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Abstract: Inspired and motivated by the idea of LDA/QR presented by Ye and Li, in addition, by the idea of WK-

DA/QR and WKDA/SVD presented by Gao and Fan. In this paper, we first consider computational complexity and

efficacious of algorithm present a PCA/range(Sb) algorithm for dimensionality reduction of data, which transforms

firstly the original space by using a basis of range(Sb) and then in the transformed space applies PCA. Considering

computationally expensive and time complexity, we further present an improved version of PCA/range(Sb), denot-

ed by PCA/range(Sb)-QR, in which QR decomposition is used at the last step of PCA/range(Sb). In addition, we

also improve LDA/GSVD, LDA/range(Sb) and PCA by means of QR decomposition. Extensive experiments on

face images from UCI data sets show the effectiveness of the proposed algorithms.

Key–Words: QR decomposition, PCA/range(Sb)-QR, PCA/GSVD-QR, LDA/range(Sb)-QR, PCA/QR, Algorithm

1 Introduction

Dimensionality reduction is important in many ap-

plications of data mining, machine learning and face

recognition [1-5]. Many methods have been proposed

for dimensionality reduction, such as principal com-

ponent analysis (PCA) [2,6-10] and linear discrimi-

nant analysis (LDA) [2-4,11-15]. PCA is one of the

most popular methods for dimensionality reduction in

compression and recognition problem, which tries to

find eigenvector of components of original data. L-

DA aims to find an optimal transformation by mini-

mizing the within-class distance and maximizing the

between-class distance, simultaneously. The optimal

transformation is readily computed by applying the

eigen-decomposition to the scatter matrices. An in-

trinsic limitation of classical LDA is that its objec-

tive function requires one of the scatter matrices be-

ing nonsingular. Classical LDA can not solve small

size problems [16-18], in which the data dimension-

ality is larger than the sample size and then all scatter

matrices are singular.

In recent years, many approaches have been pro-

posed to deal with small size problems. We will re-

view four important methods including PCA [2,6-10],

LDA/range(Sb) [7,19], LDA/GSVD [19-21] and L-

DA/QR [22-23]. The difference of these four meth-

ods can be briefly described as follows: PCA tries

to find eigenvectors of covariance matrix that corre-

sponds to the direction of principal components of o-

riginal data. It may discard some useful information.

LDA/range(Sb) [7,19] first transforms the original s-

pace by using a basis of range(Sb) and then in the

transformed space the minimization of within-class

scatter is pursued. The key idea of LDA/range(Sb)

is to discard the null space of between-class scat-

ter Sb, which contains no useful information, rather

than discarding the null space of within-class scatter

Sw, which contains the most discriminative informa-

tion. LDA/GSVD is based on generalized singular

value decomposition (GSVD) [17,20-21,24-26] and

can deal with the singularity of Sw. Howland et. al

[27] established the equivalence between LDA/GSVD

and a two-stage approach, in which the intermediate

dimension after the first stage falls within a specific

range and then LDA/GSVD is required for the sec-

ond stage. Park et. al [19] presented an efficient al-

gorithm for LDA/GSVD. Considering computational-

ly expensive and time complexity, Ye and Li [22-23]

presented a LDA/QR algorithm. LDA/QR is a two-

stage method, the first stage maximizes the separation

between different classes by applying QR decomposi-

tion and the second stage incorporates both between-

class and within-class information by applying LDA

to the ”reduced” scatter matrices resulted from the

first stage. Gao and Fan [32] presented WKDA/QR

and WKDA/SVD algorithms which are used weight-

ed function and kernel function by QR decomposition

and singular value decomposition to solve small sam-

ple size problem.
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In this paper, we first present an extension of

PCA by means of the range of Sb, denoted by

PCA/range(Sb). Considering computationally ex-

pensive and time complexity, we also study an im-

proved version of PCA/range(Sb), in which QR de-

composition is used at the last step of PCA. We

denote the improved version by PCA/range(Sb)-

QR. In addition, we will improve LDA/GSVD,

LDA/range(Sb) and PCA with QR decomposition

and obtain LDA/GSVD-QR, LDA/range(Sb)-QR-1,

LDA/range(Sb)-QR-2, PCA/QR-1 and PCA/QR-2.

