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Abstract. We study the message size complexity of recognizing, under
the broadcast congested clique model, whether a fixed graph H appears
in a given graph G as a minor, as a subgraph or as an induced subgraph.
The n nodes of the input graph G are the players, and each player only
knows the identities of its immediate neighbors. We are mostly interested
in the one-round, simultaneous setup where each player sends a message
of sizeO(logn) to a referee that should be able then to determine whether
H appears in G. We consider randomized protocols where the players
have access to a common random sequence. We completely characterize
which graphs H admit such a protocol. For the particular case where
H is the path of 4 nodes, we present a new notion called twin ordering,
which may be of independent interest.

1 Introduction

Yao, in his seminal paper of 1979 [27], not only introduced the two-party com-
munication model but also the much more restricted two-party simultaneous
messages communication model (SM). The SM model is defined as follows. Al-
ice and Bob wish to evaluate together a function f : X × Y → {0, 1}. Alice
receives her input x, Bob receives his input y. Both Alice and Bob send simul-
taneously a message to a referee, who sees none of the input. The referee then
announces the function value f(x, y). Of course, the goal of the game is to min-
imize the size of the messages. Many results have been obtained in this model
and, in particular, clear separations have been proved between the deterministic
and the randomized settings [5, 9, 19].

The extension of the SM model to many players is direct and it is defined as
follows. There are n players. These n players wish to evaluate together a function
f : X1× . . .×Xn → {0, 1}. Each player receives an input xi ∈ Xi. The n players
send simultaneously a message to the referee who uses these messages in order to
compute the boolean function f(x1, . . . , xn). We call this model the multiparty
simultaneous messages communication model (MSM).
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The already defined number-in-hand multiparty communication model is
more general than the MSM model because, in the number-in-hand model, many
rounds are allowed and different communication modes can be considered [12, 14,
17, 21, 26]. In fact, the MSM model corresponds to the one-round, synchronous,
shared-whiteboard number-in-hand model.

The broadcast congested clique model is exactly the number-in-hand model
but where the joint input, instead of being (x1, . . . , xn) ∈ X1 × . . . × Xn, is a
graph [13, 16]. This input graph is distributed among the nodes, which are the
parties of the communication game. More precisely, in the broadcast congested
clique model, the joint input to the n nodes is an undirected n-node graph G,
with node v receiving the list of its neighbors in G. Each node broadcasts, in
each round, a b-bit message (written on a whiteboard, which is visible to every
node).

In this paper we are interested in the simultaneous messages (one-round)
broadcast congested clique model SM-BCAST. We assume that the ID of each
node is a unique number between 1 and n and that the only information each
node has, besides n and its own ID, is the list of IDs of its neighbors in G. These
nodes need to send, simultaneously, a b-bit message to the referee allowing him
to answer, typically, questions of the form “Does the input graph G belong to
the graph class C?".

If there is no restriction on the message size then there is a trivial simulta-
neous protocol that allows the referee to reconstruct any graph: given an input
graph G (with an arbitrary assignment of IDs to each of the n nodes), every
node sends the binary vector x ∈ {0, 1}n corresponding to the indicator function
of its neighborhood. Clearly, this information determines G completely.

If we restrict the message size then reconstructing G becomes much more
difficult. Despite this, in [6] it was proved that if (an upper bound on) the
degeneracy of G is known in advance, then it is possible to reconstruct G with
a one-round protocol of O(log n) message size. More precisely,

Proposition 1 (Lemma 2 of [6]). Let m be a positive number. Then, it is
possible to decide deterministically, in the SM-BCAST model, the class of m-
degenerate graphs using messages of size O(m2 log n). Moreover, if the degener-
acy of G is (upper bounded by) m then G can be completely reconstructed by the
referee.

The degeneracy m of a graph is defined as follows: G is m-degenerate if one
can remove from G a node r of degree at mostm, and then proceed recursively on
the resulting graph G′ = G−r, until obtaining an empty graph; the degeneracy of
G is the smallest m such that G is m-degenerate. For instance, the degeneracy
of trees is 1, and the degeneracy of planar graphs is at most 5. Many other
important graph classes have bounded degeneracy and this is the reason why
previous result is surprising.

