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Solving the Ginzburg-Landau equations by finite-element methods
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We consider finite-element methods for the approximation of solutions of the Ginzburg-Landau equa-

tions of superconductivity. The methods are based on a discretization of the Euler-Lagrange equations

resulting from the minimization of the free-energy functional. The discretization is e8ected by requiring
the approximate solution to be a piecewise polynomial with respect to a grid. The magnetization versus

magnetic field curves obtained through the finite-element methods agree well with analogous calcula-
tions obtained by other schemes. We demonstrate, both by analyzing the algorithms and through com-

putational experiments, that finite-element methods can be very effective and e5cient means for the com-

putational simulation of superconductivity phenomena and therefore could be applied to determine mac-

roscopic properties of inhomogeneous, anisotropic superconductors.

I. INTRODUCTION

The purpose of this paper is to demonstrate that finite-
element methods can be effectively used to determine the
macroscopic properties of superconductors. The subject
of our demonstration is homogeneous, isotropic super-
conductors described by the Ginzburg-Landau model.
The eSciency and accuracy of these methods for these
superconductors indicate that they may also be effectively
used for studying the physical behavior of inhomogene-
ous, anisotropic superconductors and for designing de-
vices using such materials.

Suppose that one wishes to efFect a numerical simula-
tion of electromagnetic phenomena in a sample of super-
conducting material which is part of some device. For a
type-I superconductor, or for a type-II superconductor in
the presence of external fields smaller than H, &, this poses
little problem since, except for possible edge effects, all
variables to be approximated are smooth with respect to
the scale of the sample size. Finite-element methods for
just this situation are considered in Du, Gunzburger, and
Peterson. ' However, a sample of a type-II superconduc-
tor in the presence of external fields between H, &

and H, 2

is impossible to simulate, on currently available comput-
ers, because of the appearance of vortexlike structures
whose spacing is very small compared with the sample
size. For example, if one were to use a finite-element or
finite-difference method, then the number of degrees of
freedom necessary to well approximate such phenomena
~ould be prohibitively large.

The inability to perform simulations for typical materi-
al samples of type-IE superconductors gives rise to the use
of the common practice of neglecting the effects due to
sample boundaries. Thus one assumes that one is far re-
moved from the boundary of the superconducting sample
and that in such regions the physically relevant variables,
e.g., the magnetic field, the current, etc., are, in some

sense, periodic The u.se of a periodic model allows one to
focus on a piece of the sample that is of roughly the same
size as that of the scale of variations in the interesting
phenomena. In this case it is easily possible to resolve
these phenomena on currently available computers. In
fact, the results given in this paper were obtained on a
Macintosh II.

Periodic Ginzburg-Landau models have been used in
the past as a setting for analyzing and approximating
phenomena in type-II superconductors. Most of these
deal with some sort of series solution. One notable excep-
tion is that of Doria, Gubernatis, and Rainer, which uses
a Monte Carlo-simulated annealing approach and
represents the best-known effort so far for simulating
type-II superconductors. The particular periodic
Ginzburg-Landau model considered here is studied in de-
tail in Du, Gunzburger, and Peterson' and is closely re-
lated to the models used in the other references cited.
%'e note that there are some discrepancies and incon-
sistencies with the various specific models employed in
the hterature; in Du, Gunzburger, and Peterson, ' many
of these are reconciled or at least explained.

Finite-element methods are characterized by approxi-
mate solutions that are piecewise polynomial functions
with respect to some grid. A specific finite-element
scheme is defined by choosing a particular space of such
functions in which to seek approximate solutions. Then
the discrete equations are deduced by requiring that in
some sense the residual obtained by substituting the ap-
proximate solution into the governing equations is or-
thogonal to all functions belonging to that space.