The effectiveness of the presented methods is com-

pared by large number of experiments with known

ORL database and Yale database.

The rest of this paper is organized as follows. The

review of previous approaches are briefly introduced

and discussed in Section 2. The detailed description-

s about improvement of algorithms are presented in

Section 3. In Section 4, Experiments and analysis are

reported. Section 5 concludes the paper.

2 Review of previous approaches

In this section, we first introduce some importan-

t notations used in this paper. Given a data matrix

A = [a1, · · · , aN ] ∈ Rn×N , where a1, · · · , aN ∈ Rn

are samples. We consider finding a linear transforma-

tion G ∈ Rn×l that maps each ai to yi ∈ Rl with

yi = GTai. Assume that the original data in A is par-

titioned into k classes as A = [A1, · · · , Ak], where

Ai ∈ Rn×Ni contains data points of the ith class and∑k
i=1

Ni = N . In discriminant analysis, within-class,

between-class and total scatter matrices are defined as

follows [3]:

Sb =
1

N

∑k
i=1

Ni(mi −m)(mi −m)T ,

Sw = 1

N

∑k
i=1

∑
a∈Ai

(a−mi)(a−mi)
T ,

St =
1

N

∑N
i=1

(ai −m)(ai −m)T ,

(1)

where mi = 1

Ni

∑
a∈Ai

a is the centroid of the ith

class and m = 1

N

∑N
j=1

aj is the global centroid of

the training data set. If we assume

Hb =
1√
N
[
√
N1(m1 −m), · · · ,

√
Nk(mk −m)],

Hw = 1√
N
[A1 −m1e

T
1
, · · · , Ak −mke

T
k ],

Ht =
1√
N
[a1 −m, · · · , aN −m] = 1√

N
(A−meT ),

(2)
then Sb = HbH

T
b , Sw = HwH

T
w and St =

HtH
T
t , where ei = (1, · · · , 1)T ∈ RNi and e =

(1, · · · , 1)T ∈ RN . For convenience, we list these

notations in Table 1.

Table 1: Notation Description

Notation Description

A data matrix

N number of training data points

k number of classes

Hb precursor of between-class scatter

Hw precursor of within-class scatter

Ht precursor of total scatter

Sb between-class scatter matrix

Sw within-class scatter matrix

St total scatter matrix or covariance matrix

n number of dimension

G transformation matrix

l number of retained dimensions

Ai data matrix of the i-th class

mi centroid of the i-th class

Ni number of data points in the i-th class

m global centroid of the training data set

K number of nearest neighbors in KNN

2.1. Principal component analysis (PCA)

PCA is a classical feature extraction method

widely used in the area of face recognition to reduce

the dimensionality. The goal of PCA is to find eigen-

vectors of the covariance matrix St, which correspond

to the directions of the principal components of the o-

riginal data. However, these eigenvectors may elim-

inate some discriminative information for classifica-

tion.

Algorithm 1: PCA

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Ht ∈ Rn×N according to (2);

2. St ← HtH
T
t ;

3. Compute W from the EVD of St:

St = WΣWT ;
4. Assign the first p columns of W to G,

where p=rank(St);

5. AL = GTA.

2.2. Classical LDA

Classical LDA aims to find the optimal trans-

formation G such that the class structure of the o-

riginal high-dimensional space is preserved in the

low-dimensional space. From (1), we can eas-

ily show that St = Sb + Sw and see that

trace(Sb) =
1

N

∑k
i=1

Ni∥mi −m∥2
2

and trace(Sw) =
1

N

∑k
i=1

∑
x∈Ai

∥x −mi∥22 measure the closeness of

the vectors within the classes and the separation be-

tween the classes, respectively.

In the low-dimensional space resulted from the

linear transformation G, the within-class, between-

class and total scatter matrices become SL
b =

GTSbG,SL
w = GTSwG and SL

t = GTStG, respec-

tively. An optimal transformation G would maximize
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traceSL
b and minimize traceSL

w. Common optimiza-

tions in classical LDA include (see [3,20]):

max
G

trace{(SL
w)

−1SL
b } and

min
G

trace{(SL
b )

−1SL
w}.