In [1, 2, 15] the authors introduced a beautiful and powerful technique for
graph sketching. This technique works both for streaming models and for the
SM-BCAST model. It allows the referee to decide whether the input graph is
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connected when each node sends one message of size O(log3 n). The protocol for
generating the messages is randomized.

Some negative results for the SM-BCAST model have also been obtained.
In [7] the authors prove that it is impossible to decide whether the input graph G
has diameter at most 3 or whether G has a triangle unless the messages sent by
the nodes are all of size Ω(n), even if randomness is allowed. Deciding whether
the input graph G contains a cycle requires at least one node to write a message
of length at least dlog de − 1, where d is the maximum degree of G [4].

It should be pointed out that negative results in the general broadcast con-
gested clique model yield negative results in the SM-BCAST model. In fact, if
one can prove that any solution for some problem in the broadcast congested
clique model allowing messages of size at most b needs at least r rounds, then
one can conclude that any solution of the same problem in the SM-BCAST
model needs messages of size at least Ω(rb).

LetH be a fixed graph. The question we address in this paper is the following:
“Does H appear in the input graph G?" In graph theory, the word “appear" has
at least three interpretations: H may appear as a minor of G, as a subgraph of
G or as an induced subgraph of G.

1.1 Minors

An interesting application of Proposition 1 is related to the problem of detecting
the presence of particular minors in the input graph G. The study of graph
classes defined by graph minors is one of the most important branches of graph
theory, culminating in the Robertson–Seymour theorem [22], also known as the
Graph Minor Theorem, which states that every minor-closed family of graphs is
defined by a finite set of forbidden minors. Many classes of graphs are minor-
closed, and have known characterizations in terms of minors. For example, the
famous theorem of Kuratowski states that planar graphs are exactly those not
containing K5 or K3,3 as minors.

Let H be a fixed graph. We say that H is a minor of G if H can be extracted
from G by deleting edges, deleting nodes and contracting edges. We say that
G is H-minor free if G does not have H as a minor. H-minor free graphs have
bounded degeneracy [18, 24, 25]. This fact, together with Proposition 1, allows us
to conclude that, in the SM-BCAST model, it is possible to decide determinis-
tically whether H is a minor of G using messages of size O(log n). Moreover, if G
is H-minor free then G can be completely reconstructed by the referee. This im-
plies that for every minor-closed class C, there must be an O(log n) message size
deterministic protocol that decides class C (and that even reconstructs the input
graphs belonging to the class). Unfortunately, for many minor-closed classes we
have not discovered the corresponding finite set of forbidden minors yet, and
therefore, we can only conclude the existence of such protocol (as it occurs with
the existence of polynomial time algorithms for recognizing minor-closed classes
in the sequential, classical setting).
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1.2 Subgraphs

We say that G contains H if H is a (not necessarily induced) subgraph of G.
The problem H-Subgraph consists in deciding whether H is a subgraph of G.
Proposition 1 can also be used for tackling H-Subgraph. In fact, Drucker, Kuhn
and Oshman [13] made the following remark: the degeneracy of graphs which do
not contain H as a subgraph (H-subgraph free graphs) can be upper bounded in
terms of the Turán number ex(n,H), the maximal number of edges of an n-node
graph which does not contain a subgraph isomorphic to H. More precisely, they
showed that the degeneracy of H-subgraph free graphs with n nodes is at most
4ex(n,H)/n. This gives the following result.

Proposition 2 ([13]). Let H be a fixed graph. Then, the problem H-Subgraph
can be solved in the SM-BCAST model with a O(ex(n,H)2 log n/n2) message
size deterministic protocol. ?

