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Abstract. The paper describes how one can use commodity graphics
cards (GPUs) as a high-performance parallel computer to simulate the
dynamics of ideal gases in two and three spatial dimensions. The dy-
namics is described by the Euler equations, and numerical approxima-
tions are computed using state-of-the-art high-resolution finite-volume
schemes. These schemes are based upon an explicit time discretisation
and are therefore ideal candidates for parallel implementation.

1 Introduction

Conservation of physical quantities is a fundamental physical principle that is
often used to derive models in the natural sciences. In this paper we will study
one such model, the Euler equations describing the dynamics of an ideal gas
based on conservation laws for mass, momentum, and energy. In three spatial
dimensions the Euler equations read
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Here ρ denotes the density, (u, v, w) the velocity vector, p the pressure, g the
acceleration of gravity, and E the total energy (kinetic plus internal energy)
given by E = ρ(u2 + v2 +w2)/2+ p/(γ − 1). In all computations we use γ = 1.4.
The Euler equations are one particular example of a large class of equations
called hyperbolic systems of conservation laws, which can be written on the form

Qt + F (Q)x + G(Q)y + H(Q)z = S(Q). (2)

This class of PDEs exhibits very singular behaviour and admits various kinds of
discontinuous and nonlinear waves, such as shocks, rarefactions, phase bound-
aries, fluid and material interfaces, etc. Resolving propagating discontinuities
accurately is a difficult task, to which a lot of research has been devoted in the
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last 2–3 decades. Today, a successful numerical method will typically be of the
high-resolution type (see e.g., [3]) and be able to accurately capture discontin-
uous waves and at the same time offer high-order resolution of smooth parts of
the solution.

Modern high-resolution methods for nonstationary problems are typically
based upon explicit temporal discretisation. In explicit methods there is no cou-
pling between unknowns in different grid cells, and one therefore avoids the use
of linear system solvers, which is a typical bottleneck in many fluid dynamics
algorithms. High-resolution methods are therefore relatively easy to parallelise,
using e.g., domain decomposition. In this paper we will discuss parallel imple-
mentation of gas-dynamics simulations on commodity graphics cards (GPUs)
residing in recent desktop computers and workstations. The idea of using GPUs
for numerical simulation is far from new—cf. e.g., http://www.gpgpu.org—but
except for our previous work [1] on shallow water waves, this is the first paper
to consider a GPU implementation of high-resolution schemes for models on the
form (2).

From a computational point-of-view, a modern GPU can be considered as
a single-instruction, multiple-data processor capable of parallel processing of
floating-point numbers. Whereas an Intel Pentium 4 CPU has a theoretical per-
formance of at most 15 Gflops, performance numbers as high as 165 Gflops have
been reported for the NVIDIA GeForce 7800 cards. The key to this unrivalled
processing power is the fact that current GPUs contain up to 24 parallel pipelines
that each are capable of processing vectors of length four simultaneously. By
exploiting this amazing computational power for 2D and 3D gas-dynamics sim-
ulations, we observe speedup factors of order 10—20 on a single workstation.

2 Numerical Methods

To solve the Euler equations in two and three dimensions, we will use a family of
semi-discrete finite-volume schemes on a regular Cartesian grid and seek approx-
imations to (2) in terms of the cell-averages Qijk = 1

|Ωijk|
∫

Ωijk
Q dV . Integrating

(2) over Ωijk , we obtain an evolution equation for the cell-averages
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where Fi±1/2,jk denote the flux over the surfaces with normal along the x-axis,
etc. The fluxes are approximated using a standard Gaussian quadrature (fourth
order, tensor product rule):
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To evaluate the integrand, we need to reconstruct a continuously defined func-
tion from the cell-averages. To this end, we will use a function that is piecewise
continuous inside each grid cell. In a first-order method, one would use a piece-
wise constant function. To obtain second-order (on smooth solutions), we use a
piecewise linear reconstruction for each component in Q
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(5)

where D±
x = ±(Qi±1,jk − Qijk), etc. The so-called limiter L is a nonlinear func-

tion of the forward and backward differences, whose purpose is to prevent the
creation of overshoots at local extrema. Here we use the family of generalised
minmod limiters