(3)

The optimization problems in (3) are equivalent to

finding the generalized eigenvectors satisfying Sbx =
λSwx with λ ̸= 0. The solution can be obtained

by applying the eigen-decomposition to the matrix

S−1

w Sb if Sw is nonsingular or S−1

b Sw if Sb is nonsin-

gular. It was shown in [3,20] that the solution can al-

so be obtained by computing the eigen-decomposition

on the matrix S−1

t Sb if St is nonsingular. There are

at most k − 1 eigenvectors corresponding to nonzero

eigenvalues since the rank of the matrix Sb is bound-

ed from above by k − 1. Therefore, the number of

retained dimensions in classical LDA is at most k−1.

A stable way to compute the eigen-decomposition is

to apply SVD on the scatter matrices. Details can be

found in [11].

2.3. LDA/range(Sb)

In this subsection, we recall a two-step approach

proposed by Yu and Yang [7] to handle small size

problems. This method first transforms the original

space by using a basis of range(Sb) and then in the

transformed space the minimization of within-class s-

catter is pursued. An optimal transformation G would

maximize traceSL
b and minimize traceSL

w. Common

optimization in LDA/range(Sb) is (see [19]):

min
G

trace{(SL
b )

−1SL
w}. (4)

The problem (4) is equivalent to finding the general-

ized eigenvectors satisfying Sbx = λSwx with λ ̸= 0.

The solution can be obtained by applying the eigen-

decomposition to the matrix S−1

b Sw if Sb is nonsin-

gular. If Sb is singular, consider EVD of Sb:

Sb = UbΣbU
T
b =

[
Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
,

(5)
where Ub is orthogonal, Ub1 ∈ Rn×q, rank(Sb) = q
and Σb1 ∈ Rq×q is a diagonal matrix with non-

increasing positive diagonal components. We can

show that range(Sb)=span(Ub1) and Σ
−1/2
b1 UT

b1SbUb1

Σ
−1/2
b1 = Iq. Let S̃b = Σ

−1/2
b1 UT

b1SbUb1Σ
−1/2
b1 =

Iq, S̃w = Σ
−1/2
b1 UT

b1SwUb1Σ
−1/2
b1 and S̃t =

Σ
−1/2
b1 UT

b1StUb1Σ
−1/2
b1 . Consider the EVD of S̃w :

S̃w = ŨwΣ̃wŨ
T
w , where Ũw ∈ Rq×q is orthogonal

and Σ̃w ∈ Rq×q is a diagonal matrix. It is evident that

ŨT
wΣ

−1/2
b1 UT

b1SbUb1Σ
−1/2
b1 Ũw = Iq,

ŨT
wΣ

−1/2
b1 UT

b1SwUb1Σ
−1/2
b1 Ũw = Σ̃w.

(6)

In most applications, rank(Sw) is greater than

rank(Sb) and Σ̃w is nonsingular. From (6), it follows

that

(Σ̃−1/2
w ŨT

wΣ
−1/2
b1 UT

b1)Sb(Ub1Σ
−1/2
b1 ŨwΣ̃

−1/2
w ) = Σ̃−1

w ,

(Σ̃−1/2
w ŨT

wΣ
−1/2
b1 UT

b1)Sw(Ub1Σ
−1/2
b1 ŨwΣ̃

−1/2
w ) = Iq.

The optimal transformation matrix proposed in [7] is

G = Ub1Σ
−1/2
b1 ŨwΣ̃

−1/2
w and the algorithm as fol-

lows:

Algorithm 2: LDA/range(Sb)

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and

Hw ∈ Rn×N according to (2);

2. Sb ← HbH
T
b , Sw ← HwH

T
w

3. Compute the EVD of Sb :

Sb =
[
Ub1 Ub2

] [ Σb1 0
0 0

]

[
UT
b1

UT
b2

]
;

4. Compute the EVD of S̃w

S̃w = Σ
−1/2
b1 UT

b1SwUb1
∑−1/2

b1 :

S̃w = ŨwΣ̃wŨ
T
w ;

5. Assign Ub1Σ
−1/2
b1 ŨwΣ̃

−1/2
w to G;

