0
1+t/10000

Training scheduler Std. deviation

Optimization after pre-training
(Sec. 2.2)

lr0 for non-shared pre-trained
weights

2× 10−3

lr0 for shared pre-trained weights 2× 10−4

Learning rate decay lr(t) = lr0
1+t/1000

Force evaluation
Antithetic sampling radius Rcore 0.2

Coulomb cutoff Rcut-off 0.01
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Table 2: Counts of total, trainable and shared model parameters for each of the four main molecules
considered in the numerical experiments.

Molecule Optimization # total # non-trainable # trainable # shared

H+
4

independent 107,548 368 (0.3 %) 107,180 0 (0.0 %)

75 % shared 107,548 368 (0.3 %) 107,180 83,673 (77.8 %)

95 % shared 107,548 368 (0.3 %) 107,180 105,920 (98.5 %)

H6

independent 109,228 788 (0.7 %) 108,440 0 (0.0 %)

75 % shared 109,228 788 (0.7 %) 108,440 83,673 (76.6 %)

95 % shared 109,228 788 (0.7 %) 108,440 105,920 (97.0 %)

H10

independent 112,140 2,020 (1.8 %) 110,120 0 (0.0 %)

75 % shared 112,140 2,020 (1.8 %) 110,120 83,673 (74.6 %)

95 % shared 112,140 2,020 (1.8 %) 110,120 105,920 (94.5 %)

Ethene

independent 115,868 3,228 (2.8 %) 112,640 0 (0.0 %)

75 % shared 115,868 3,228 (2.8 %) 112,640 83,673 (72.2 %)

95 % shared 115,868 3,228 (2.8 %) 112,640 105,920 (91.4 %)
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Supplementary information

S1 Weight-sharing and pre-training with ADAM

Figure S1 and Figure S2 show results for the experiments presented in the main text in Section 2.1
and Section 2.2, respectively, when using the first-order ADAM [1] optimizer instead of second-
order K-FAC optimization. The changed optimization hyperparameters are compiled in Table S1.
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Figure S1: Mean evaluation error relative to the reference calculation (MRCI-F12(Q)/cc-pVQZ-
F12) as a function of training epochs per geometry for four different sets of nuclear geometries.
Shadings indicate the area between the 25 % and the 75 % percentile of considered geometries. For
each method, we plot intermediary and final results for optimizations that ran for a total number
of 16,384 epochs per geometry.
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Figure S2: Mean evaluation error relative to a reference calculation (MRCI-F12(Q)/cc-pVQZ-F12
(Molpro)) as a function of training epochs per geometry for four different sets of nuclear geometries.
Plots show energy errors for pre-training on different geometries of the same molecules compared
to a standard non-pretrained optimization. Shadings indicate the area between the 25 % and the
75 % percentile of considered geometries. For each method, we plot intermediary and final results
for independent optimizations that ran for a total number of 16,384 epochs.

Table S1: Optimization hyperparameters for DeepErwin for the experiments reported in the sup-
plementary materials. Changes to the hyperparameters in the main text are written in boldface.

Optimization general
Optimizer ADAM
Batch size 512

Independent optimization
Initial learning rate lr0 1.5× 10−3

Learning rate decay lr(t) = lr0
1+t/1000

Shared optimization
(Fig. S1)

lr0 for non-shared weights 1.5× 10−3

lr0 for shared weights 1.5× 10−3

Learning rate decay lr(t) = lr0
1+t/10000

Training scheduler Std. deviation

Optimization after pre-training
(Fig. S2)

lr0 for non-shared pre-trained
weights

1.5× 10−3

lr0 for shared pre-trained weights 1.5× 10−3

Learning rate decay lr(t) = lr0
1+t/1000
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S2 Independent optimization as pre-training

In the main text, mere independent optimization was used as a benchmark for all numerical
experiments. Here, we consider an additional baseline, for which independent optimizations for
different ethene configurations were fully initialized with weights from a wavefunction that had
already been optimized for a similar but different molecular configuration using an independent
optimization scheme. Optimization hyperparameters for the new benchmark are the same as the
ones reported in Table 1 in the main text. The respective results, including a comparison with
shared optimization and independent optimzation that was pre-trained on a set of different ethene
configurations using shared-weight constraints, are shown in Figure S3. While the new benchmark
seems to be advantageous during early optimization as compared to a scheme that applies a
weight-sharing constraint for 95 % of the weights in the model, at the time the wavefunctions reach
chemical accuracy, shared optimization without pre-training outperforms this new baseline to a
degree comparable with the results shown in Figure 2 in the main text.
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