L(a, b) = MM(θa, 1
2 (a+ b), θb), MM(z1, . . . , zn) =

⎧
⎪⎨
⎪⎩

maxi zi, zi < 0 ∀i,

mini zi, zi > 0 ∀i,

0, otherwise.
(6)

The reconstruction Q̂(x, y, z) is discontinuous across all cell-interfaces, and thus
gives a left-sided and right-sided point value, QL and QR, at each integration
point in (4). To evaluate the flux across the interface at each integration point,
we use the central-upwind flux [2]

F(QL, QR) =
a+F (QL) − a−F (QR)

a+ − a− +
a+a−
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a+ = max
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)
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)
,

(7)

where λ±(Q) are the slow and fast eigenvalues of dF/dQ, given analytically as
u ±

√
γp/ρ.

Finally, we need to specify how to integrate the ODEs (3) for the cell-averages.
To this end, we use a second-order TVD Runge–Kutta method [5]

Q
(1)
ij = Qn

ij + ΔtRij(Qn),

Qn+1
ij =

1
2
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ij +
1
2
[
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(1)
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]
,

(8)

where Rij denotes the right-hand side of (3). The time step is restricted by a
CFL-condition, which states that disturbances can travel at most one half grid
cell each time step, i.e., max(a+, −a−)Δt ≤ Δx/2, and similarly in y and z.

3 GPU Implementation

The data-driven programming model of GPUs is quite different from the instruc-
tion-driven programming model most people are used to on a CPU. On a CPU,
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Fig. 1. Flow chart for the GPU implementation of the semi-discrete finite-volume
scheme. Gray boxes are executed on the GPU and white boxes on the CPU.

a computer program for the algorithm in Section 2 would consist of a set of
arrays and the processing is performed as series of loops that march through
all cells to compute reconstructions, integrate fluxes, compute flux differences
and evolve the ODEs, etc. On the GPU, each grid cell is associated with a pixel
(fragment) in an off-screen frame buffer. The data stream (cell-averages, fluxes,
etc.) is given as textures and is invoked by rendering a geometry to a frame buffer.
The data stream is processed by a series of kernels (fragment shaders, in graphics
terminology) using the fragment-processing capabilities in the rendering pipeline.
Writing each computational kernel using Cg (or GLSL) is straightforward for
any computational scientist capable of writing C/C++. However, setting up the
graphics pipeline requires some familiarity with computer graphics (in our case,
OpenGL).

The flow chart for the simulation algorithm is given in Figure 1. Worth noting
is the computation of the maximum eigenvalues to determine the time step.
Finding the maximum is implemented using an ’all-reduce’ operation utilising
the depth buffer combined with a read-back to the CPU; see e.g., [1]. In each
of the two Runge–Kutta steps, four basic operations are performed. First we
set the boundary data. Then we compute the reconstruction using (5) and (6).
The most computationally intensive step is the evaluation of edge fluxes and
computation of the source term. Before this calculation can start, the time step
Δt must be passed to the shader by the CPU. Finally, the step is completed
by adding fluxes and the source term to the cell averages. To complete a full
time step, the sequence of operations in the Runge–Kutta box are performed
twice.
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For simulations in 2D, the vectors with cell-averages, slopes, fluxes, etc. have
length four and can each be fitted in a single texture RGBA-element. In 3D, the
vectors have length five and do not fit in a single RGBA-element. We therefore
chose to split each vector in two three-component textures. Notice that this
opens up for adding up to three extra quantities in the vector of unknowns (e.g.,
to represent two or more gases with different γ’s) at a very low computational
cost, since the GPU processes 4-vectors simultaneously.