6. AL = GTA.

2.4. LDA/GSVD

A recent work on overcoming singularity prob-

lem in LDA is the use of generalized singular value

decomposition (GSVD) [17,20-21,24-26]. The cor-

responding algorithm is named LDA/GSVD. It com-

putes the solution exactly because the inversion of the

matrix Sw can be avoided. An optimal transformation

G obtained by LDA/GSVD would maximize traceSL
b

and minimize traceSL
w. Common optimization is (see

[19,21]):

max
G

trace{(SL
w)

−1SL
b }. (7)

The solution of the problem (7) can be obtained by ap-

plying the eigen-decomposition to the matrix S−1

w Sb

if Sw is nonsingular. If Sw is singular, we have the

following efficient algorithm (see [19]):

Algorithm 3: An efficient method for LDA/GSVD

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and

Ht ∈ Rn×N according to (2);

2. Sb ← HbH
T
b , St ← HtH

T
t ;
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3. Compute the EVD of St:

St =
[
Ut1 Ut2

] [ Σt1 0
0 0

]

[
UT
t1

UT
t2

]
;

4. Compute the EVD of S̃b;

S̃b =
∑−1/2

t1 UT
t1SbUt1Σ

−1/2
t1 :

S̃b = ŨbΣ̃bŨ
T
b ;

5. Assign the first k − 1 columns of

Ũb as Ũb1;

6. G← Ut1
∑−1/2

t1 Ũb1;

7. AL = GTA.

2.5. LDA/QR

Ye and Li [22-23] presented a novel LDA imple-

mentation method, namely LDA/QR. LDA/QR con-

tains two stages, the first stage is to maximize sepa-

rability between different classes and thus has similar

target as OCM [28], the second stage incorporates the

within-class scatter information by applying a relax-

ation scheme to W .

Specifically, we would like to find a projection

matrix G such that G = QW for any matrix W ∈
Rk×k. This means that the problem of finding G
is equivalent to computing W . Due to GTSbG =
W T (QTSbQ)W and GTSwG = W T (QTSwQ)W ,

we have the following optimization problem:

W = argmax
W

trace(W T S̃bW )−1(W T S̃wW ),

whereS̃b = QTSbQ and S̃w = QTSwQ. An efficient

algorithm for LDA/QR can be found in [22-23]:

Algorithm 4: LDA/QR

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and

Ht ∈ Rn×N according to (2);

2. Apply QR decomposition to Hb as

Hb = QR, where Q ∈ Rn×p,

R ∈ Rp×k, and p=rank(Hb);

3. S̃b ← RRT ;

4. S̃w ← QTHwH
T
wQ;

5. Compute W from the EVD of

S̃−1

b S̃w with the corresponding

eigenvalues sorted in

nondecreasing order;

6. G← QW , where W = [W1, · · · ,
Wq] and q=rank(Sw);

7. AL = GTA.

3 Improvement of algorithms

3.1. PCA/range(Sb)

In this subsection, we will present a new method,

namely PCA/range(Sb), to handle small size problem-

s. This method first transforms the original space by

using a basis of range(Sb) and then in the transformed

space applies PCA. Similar 2.3, we first consider the

EVD (5) of Sb and let S̃b = Σ
−1/2
b1 UT

b1SbUb1Σ
−1/2
b1 =

Iq, S̃w = Σ
−1/2
b1 UT

b1SwUb1Σ
−1/2
b1 and S̃t =

Σ
−1/2
b1 UT

b1StUb1Σ
−1/2
b1 . Then, we consider the EVD

of S̃t : S̃t = ŨtΣ̃tŨ
T
t , where Ũt ∈ Rq×q is orthog-

onal and Σ̃t ∈ Rq×q is a diagonal matrix, and get an

optimal transformation matrix G = Ub1Σ
−1/2
b1 Ũt. An

efficient algorithm for PCA/range(Sb) is listed as fol-

lows:

Algorithm 5: PCA/range(Sb)

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and Ht ∈ Rn×N

according to (2), respectively;

2. Sb ← HbH
T
b , St ← HtH

T
t ;

3. Compute the EVD of Sb

Sb =
[
Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
;