Finite-element methods have proven very effective in a
variety of other applications, e.g. , solid mechanics, Quid
mechanics, electromagnetics, heat transfer, semiconduc-
tors, etc. There are also many fine books about finite-
element methods; here, we merely cite four "clas-
sics."" ' Moreover, ia many settings, a rigorous
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mathematical analyses of the convergence of approxima-
tions and estimates for the errors induced by finite-
element discretizations have been carried out. However,
to our knowledge, finite-element methods have not been
heretofore applied to Ginzburg-Landau models of super-
conductivity. We have succeeded in developing, analyz-
ing, and implementing finite-element methods for super-
conductivity applications. First, in Du, Gunzburger, and
Peterson, ' we developed and analyzed finite-element algo-
rithms for superconductors having mixed states only near
boundaries, e.g., type-I superconductors. Then, in Du,
Gunzburger, and Peterson, ' we treated finite-element
methods for periodic superconductivity models that are
applicable to type-II superconductors. Here our main
goal is to present the results of some computational ex-
periments for the second, more interesting, setting.

The plan of the rest of the paper is as follows. In the
next section we describe the periodic Ginzburg-Landau
model. In Sec. III we describe the use of finite-element
algorithms for the approximation of solutions of the
equations of Sec. II. In the last section, we illustrate the
effectiveness of our algorithms by presenting the results
of some computational experiments.

sk

X2

P

x)

FIG. 1. Cell Qp determined by the lattice vectors t& and t2
and the point P.

i.e., H, N„and the Gibbs free energy, can be expressed in
terms of the magnetic potential A and order parameter g
as

II. PERIODIC MODEL
VX A, ~11~, and —Vp —A are periodic,

1
(2)

Throughout, we only deal with two-dimensional Eu-
clidean space. Given any two noncolinear vectors t& and

t2, we say that a function f(x) is periodic with respect to
the lattice determined by t, and tz if

f(x+tk)= f(x) for k =1,2 and for all points x .

Here f may be scalar or vector valued and may be real or
complex valued. The vectors tk, k =1,2, will be referred
to as lattice vectors; without loss of generality, we assume
that the counterclockwise angle between t, and t2 is less
than m. For the sake of brevity, we will often refer to
functions satisfying (1) merely as being periodic. We will
not need to specify explicitly the lattice vectors t& and t2
until we consider, in Sec. IV, computational examples.

Given any point P a cell of the lattice with respect to the
point P is the parallelogram Qz depicted in Fig. 1. The
boundary of the cell Qz is denoted by I z. When P corre-
sponds to the origin, we denote the corresponding cell by
Q and its boundary by I . We denote by ~

Q
~

the area of
thh cell Qr,' note that ~Q ~

is independent of the choice for
P.

The variables employed in Ginzburg-Landau models
for superconductivity are the real, vector-valued magnet-
ic potential A and the complex, scalar-valued order pa-
rameter g. From these one may deduce (appropriately
nondimensionalized) physical variables, e.g., the magnetic
field H =V X A and the density of superconducting
charge carriers N, =

~ f~ . Two pairs (g, A) and (g, A) are
said to gauge equivalent if, for some y,

g=ge'r and A= A+ —Vy .
K

where P denotes the phase of the order parameter, i.e.,
P= ~P~e'&, and s is the Ginzburg-Landau parameter. Re-
call that, here and throughout, periodicity is defined with
respect to the lattice determined by the vectors t& and tz.

The average magnetic field B over a cell Qz is defined

by

Note that B is independent of the choice of cell, i.e., of
the choice of the point P. The relation

between the average magnetic field and the area of a lat-
tice cell, results from the "Quxoid quantization condi-
tion;" here, the positive integer n is the number of Nux-

oids associated with a lattice cell.
Let

X2
A =——x,

and

gk(x}=——(xXtk}, k =1,2 .8
(4)

If A and g=~P~e'~ satisfy (2), it is shown in Du,
Gunzburger, and Peterson' that (g, A) is gauge
equivalent to (g, g —Ao), where