In 2D, the Cartesian grid is simply embedded in a rectangle. In 3D, the grid
(padded with ghost-cells to represent the boundary) is unfolded in the z-direction
and the 3D arrays of vectors are mapped onto larger 2D textures. Memory limi-
tations on the GPU will restrict the sizes of the grids one can process in a single
batch. To be able to run highly resolved simulations in 3D, we will therefore use
a domain decomposition approach, in which the domain is divided into smaller
rectangular blocks that can be handled separately. The algorithm is straight-
forward: Each subdomain is extended with one grid-layer of overlap into the
neighbouring subdomains for each time-step to be carried out. The initial data
is passed by the CPU to the GPU, which performs a given number of time-steps
as described above. The result is then read back to the CPU, where it is inserted
into the corresponding subdomain in the global solution on the next (global)
time level. Since passing of initial data and read-back of computational results
can be performed asynchronously between the CPU and the GPU, the perfor-
mance reduction due to stalls on the GPU will be insignificant. Moreover, this
algorithm easily extends to multiple CPU-GPU configurations by implementing
some kind of message passing and control on the CPU-side.

4 Numerical Examples

In the following we present a few numerical examples to assess the computational
efficiency of our GPU implementation. To this end, we compare runtimes on two
NVIDIA GeForce graphics cards (6800 Ultra and 7800 GTX) with runtimes on
two different CPUs (a 2.8 GHz Intel Xeon CPU and an AMD Athlon X2 4400+,
respectively). The timings are averaged over all timesteps and do not include any
preprocessing. The CPU reference codes are implemented in C, using a design
that has evolved during 6–7 years research on high-resolution schemes. High
computational efficiency has been ensured by carefully minimising the number
of arithmetic operations, optimal ordering of loops, use of temporary storage,
replacing divisions by multiplications whenever possible, etc. Apart from that,
our CPU codes contain no hardware-specific hand-optimisation, but rather rely
on general compiler optimisation; icc -O3 -ipo -xP (version 8.1) for the Intel
CPU and gcc -O3 for the AMD. To ensure a fair comparison, we have used the
same design choices for the GPU implementations, trying to retain a one-to-one
correspondence of statements in the CPU and GPU computational kernels.

Another important question is accuracy. The numerical methods considered in
the paper are stable and the accuracy will therefore not deteriorate significantly
due to rounding errors. In fact, all our tests indicate that the difference between
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t=0.0 t=0.1 t=0.2 t=0.3

Fig. 2. Emulated Schlieren images of a shock-bubble interaction

Table 1. Runtime per time step in seconds and speedup factor for two CPUs versus
two GPUs for the shock-bubble problem run on a grid with N × N cells for bilinear
(upper part) and CWENO reconstruction (lower part)

N Intel 6800 speedup AMD 7800 speedup

128 4.37e-2 3.70e-3 11.8 1.88e-2 1.38e-3 13.6
256 1.74e-1 8.69e-3 20.0 1.08e-1 4.37e-3 24.7
512 6.90e-1 3.32e-2 20.8 2.95e-1 1.72e-2 17.1

1024 2.95e-0 1.48e-1 19.9 1.26e-0 7.62e-2 16.5

128 1.05e-1 1.22e-2 8.6 7.90e-2 4.60e-3 17.2
256 4.20e-1 4.99e-2 8.4 3.45e-1 1.74e-2 19.8
512 1.67e-0 1.78e-1 9.4 1.03e-0 6.86e-2 15.0

1024 6.67e-0 7.14e-1 9.3 4.32e-0 2.99e-1 14.4

single precision (GPU) and double precision (CPU) results are of the order
εs, where εs = 1.192 · 10−7 is the smallest number such that 1 + εs − 1 > 0
in single precision. In other words, for the applications considered herein, the
discretisation errors dominate errors due to lack of precision.

Example 1 (2D Shock-Bubble Interaction). In this example we consider the in-
teraction of a planar 2.95 Mach shock in air with a circular region of low density.
The gas is initially at rest and has unit density and pressure. Inside a circle of
radius 0.2 centred at (0.4, 0.5) the density is 0.1. The incoming shock-wave starts
at x = 0 and has a post-shock pressure p = 10.0. Figure 2 shows the evolution
of the bubble in terms of emulated Schlieren images (density gradients depicted
using a nonlinear graymap) as described by the 2D Euler equations, i.e., (1) with
g = w ≡ 0.