4. Compute the EVD of S̃t

S̃t = Σ
−1/2
b1 UT

b1StUb1Σ
−1/2
b1 : S̃t = ŨtΣ̃tŨ

T
t ;

5. G← Ub1Σ
−1/2
b1 Ũt;

6. AL = GTA.

3.2. PCA/range(Sb)-QR, PCA/QR-1 and PCA/QR-2

In order to improve computationally expensive

and low effectively classification, we consider QR de-

composition of matrices and introduce an extension

version of PCA/range(Sb), namely PCA/range(Sb)-

QR. This method is different from PCA/range(Sb) in

the second stage. Detailed steps see Algorithm 6:

Algorithm 6: PCA/range(Sb)-QR

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and Ht ∈ Rn×N

according to (2), respectively;

2. Sb ← HbH
T
b , St ← HtH

T
t ;

3. Compute the EVD of Sb

Sb =
[
Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
;

4. Compute the QR decomposition of

H̃t = UT
b1Ht : H̃t = Q̃tR̃t;

5. G← Ub1Q̃t;

6. AL = GTA.
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If the EVD of St in Algorithm 1 is replaced by the

QR decomposition of Ht, we can obtain two improve

versions of PCA, namely PCA/QR-1 and PCA/QR-2.

Algorithm 7: PCA/QR-1

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Ht ∈ Rn×N according to (2);

2. Compute W from the QR

decomposition of Ht;

3. Assign the first p columns of W to G

where p=rank(St);

4. AL = GTA.

Algorithm 8: PCA/QR-2

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Ht ∈ Rn×N according to (2);

2. Compute W from the QR

decomposition of Ht;

3. Assign the first q columns of W to G

where q=rank(Sb);

4. AL = GTA.

3.3. LDA/range(Sb)-QR-1, LDA/range(Sb)-QR-2,

and LDA/GSVD-QR

Let H̃b = Σ
−1/2
b1 UT

b1Hb ∈ Rq×k, where Σb1 and

Ub1 are same as in (5), and consider the QR decom-

position of H̃b : H̃b = Q̃bR̃b. If the EVD of S̃t in

Algorithm 5 is replaced by the QR decomposition of

H̃b, we can get an improve version of LDA/range(Sb),

namely LDA/range(Sb)-QR-1.

Algorithm 9: LDA/range(Sb)-QR-1

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k according to (2);

2. Sb ← HbH
T
b ;

3. Compute the EVD of Sb

Sb =
[
Ub1 Ub2

] [ Σb1 0
0 0

] [
UT
b1

UT
b2

]
;

4. Compute Q̃b from the QR decomposition

of H̃b =
∑

−1/2
b1 UT

b1Hb: H̃b = Q̃bR̃b;

5. G← Ub1

∑
−1/2
b1 Q̃b;

6. AL = GTA.

Another improve version of LDA/range(Sb), namely

LDA/range(Sb)-QR-2, is a two-step method. Firstly,

consider the QR decomposition of Hb : Hb = QbRb

and let

S̃w = QT
b SwQb = QT

b HwH
T
wQb = H̃wH̃

T
w ,

S̃b = QT
b SbQb = QT

b HbH
T
b Qb = RbR

T
b ,

where H̃w = QT
b Hw, and then consider the QR de-

composition of H̃w : H̃w = Q̃wR̃w. We can obtain

the transformation matrix G = QbQ̃w, that is,

Algorithm 10: LDA/range(Sb)-QR-2

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and Hw ∈ Rn×N

according to (2) respectively;

2. Compute the QR decomposition of Hb

Hb = QbRb, where Qb ∈ Rn×q ,

Rb ∈ Rq×k and q = rankHb;

3. Compute the QR decomposition of

H̃w = QT
b Hw : H̃w = Q̃wR̃w,

where Q̃w ∈ Rq×q and R̃w ∈ Rq×N ;

4. G← QbQ̃w;

5. AL = GTA.

Next, we apply the QR decomposition of matrices to

improve Algorithm 3 and get an improve version of L-

DA/GSVD, namely LDA/GSVD-QR. Firstly, consid-

er the QR decomposition of Ht : Ht = QtRt and

let S̃b = QT
t SbQt = (QT

t Hb)(Q
T
t Hb)

T = H̃bH̃
T
b ,

where H̃b = QT
t Hb. Then, consider the QR decom-

position of H̃b : H̃b = Q̃bR̃b and obtain the transfor-

mation matrix G = QtQ̃b. Detail steps are listed in

Algorithm 11.