~ g~ and Q are periodic,

V Q=O,

Periodicity assumptions about the physical variables, and
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co(x+tk ) —co(x)=agk(x), k = 1,2, (7) ll+2

where c0 denotes the phase of g, i.e., g= ~g~e'". Further-
more, the magnetic field H and the density of supercon-
ducting charge carriers may be recovered from g and Q
through the relations

H=VX A=VXQ+8 and N, =~/~ =[(~

The Ginzburg-Landau equations are a consequence of
the basic postulate of the Ginzburg-Landau theory,
namely, that a superconducting material is in a state such
that the Gibbs free energy is minimized. In terms of an
order parameter g and a reduced magnetic potential Q
which satisfy (5)—(7), the Ginzburg-Landau equations,
posed over a lattice cell Qp, are given by'

n„

—'V- A. —'V- A. g+(IQI'+lgl'-»g

+2Q —V —Ao (=0 in 0 (9)
E

K
P

and

VXVXQ+~(~ Q+Re g' —V —Ao g =0 in Qr,

(10}

where Re denotes the real part. Of course, Q satisfies (6)

FIG. 2. Boundary segments and normal vectors of the lattice
cell Qp.

as well.
Denote the four sides of the parallelogram Qr by I +„

I &, I +2, and I z, using the convention of Fig. 2. Note
that, for k =1 or 2, I +k is the locus of points y such that
y=x+tk for xGr, .

The "periodicity" conditions (5} and (7} on g and Q
over a11 of space induce the following conditions with
respect to a lattice cell:

g(x+tk}=g(x)e " for all x on I k, k=1,2,

Q(x+tk }=Q(x} for all x on I k, k=1,2, (12)

k
—i~g (x)

and

—V —Ao g+Qg n~k+ —V —Ao g+Qg
x+ tk K

k =0 for all x on I k, k =1,2, (13)

VXQI.~,„=VXQ~, for all x on I k, k=1,2. (14)

The Periodic Ginzburg-Landau model we employ is thus defined by (9)—(14), along with (6). Note that, as a result o
(10), the current J=VXVXQ is given by

J=—I(I Q —Re P —V —A
K

0 (15)

III. FINITE-ELEMENT METHODS

Intermediate between the minimization principle and the Ginzburg-Landau equations (9}—(14) is a weak form of
these equations. It is the latter that forms the basis for defining finite-element discretizations. One can go from the
weak form to the strong form (9)—(14) through integration by parts procedures. Here we will merely provide the neces-
sary relations in a discrete context; details may be found in, e.g., Du, Gunzburger, and Peterson. '

We will seek an approximate order parameter g" and reduced magnetic potential Q" such that the discrete Ginzburg
Landau equations
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Re —V —A g ~ ——V —A g .dQ
l h 1 he

np K
0

T

'~

+ f Re p' —V —Ao g"+g" ——V —Ao p' "Q"d&+f (~Q"~'+ ~g"~' —1)Re{("g"*Idn=O (16)0 0
Qp

and

f VXQ .VXQ +V Q" V Q +~("~'Q" Q +Re g"' —'V —A, g" "Q dQ=O
Ap K

~ 4

(17)

hold for suitably chosen test functions P and Q . All
that remains is to indicate what type of functions are to
be used for the approximate solution (g",Q") and the test
functions P and Q . Here we use finite-element metho-

dology to choose these various functions.
The starting point for defining a finite-element method

for a particular problein such as (16) and (17) is to subdi-
vide the lattice cell Qp into smaller subregions, called ele-

ments, which are usually chosen to be quadrilaterals or
triangles. Here we will employ the latter. For example,
given any two positive integers N& and N2, one may sub-

divide the parallelogram Q~ into 2N, N2 triangles in the
manner depicted in Fig. 3. The triangles in the subdi-
vision are denoted by QJ, j = 1, . . . , n, =2N& N2.