Table 1 reports a comparison of average runtime per time step for GPU versus
CPU implementations of the high-resolution scheme using either the bilinear re-
construction in (5) and (6), or the third-order CWENO reconstruction [4]. The
corresponding schemes thus have second-order accuracy in time and second and
third order accuracy in space, respectively. For the bilinear reconstruction, the
resulting speedup factors of order 20 and 15 for the GeForce 6800 and 7800,
respectively, are quite amazing since we did not try to optimise the GPU imple-
mentation apart from the obvious use of vector operations whenever appropriate.

The CWENO reconstruction is quite complicated, and we have observed on
various Intel CPUs that icc gives significantly faster code than gcc. We therefore
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Fig. 3. The Rayleigh–Taylor instability at times t = 0.5, 0.6, and 0.7

Table 2. Runtime per time step in seconds and speedup factor for CPU versus GPU
for the 3D Rayleigh–Taylor instability run on a grid with N × N × N cells

N AMD 7800 speedup

49 5.23e-1 4.16e-2 12.6
64 1.14e-0 8.20e-2 13.9
81 1.98e-0 1.72e-1 11.5

expect the CWENO code to be suboptimal on the AMD CPU. Moreover, due to
the large number of temporary registers required in the CWENO reconstruction,
we had to split the computation of edge fluxes in two passes on the GPU: one
for the F -fluxes and one for the G-fluxes. This introduces extra computations
compared with the CPU code and also extra render target switches and texture
fetches. This reduces the theoretical speedup by factor between 25 and 50%, as
can be seen in the lower half of Table 1, comparing the 6800 card and the Intel
CPU with the icc compiler.

Example 2 (3D Rayleigh–Taylor Instability). In the next example we simulate a
Rayleigh–Taylor instability, which arises when a layer of heavier fluid is placed
on top of a lighter fluid and the heavier fluid is accelerated downwards by gravity.
Similar phenomena occur more generally when a light fluid is accelerated towards
a heavy fluid. In the simulation, we consider the domain [−1/6, 1/6]2 × [0.2, 0.8]
with gravitational acceleration g = 0.1 in the z-direction. The lower fluid has
unit density and the upper fluid density ρ = 2.0. Initially the two fluids are at
rest, in hydrostatic balance, and separated by an interface located at z = 1/2 +
0.01 cos(6π min(

√
x2 + y2, 1/6)). Reflective boundary conditions are assumed on

all exterior boundaries. Figure 3 shows the evolution of the instability.
Table 2 reports a comparison of average runtime per time step for a GPU

versus a CPU implementation for the high-resolution scheme with the trilinear
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reconstruction in (5) and (6). Compared with the 2D simulation, the speedup
is reduced. There are two factors contributing the the reduced speedup: (i)
cache misses on the GPU due to lookup in the unfolded 3D texture, and (ii)
use of only three out of four vector components in all basic arithmetic oper-
ations. For the 2D solver, all texture fetches are to neighbouring texel loca-
tions, whereas the access in the z-direction introduces non-local texture fetches.
Similarly, the 2D solver uses a single four-component texture to represent the
conserved quantities, whereas the 3D solver needs to use two three-component
textures: (ρ, ρu, ρv, ρw, E), plus a passive tracer to distinguish the gases.

5 Concluding Remarks

In this paper we have demonstrated the application of GPUs as high-performance
computational engines for compressible gas dynamics simulations in 2D and
3D. Unlike many other fluid dynamics algorithms, the current high-resolution
schemes do not involve any linear system solvers, which may be a performance
bottleneck in many GPU/parallel implementations. Instead, the schemes are
based upon explicit temporal discretisation, for which each cell can be updated
independent of the others. This makes the schemes perfect candidates for parallel
implementation. Moreover, a high number of arithmetic operations per memory
fetch makes these algorithms ideal for high performance data-stream based com-
puter architectures and results in fairly amazing speedup numbers.

The possibility of using a simple domain-decomposition algorithm to handle
large simulation models makes it attractive to explore future use of clusters of
CPU–GPU nodes for this type of simulations. The communication need between
different nodes is low compared with the computations performed on each GPU,
and communication bandwidth is therefore not expected to be a major issue.
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