The previous proposition gives some interesting upper bounds. For instance,
if H is a tree or a forest then ex(n,H) = Θ(n) [3]. Therefore, in this case, H-
Subgraph can be solved with messages of size O(log n). It is also known that
ex(n,C2`) = Θ(n1+1/`), where C2` is the even length cycle of length 2` [8]. In
other words, C2`-Subgraph can be solved with messages of size O(n2/` log n).

The authors in [13] obtained interesting lower bounds which also depend on
the Turán number. For instance, consider the `-node cycle C`. They show that if
` ≥ 4, then any protocol that solves C`-Subgraph needs at leastΩ(ex(n,C`)/(nb))
rounds, where b is the message size each node can broadcast in each round.
This yields a lower bound of Ω(ex(n,C`)/n) message size for the SM-BCAST
model. Considering that ex(n,C`) = Θ(n2) if ` > 3 is odd and that ex(n,C`) =
Θ(n1+2/`) if ` is even we conclude the following: any randomized protocol which
solves C`-Subgraph in the SM-BCAST model uses messages of size at least
Ω(n) if ` is odd and Ω(n2/`) if ` is even.

In the case of triangles C3 they obtain Ω(n/(eO(
√
logn)b)) rounds as a lower

bound for the deterministic case. This yields a lower bound of Ω(n/eO(
√
logn))

for any deterministic protocol that solves C3-Subgraph in the SM-BCAST
model. In Corollary 5, we state a similar result more generally: if H contains a
cycle, then messages of polynomial size are needed in the problem H-Subgraph.

1.3 Induced subgraphs

An induced subgraph of a graph G = (V,E) is a graph G′ = (V ′, E′) with V ′ ⊆ V
and such that vw ∈ E′ if and only if vw ∈ E. In other words, the edges of the
induced graph G′ are all those whose endpoints are both in V ′. A class of graphs

? In [13] the authors say that the message size is O(ex(n,H) logn/n). But this bound
is an optimistic interpretation of the upper bound of Proposition 1, because instead
of considering m2 they consider m. The conclusions they obtain do not depend on
this issue.
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G is said to be hereditary if every induced subgraph of every member of G is also
in G.

A graph G is H-free if H is not an induced subgraph of G. It is easy to
show that a graph class G is hereditary if and only if G is defined by a (finite or
infinite) set H of forbidden graphs. More precisely, G is hereditary if and only if
for some H, G = {G | G is H-free, for every H ∈ H}.

There is no analog of the Graph Minor Theorem for induced subgraphs, and
many classes of graphs have an infinite minimal set of forbidden induced sub-
graphs. For instance, the class of bipartite graphs is hereditary and the (minimal)
set of forbidden induced subgraphs is the set of odd cycles. There are, however,
many interesting classes of graphs defined by finite families of forbidden induced
subgraphs. For example, the class P4-free, the class of graphs without an induced
copy of the 4-node path P4, is the class of cographs. It arises often in algorithmic
graph theory, and also plays a major role in this article.

Problem H-Induced Subgraph consists in deciding whether H is an in-
duced subgraph of G. This problem has not yet been addressed in the congested
clique model (with the exception of H being a clique, because Kk is an induced
subgraph of G if and only if it is a subgraph of G). This work intends to initiate
this research line.

1.4 Notation

In this work a “graph" is always a “simple undirected labeled graph". In par-
ticular, the nodes of the n-node input graph G = (V,E) are labeled by their
IDs. The open neighborhood of a node v ∈ V is denoted by NG(v) and corre-
sponds to the set of nodes which are adjacent to v. The closed neigborhood is
NG[v] = NG(v) ∪ {v}.

Let H be a graph. The number of nodes of H is denoted by |H|. Its com-
plement H is the graph with the same set of nodes V (H) but such that e ∈
E(H) ⇐⇒ e /∈ E(H). We write H1

∼= H2 when the two graphs are isomorphic.
Let v be a node of H. We denote by H − v the graph with |H| − 1 nodes where,
besides removing v, we also remove all the edges incident to v. Similarly, we
denote by H − e the graph obtained by removing the edge e from H.