The second ingredient in the finite-element recipe is to
define a space of piecewise polynomial functions with
respect to the subdivision of Qz. The two most practical
choices are continuous piecewise linear and piecewise
quadratic polynomials. Here we only consider the latter.
Given a subdivision of Qz into the triangles Q,
j =1, . . . , n„a continuous piecewise quadratic polyno-
mial is a function that is a quadratic polynomial in x,
and x2 in each triangle Q and is continuous on Qz. It is
easy to show that such a function is completely deter-
mined by its values at the vertices and midsides of the tri-

angles Qz. These points are the nodes associated with the
finite-element functions used. For the example triangula-
tion depicted in Fig. 3, the n„=(2Ni+1)(2N2+1) nodes
are depicted in that figure. We will denote nodes associ-
ated with the piecewise polynomial functions by z„
s 1 s ~ ~ ~ s n e

The next ingredient, which is crucial to the eSciency
of finite-element methods, is to choose a set of basis func-
tions that have as small support as possible, i.e., that are
nonvanishing over a small a subset of Qz as possible.
Such basis functions are easily defined as follows. For
s = 1, . . . , n„, let 4„(x)be the unique function which is a
quadratic polynomial in each triangle Q, j =1, . . . , n„
which is continuous over Qz and which satisfies

4, (z&)=5,1. Thus 4, (x) is unity at the node z, and van-

ishes at all the other nodes. The support of 4k(x) is sim-

ply those triangles for which the node z, is either a mid-

side or a vertex. In an arrangement such as the one de-
picted in Fig. 3, the support of any of the basis functions
4, (x) extends over at most six triangles regardless of how

large one chooses N, and N2.
We seek approximations g" to the order parameter g

and Q" to the reduced magnetic potential Q such that the
real and imaginary parts of g" and the components of Q"
are continuous piecewise quadratic polynomials. Any
such function can be expressed as a linear combination of
the basis functions 4, (x), s =1, . . . , n„. Thus, for some
complex constants g, and constant vectors Q„
s =1, . . . , n„, we have that

n„

g"(x)= g g, N, (x) and Q"(x)= g Q, 4, (x) .
s=l s=1

FIG. 3. Subdivision of Qz into 2NlN2 =24 triangles; N& =3,
N2 =4. The (2N ] + 1 )( 2N2 + 1 ) =63 nodes are indicated by the

solid circles.

Note that g, and Q, are simply the nodal values of g" and
Q", respectively, i.e., g"(z, ) =g, and Q"(z, ) =Q„
s 1) ~ ~ ~ )n 0

The discrete equations (16) and (17) do not account for
all the "periodicity" conditions (11)—(14). Fortunately,
the derivative conditions (13) and (14) are natural to the
weak formulation on which (16) and (17) are based; (see
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Du, Gunzburger, and Peterson' }. Consequently, these
are accounted for by (16) and (17). However, (11) and
(12) are essential conditions with respect to the weak for-
mulation and must be explicitly accounted for. To this
end we require that

g"(z, + tk ) =g"(z, )e

for all z, on I k, k =1,2, (19}

and

Q(z, +tk)=Q(z, ) for all z, on I k, k =1,2 . (20)

Note that the periodicity conditions (11) and (12) are en-
forced only at the nodes on the boundary. One easily sees
that (20) implies that Q"(x+tk) =Q"(x) for all points x
on I k, k =1,2. However, in general, g"(x+tk }

h iKg~(x) .Ag"(x)e ' if a boundary point x is not a node. [Be-
iKgk(X) ~ ~

cause of the multiplicative term e ', it is impossible
for the polynomial functions g" to satisfy (11)exactly. ]

All that remains to define completely the discrete equa-
tions is to choose the test functions P and Q" in (16) and
(17}. These are chosen in a symmetric manner; i.e., they
are also taken to be piecewise quadratic polynomial func-
tions that satisfy the essential constraints (19) and (20).