Algorithm 11: LDA/GSVD-QR

Input : Data matrix A ∈ Rn×N

Output : Reduced data matrix AL

1. Compute Hb ∈ Rn×k and Ht ∈ Rn×N

according to (2), respectively;

2. Compute the QR decomposition of Ht

Ht = QtRt;

3. Compute the QR decomposition of

H̃b = QT
t Hb : H̃b = Q̃bR̃b;

4. G← QtQ̃b;

5. AL = GTA.

4 Experiments and analysis

In this section, in order to show the classifica-

tion effectiveness of the proposed methods, we make

a series of experiments with 6 different data sets tak-

en from ORL faces database [29-30] and Yale faces

database [18,29,31]. Data sets 1-3 are taken from

ORL face database, which consists of 400 images of

40 different people with 10304 attributes for each im-

age and has 40 classes. Data set ORL1 chooses from

222-th to 799-th dimension, ORL2 from 1901-th to

2400-th dimension and ORL3 from 2301-th to 2800-

th dimension. Data sets 4-6 come from Yale database,

WSEAS TRANSACTIONS on MATHEMATICS Jianqiang Gao, Liya Fan, Lizhong Xu

E-ISSN: 2224-2880 716 Issue 8, Volume 11, August 2012



which contains 165 face images of 15 individuals with

1024 attributes for each image and has 10 classes.

We randomly take 150 images in Yale database with

10 images for each person to make up a database, in

which data set Yale1 chooses from 1-th to 300-th di-

mension, Yale2 from 301-th to 600-th dimension and

Yale3 from 501-th to 800-th dimension. All data sets

are split to a train set and a test set with the ratio 4:1.

Experiments are repeated 5 times to obtain mean pre-

diction error rate. The K-nearest-neighbor algorithm

(KNN) with K=3,4,5,6,7 is used as a classifier for al-

l date sets. All experiments are performed on a PC

(2.40GHZ CPU, 2G RAM) with MATLAB 7.1.

4.1. Comparison PCA/range(Sb) and PCA/range(Sb)-

QR with PCA and LDA/range(Sb)

In this subsection, in order to demonstrate the

effectiveness of PCA/range(Sb) and PCA/range(Sb)-

QR, we compare them with PCA and LDA/range(Sb)

on the six data sets. The experiment result-

s are listed in Table 2: For convenience, this

paper call LDA/range(Sb), LDA/range(Sb)-

QR-1, LDA/range(Sb)-QR-2, PCA/range(Sb),

PCA/range(Sb)-QR, PCA/QR-1, PCA/QR-2, L-

DA/GSVD and LDA/GSVD-QR methods LRSb,

LRSbQ1, LRSbQ2, PRSb, PRSbQ, PQ1, PQ2, LGD

and LGSQ for short, respectively.

Table 2: The error rate of PCA, PCA/range(Sb),

PCA/range(Sb)-QR and LDA/range(Sb)