The path of k nodes is denoted by Pk, the cycle of k nodes is denoted by
Ck, the clique of k nodes is denoted by Kk. The disjoint union of H1 and H2 is
denoted by H1 + H2. The disjoint union of t isomorphic graphs is denoted by
tH (where each of the t graphs is isomorphic to H).

A deterministic protocol P in the SM-BCAST model describes the mech-
anisms of the nodes (for generating the messages) and the mechanism of the
referee (for retrieving the final result) that correctly computes the output on
all inputs. An ε-error randomized protocol P for some problem is a protocol in
which every node and the referee are allowed to use a public sequence of random
bits, and for every input the referee outputs the correct answer with probabil-
ity at least 1 − ε. The cost of a protocol P, denoted C(P), is the length of the
longest message sent to the referee. The deterministic message size complexity,
denoted C(f), is the minimum cost of any deterministic protocol computing f .
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Analogously, we denote as Cε(f) the message size complexity for ε-error (public)
randomized protocols.

1.5 Our results

We study the message size complexity of the problem of determining whether a
fixed graph H “appears” in a given graph G, mostly under the one-round SM-
BCAST model. In particular, we are interested in finding out which graphs H
admit (deterministic or randomized) solutions with message size that is loga-
rithmic in n, the number of nodes of the input graph G. Note that a log(n)-size
message allows one to identify a node in G, so each node can broadcast the
identities of a bounded number of nodes.

As already discussed in Section 1.1, for any graph H, a logarithmic message
size is enough to determine – even deterministically – if H is a minor of an
arbitrary input graph G.

By Section 1.2, the same is true for the problem of determining whether H
is a subgraph of a given G when H is a forest. In other words, if H is a forest,
thenH-Subgraph can be decided by a deterministic protocol with simultaneous
messages of logarithmic size. On the other hand, in Section 2 we prove that if
H is not a forest then any protocol (even randomized) requires polynomial size
messages. These results are summarized in Corollary 5.

Our results of Section 3 concern the appearance of H as an induced subgraph
in G (with |V (H)| ≥ 3, because otherwise the problem is trivial). Corollary 6
(together with Comment 1) states that polynomial message size is required to
solve H-Induced Subgraph – even with a randomized protocol – for all H
except for H ∈ {P1 + P2, P3, P4}. These are exactly the graphs of order at least
three that both themselves and their complements are without cycles. We then
provide a randomized protocol with logarithmic message size for the caseH = P3

(equivalently H = P1 +P2) in Proposition 7. Note that P3-Induced Subgraph
is equivalent to asking if a graph G is a disjoint union of cliques.

Our most involved result is the one of Section 4, where we provide a random-
ized protocol with logarithmic message size for problem P4-Induced Subgraph
(Proposition 10). For doing this we give a characterization of P4-free graphs (or
cographs) based on the notion of twin ordering. This characterization of cographs
is, to the best of our knowledge, a new one.

We are not aware of deterministic one-round solutions for P3- and P4-Induced
Subgraph problems, so these remain open. However, the problems can be solved
with logarithmic message size in two rounds (Proposition 8) and in 2(h − 1)
rounds (Proposition 11), respectively, where h bounds the cograph level to be
checked.

Every connected cograph has diameter 2. Proposition 10 tells us that cographs
can be recognized, in the SM-BCAST model, with a randomized O(log n) mes-
sage size protocol with 1/nc error. It is interesting to point out that, from the
paper of Holzer and Pinsker [16], one can conclude that for deciding whether a
graph has diameter 2, the size of the messages must be Ω(n), even if randomness
is allowed.

6



2 Lower bounds for detecting subgraphs and induced
subgraphs

As mentioned in Section 1.2, it follows from [13] that any randomized ε-error
protocol that solves the problem C`-Subgraph in the SM-BCAST model uses
messages of size Ω(n) for ` > 3 odd and Ω(n2/`) for ` even

The following two propositions generalize these results from cycles C` to
arbitrary graphsH that contain a cycle. Our proofs work also in the caseH = C3

of a triangle, and the same proofs provide the lower bounds also for the H-
Induced Subgraph problem.