Here we do not delve into the details of the implemen-
tation of the method described above, except to say that
there are no great diSculties over and above those en-
countered when applying finite-element methods in other
settings. However, we comment on the accuracy and
complexity of the approximations obtained in this
manner. In the first place it can be rigorously' shown
that in a root-mean-square sense, i.e., measured in
L (Qp) norms, the differences g' —g") and (Q —Q") are of
order li and the differences V(g —g"}and V(Q —Q") are
of order ii, where h denotes the largest diameter of any
of the triangles in the subdivision. For a triangulation
such as the one depicted in Fig. 3, the number of real
discrete nonlinear equations is roughly 4 times the num-
ber of nodes since there are four unknowns at each node,
i.e., the real and imaginary parts of g" and the com-
ponents of Q".

The input data for the finite-element method consist
partly of the parameters that uniquely specify the period-
ic Ginzburg-Landau model. These are given in the fol-
lowing list.

(i) The Ginzburg-Landau parameter a. Since we are
presuming the existence of a vortex lattice structure, we
must have that a.) I /V 2.

(ii) The positive integer n, the number of fluxoids asso-
ciated with a lattice cell.

(iii) The position of the point P, which determines the
position of the lattice cell with respect to the origin; the
obvious and usual choice for P is the origin itself.

(iv) The average magnetic field B; for a given value of
sc, B may be chosen such that 0 &B & a'.

+ —Ao
1 1 i

Slnl "~ 2

2

+IVXQ+S)l' d&. (21)

Thus, once (g, Q) has been obtained from a given set of in-
put parameters, 0, can be determined by evaluating in-
tegrals. Another quantity of interest is the magnetization
(or magnetic moment per unit volume) M defined by

—4mM=H, —B . (22)

Z2
ik

P=(0,0)

FIG. 4. Lattice cell 0 for an equilateral triangular lattice.

(v) The directions and relative magnitudes of the lattice
vectors t, and t2 without loss of generahty, one may
choose t, to be aligned with the x, axis. One also
chooses 8%0, the angle between t, and t2, and y )0, the
ratio of the magnitudes of t2 and t&. The absolute magni-
tudes of t& and t2 are then determined with the help of the
fluxoid quantization condition, i.e., ~

Q
~

=2m n /a8.
Thus the parameters that determine the periodic model

are P, sc, n, y, 8, and 8. The only other input datum re-
quired by the finite-element method is geometrical infor-
mation about the grid, e.g., the positions of the nodes.

The reduced magnetic potential Q and order parameter

g are the primary dependent variables employed in the
periodic Ginzburg-Landau model. However, of more in-
terest as output data are the magnetic field H, the current
J, and the density of superconducting charge carriers N, .
These may be determined from g and Q through relations
(8) and (15).

For specified values for the input parameters, one
would like to know the corresponding external magnetic
field H, . the best method for determining H, is
developed in Doria, Gubernatis, and Rainer, ' where it is
shown that
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0.06If the piecewise quadratic finite-element approxima-
tions g" and Q" are substituted into (8), (15), (21), and
(22), then one can deduce' that the approximations to
the magnetic field, current, external field, and magnetiza-
tion so obtained are 0 (Ji ) and that for the density of su-
perconducting charge carriers is 0 (h ).

0.05;

0.04

0.03

IV. COMPUTATIONAL RESULTS 0.02

0.01

We consider the most interesting periodicity structure,
namely, that corresponding to an equilateral triangular
lattice having one Quxoid associated with each lattice
cell. It is well known that such a lattice yields the small-
est value for the Gibbs free energy. For this case we have
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FIG. 5. (a) Magnetization (—4~M) vs external field (H, ) for
K=5: finite elements with N, =N2=3 (solid curve) and Monte
Carlo-simulated annealing (dashed curve} (Ref. 4). (b) Magneti-
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for K=5: Nl=N2=3 (solid curve) and N, =N2=4 (dashed

curve).
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that n =1, y =1, and 8=m. /3. Then the area ~Q~ of any
lattice cell is given by (II~ =&3(t, ( /2=2m/aB, so that t2= 1 2 2

and

(a)