Data set K PCA PRSb PRSbQ LRSb

3 97.25 34.00 23.25 43.50

4 97.00 35.75 24.00 45.25

ORL1 5 97.25 39.75 24.75 46.75

6 97.00 40.50 26.00 48.25

7 97.25 41.50 30.00 48.75

3 94.75 35.00 20.25 39.00

4 94.75 38.50 21.00 41.75

ORL2 5 94.75 38.75 24.00 45.50

6 95.00 39.75 25.00 47.75

7 96.00 42.75 25.50 48.75

3 96.50 31.50 18.25 40.00

4 97.00 36.50 20.25 42.00

ORL3 5 97.00 40.00 23.50 46.00

6 97.75 43.00 24.50 49.25

7 98.25 43.00 26.50 49.25

3 95.30 27.30 32.00 28.70

4 95.30 29.30 32.00 25.30

Yale1 5 96.00 28.70 34.70 27.30

6 96.00 29.30 31.30 30.00

7 96.00 31.30 32.00 29.30

3 94.70 30.70 27.30 31.30

4 93.30 31.30 29.30 31.30

Yale2 5 93.30 32.70 28.70 31.30

6 93.30 33.30 34.00 31.30

7 95.30 35.30 34.00 34.70

Data set K PCA PRSb PRSbQ LRSb

3 90.70 36.00 38.70 35.30

4 90.70 33.30 34.00 36.00

Yale3 5 90.70 33.30 33.30 34.00

6 90.70 33.30 36.70 38.70

7 94.00 37.30 38.00 42.00

From Table 2, we can see that PCA/range(Sb) and

PCA/range(Sb)-QR are generally better than PCA and

LDA/range(Sb) for classification accuracy. For da-

ta sets ORL1-ORL3 and Yale2 PCA/range(Sb)-QR

is obviously better than PCA/range(Sb) and for da-

ta sets Yale1 and Yale3 PCA/range(Sb) is better than

PCA/range(Sb)-QR.

4.2. Comparison LDA/GSVD-QR, PCA/QR-1 and

PCA/QR-2 with LDA/GSVD and LDA/QR

The experiments in this subsection can demon-

strate the effectiveness of LDA/GSVD-QR, PCA/QR-

1 and PCA/QR-2 by comparing them with L-

DA/GSVD and LDA/QR. The experiment results can

be found in Table 3:

Table 3: The error rate of LDA/GSVD, LDA/QR,

LDA/GSVD-QR, PCA/QR-1 and PCA/QR-2

Data set K LGD LGSQ PQ1 PQ2 LDA/QR

3 95.00 23.25 23.00 22.25 33.50

4 93.75 24.00 22.50 22.75 34.25

ORL1 5 92.75 24.75 26.25 23.75 36.75

6 93.75 26.00 27.75 25.25 38.25

7 94.75 30.00 28.25 27.00 39.75

3 94.50 20.25 20.00 19.00 34.50

4 95.00 21.00 20.75 20.25 36.00

ORL2 5 94.75 24.00 24.00 23.25 39.25

6 94.25 25.00 24.75 23.25 41.00

7 94.75 25.50 28.75 25.25 42.00

3 92.00 18.25 19.50 20.50 31.50

4 93.50 20.25 21.25 21.25 33.50

ORL3 5 94.00 23.50 23.75 24.00 36.75

6 93.00 24.50 25.00 24.25 40.00

7 92.75 26.50 26.75 26.00 41.50

3 90.00 32.00 31.30 31.30 24.70

4 90.70 32.00 31.30 31.30 24.70

Yale1 5 88.70 34.70 32.70 33.30 28.00

6 90.00 31.30 31.30 36.70 27.30

7 90.70 32.00 29.30 33.30 28.00

3 85.30 27.30 23.30 32.00 30.70

4 84.70 29.30 22.70 33.30 31.30

Yale2 5 86.00 28.70 28.00 32.00 34.00

6 84.70 34.00 26.00 33.30 33.30

7 82.00 34.00 30.00 34.70 34.00

3 87.30 38.70 31.30 39.30 32.70

4 86.70 34.00 30.00 39.30 31.30

Yale3 5 85.30 33.30 32.00 39.30 32.00

6 84.00 36.70 28.70 38.00 34.00

7 86.00 38.00 31.30 36.70 34.00

From Table 3, we can see that LDA/GSVD-QR,

PCA/QR-1 and PCA/QR-2 are generally better
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than LDA/GSVD and LDA/QR for classification

accuracy. For data sets ORL1 and ORL2 PCA/QR-2

is better than LDA/GSVD-QR and PCA/QR-1 and

for data sets Yale1-Yale3 PCA/QR-1 is better than

LDA/GSVD-QR and PCA/QR-2. For Yale1 LDA/QR

is the best in five algorithms and for Yale3 PCA/QR-1

is the best.