The proofs are reductions from the Index problem. Consider the Index
function in the two players SM model: the first player, say Alice, has as input
an N -bit boolean vector x and the second player, Bob, has an integer q ∈ [1, N ].
Then Index(x, q) = xq, the q’th coordinate of Alice’s vector. We will use the fact
that for any ε < 1/2, any public coin randomized protocol for Index requires
Ω(N) bits (see, e.g., [19] for a proof).

Let H and G be two disjoint graphs, let ab be an edge of H and let r, t
be two nodes of G. We denote by Grt ⊕ Hab the graph obtained from G and
H−ab by identifying nodes r and a, and nodes t and b. Then, the set of nodes of
Grt ⊕Hab is V (G)∪ V (H) \ {a, b}, where we still denote by r (resp. t), the new
node obtained under the identification of r and a (resp. t and b). We call G̃ the
subgraph of Grt ⊕Hab induced by the set of nodes V (G); we have G̃ ∼= G. We
call H̃ the subgraph of Grt⊕Hab induced by the set U := (V (H)∪{r, t})\{a, b}.
We notice that H̃ ∼= H if and only if rt is an edge of G.

A cycle in Grt ⊕ Hab is called a crossing cycle if it contains nodes from
V (G) \ {r, t} and from V (H) \ {a, b}. Then, the length of a crossing cycle is at
least the distance in H − ab between a and b, which we denote by kH , plus the
distance in G− rt between r and t, which we denote by kG.

Let P be a protocol for a graph problem. We denote by P(|G|, v,NG(v)) the
message generated in the protocol by node v having neighborhood NG(v) in a
graph with |G| nodes.

We first consider the case that H contains a cycle of odd length.

Proposition 3. Let H be a non-bipartite graph. Any randomized ε-error proto-
col that solves H-Induced Subgraph or H–Subgraph uses messages of size
Ω(n).

Proof. LetN ∈ N be even. Consider the following instance of the Index problem.
Alice receives the indicator vector of a set X ⊆ VL × VR where VL and VR are
two disjoint sets of cardinality |VL| = |VR| = N

2 . Bob receives a couple (p, q).
The question the referee needs to answer is whether (p, q) ∈ X. We already
know that any ε-error randomized protocol that solves this problem needs Alice
to send Ω(N2) bits.

Suppose that there exists a randomized ε-error protocol P that solves H-
Induced Subgraph or H-Subgraph using messages of size c(n). We are going
to use P to solve Index.
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Consider the N -node graph G = (VL ∪ VR, E) with E = X. Let a, b be two
nodes of H such that the edge ab lies in a shortest odd cycle (it must exist, H is
non-bipartite), and let k be the length of this cycle. Let i ∈ VL and j ∈ VR. Then,
any odd-length crossing cycle of Gij ⊕Hab has length at least k+ 2: paths in G
between i and j have odd length, and the shortest even-length path in H − ab
between a and b has length k − 1. Hence, any cycle of length k in Gij ⊕Hab is
either included in G or in H̃. But as k is odd and G is bipartite, any cycle of
length k belongs to H̃. In conclusion, H is an (induced) subgraph of Gij ⊕Hab

if and only if ij is an edge of G: if H is a subgraph of Gij ⊕Hab, then ij is an
edge of G as otherwise H̃ has fewer cycles of length k than H and, conversely,
if ij is an edge of G then H̃ ∼= H is an induced subgraph of Gij ⊕Hab.

Alice can take advantage of the previous fact in order to generate a message
from her input X. She generates N messages, one for each node in G.

For each i ∈ VL she generates the message (M i
a,M

i), where

– M i
a = P(|G|+ |H| − 2, i, NG(i) ∪NH(a) \ {b}) is the message node i would

send in the graph Gij′ ⊕Hab with j′ ∈ VR arbitrary.
– M i = P(|G| + |H| − 2, i, NG(i)) is the message node i would send in the

graph Gi′j′ ⊕Hab with i′ ∈ VL \ {i}, j′ ∈ VR, both arbitrary.