(c)
FIG. 8. (a) Level curves of N„ the density of superconduct-

ing charge carriers, for ~=20, B=2~/5, and N, =N2=3. Cor-
responding to these data, we have that H, = 1.282,
—4~M=0. 02556, and max(N, )=0.9984. (b) Level curves of
N„ the density of superconducting charge carriers, for ~=5,
B=2m./5, and N, =N~=3. Corresponding to these data, we
have that H, = 1 ~ 327, —4~M =0.07021, and max(N, ) =0.9363.
(c) Level curves of N„ the density of superconducting charge
carriers, for ~=5, 8=~/10, and N& =N2 =3. Corresponding to
these data, we have that H, =0.4162, —4mM=0. 1020, and
max(N, )=0.9990.

where i, and i2 are the unit vectors in the coordinate
directions. We make the customary choice of the origin
for the point P. The lattice cell 0 is depicted in Fig. 4.
The only remaining inputs to be chosen are the
Ginzburg-Landau parameter v, the average magnetic
field 8, and the grid information.

The discretized equations are a nonlinear system of
algebraic equations. These are solved by a continuation
method coupled with Newton's method. The code is
configured so that one chooses a fixed value for x, and
then varies B. For each pair (a,B), Newton's method is
used to solve the nonlinear equations. The initial guess
for Newton's method is determined by continuing from
the solution determined for a previous value of 8 and the
same value of a. The particular continuation method
used is a tangent-line approximation to the solution at the
previous value of B. We start with a value of 8 close to
the upper limit ~ for which Newton's method seems to
have a large attraction ball; we then continue by succes-
sively reducing the value of 8 toward its lower limit 0.

Computational results were obtained, on a Macintosh
II, using piecewise quadratic finite-element functions. A
uniform grid spacing was used in each of the t& and t2
directions. For each fixed value of ~, we vary 8. We then
obtain approximations for g and Q, which are used to
determine N, from (8), H, from (21), and M from (22).
The graph of the computed approximation of —4mM vs

H, is given in Figs. 5 and 6. In Fig. S(a), the magnetiza-
tion for a=5, obtained using three intervals in each
direction, i.e., N, =N2=3, is compared with the corre-
sponding graph for the Monte Carlo-simulated anneal-
ing approximation obtained in Doria, Gubernatis, and
Rainer. The agreement is excellent except for low values
of the external field. In Fig. 5(b) the magnetization for
a =5, obtained using three intervals in each direction, is
compared with the corresponding graph for four inter-
vals in each direction, i.e., for N, =N2=4. The conver-
gence of the finite-element approximations, even for these
crude grids, is evident. The same comparisons are re-
peated in Figs. 6(a) and 6(b) for the case a =20.

In Fig. 7 the maximum value of N„ the density of su-

perconducting charge carriers, is plotted vs H, /x for
three different values of v. The graphs for a=5 and 20
are virtually indistinguishable. For comparison purposes
we also provide the graph for a =1. All three plots were
obtained with N, =N2 =3.

The level curves, obtained using N, =N2 =3, of N„ the
density of superconducting charge carriers, are given in
Fig. 8. The solution in only a single lattice cell was corn-
puted; this solution was extended, using (5), to obtain the
solution outside the computational cell. The figure cap-
tions indicate the values of ~ and 8 corresponding to each
of Figs. 8(a)—8(c), as well as the resulting values of H„—4@M, and max(N, ). The size of each of these three
figures is chosen so that they all contain the same number
of vortices. Thus the sizes serve as an indication of the
spacing between the vortices. Figures 8(a) and 8(b) corre-
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spond to the same value of B but different values of ~,
while Figs. 8(b) and 8(c) correspond to the same value of
K but different values of B. A close examination of Figs.
8(a) and 8(c) reveals that they are virtually scaled versions
of each other; note that tr/B =50/m for both of these
figures. Also, note that the ratio of the values of x for
these figures is 4, which, of course, is also the geometric
scaling ration between the figures.
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