4.3. Comparison LDA/range(Sb)-QR-1 and

LDA/range(Sb)-QR-2 with LDA/range(Sb)

In this subsection, in order to demonstrate the

effectiveness of LDA/range(Sb)-QR-1 and LDA/

range(Sb)-QR-2, we compare them with

LDA/range(Sb). The experiment results are as

follows:

Table 4: The error rate of LDA/range(Sb),

LDA/range(Sb)-QR-1 and LDA/range(Sb)-QR-2

Data set K LRSb LRSbQ1 LRSbQ2

3 43.50 34.00 23.25

4 45.25 35.75 24.00

ORL1 5 46.75 39.75 24.75

6 48.25 40.50 26.00

7 48.75 41.50 30.00

3 39.00 35.00 20.25

4 41.75 38.50 21.00

ORL2 5 45.50 38.75 24.00

6 47.75 39.75 25.00

7 48.75 42.75 25.50

3 40.00 31.50 18.25

4 42.00 36.50 20.25

ORL3 5 46.00 40.00 23.50

6 49.25 43.00 24.50

7 49.25 43.00 26.50

3 28.70 27.30 32.00

4 25.30 29.30 32.00

Yale1 5 27.30 28.70 34.70

6 30.00 29.30 31.30

7 29.30 31.30 32.00

3 31.30 30.70 27.30

4 31.30 31.30 29.30

Yale2 5 31.30 32.70 28.70

6 31.30 33.30 34.00

7 34.70 35.30 34.00

3 35.30 36.00 38.70

4 36.00 33.30 34.00

Yale3 5 34.00 33.30 33.30

6 38.70 33.30 36.70

7 42.00 37.30 38.00

From Table 4, we can see that for data sets ORL1-

ORL3 LDA/range(Sb)-QR-1 is obviously better than

LDA/range(Sb) and LDA/range(Sb)-QR-2 is obvious-

ly better than LDA/range(Sb)-QR-1. LDA/range(Sb)-

QR-2 is the worst in three algorithms for Yale1,

but the best for Yale2 with K=3,4,5,7. For Yale3

LDA/range(Sb)-QR-1 is better than LDA/range(Sb)

and LDA/range(Sb)-QR-2 for k=4,5,6,7.

4.4. Visual comparison of different approaches

In this subsection, In order to illustrate the effec-

tiveness of the QR decomposition outperforms previ-

ous approaches on classification accuracy rate, we fur-

ther compare the improvement methods on the ORL

and Yale database with different K values. The exper-

iment results are shown from Fig.1 to Fig.4.

Fig.1 and Fig.2 are show the deformed version of

PCA, Fig.3 and Fig.4 are show the deformed version

of LDA.
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Fig.1 Recognition rates of PCA, PCA/range(Sb),

PCA/range(Sb)-QR, PCA/QR-1 and PCA/QR-2 under ORL.

From Fig.1 to Fig.4 we clear to see that QR de-

composition play an important role in classification

accuracy rate.

5 Conclusion

In this paper, we introduce a new algorithm

PCA/range(Sb) and five improve versions of three
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Fig.2 Recognition rates of PCA, PCA/range(Sb),

PCA/range(Sb)-QR, PCA/QR-1 and PCA/QR-2 under Yale.
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known algorithms and PCA/range(Sb) by means of

QR decomposition for small size problems. In order

to explain the classification effectiveness of present-

ed methods, we perform a series of experiments with

six data sets taken from ORL and Yale faces databas-

es. The experiment results show that the presented

algorithms are better than PCA, LDA/range(Sb), L-

DA/GSVD and LDA/QR in generally. From Tables
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Fig.3 Recognition rates of LDA/GSVD, LDA/range(Sb),

LDA/QR and LDA/GSVD-QR under ORL.
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2-4, we can see that PCA products very poor clas-

sification result, but PCA/QR-1 and PCA/QR-2 are

much better than PCA for the six data sets, which il-

lustrates that QR decomposition can really improve

classification accuracy for discriminant analysis. In

11 algorithms mentioned in this paper, PCA and L-

DA/GSVD are the worst algorithms, and PCA/QR-2
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Fig.4 Recognition rates of LDA/GSVD, LDA/range(Sb),

LDA/QR and LDA/GSVD-QR under Yale.

and LDA/range(Sb)-QR-2 are more better than others

for classification accuracy. Visual comparison of dif-

ferent approaches show the effective of QR decompo-

sition.
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