For each j ∈ VR she generates the message (M j
b ,M

j), where

– M j
b = P(|G|+ |H| − 2, j,NG(j) ∪NH(b) \ {a}) is the message node j would

send in the graph Gi′j ⊕Hab with i′ ∈ VL arbitrary.
– M j = P(|G| + |H| − 2, j,NG(j)) is the message node j would send in the

graph Gi′j′ ⊕Hab with i′ ∈ VL , j′ ∈ VR \ {j}, both arbitrary.

Suppose that Bob sends (p, q) to the referee. How can the referee decide
whether (p, q) ∈ X? He simply simulates protocol P considering for node p the
message Mp

a , for node q the message Mq
b and for every other node r the message

Mr (recall that H is fixed, known by the referee).
The size of the message sent by Alice is O(Nc(N+ |H|−2)). Therefore, since

the randomized complexity of Index is Ω(N2) and |H| is constant, we conclude
that c(N) = Ω(N). ut

Another reduction in the same style provides a lower bound in the case of
bipartite H containing cycles.

Proposition 4. Let H be a bipartite graph containing a cycle. Any random-
ized ε-error protocol that solves H-Induced Subgraph or H–Subgraph uses
messages of size Ω(n2/k) where k is the (even) length of the shortest cycle in H.

Proof. Let N = ex(n,Ck) for some n, and let G = (V,E) be a graph with n
nodes and N edges which does not contain a subgraph isomorphic to Ck. Recall
that ex(n,Ck) = Θ(n1+2/k) for even k.

Consider the following instance of the Index problem. Alice receives a vector
X ∈ {0, 1}N and Bob receives a natural number p ∈ [1, N ]. The question the
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referee needs to answer is whether Xp = 1. We already know that any ε-error
randomized protocol that solves this problem needs Alice to send Ω(N) bits.

Suppose that there exists a randomized ε-error protocol P that solves either
H-Induced Subgraph or H-Subgraph using messages of size c(n). We are
going to use P to solve Index.

Let e1, e2, . . . , eN be an enumeration of the edges of G, and consider the
subgraph G′ = (V,E′) of G with ei ∈ E′ ⇐⇒ Xi = 1. Let a, b be two nodes of
H such that the edge ab lies in a shortest cycle (that is, on a cycle of length k).

For any ei = (r, t), 1 ≤ i ≤ N , consider the graph G′rt ⊕ Hab. Then any
crossing cycle of G′rt⊕Hab has length at least k+ 1: kG ≥ 2 and kH = k− 1. By
definition, G′ has no cycle of length k. Hence, any cycle of length k in G′rt⊕Hab

must appear in the subgraph H̃ of G′rt ⊕Hab. Therefore, if H is a subgraph of
G′rt ⊕Hab then rt is an edge of G′ as otherwise H̃ has fewer cycles of length k
than H. And of course, conversely, presence of edge rt in G′ means that H̃ ∼= H
is an induced subgraph of G′rt ⊕Hab.

Alice can take advantage of the previous fact in order to generate a message
from her input X. She generates n messages, one for each node in G′. For each
i ∈ V she generates the message (M i,M i

a,M
i
b), where

– M i
a = P(n+ |H| − 2, i, NG′(i) ∪ (NH(a) \ {b})) is the message node i would

send in the graph G′ij ⊕Hab with j ∈ V \ {i} arbitrary.
– M i

b = P(n+ |H| − 2, i, NG′(i) ∪ (NH(b) \ {a})) is the message node i would
send in the graph G′ij ⊕Hba with j ∈ V \ {i} arbitrary.

– M i = P(n+ |H|−2, i, NG′(i)) is the message node i would send in the graph
G′i′j′ ⊕Hab with i′, j′ ∈ V \ {i}, both arbitrary.

Suppose that Bob sends p to the referee. How can the referee decide whether
Xp = 1? If ep = (y, z) he simply simulates the protocol P considering for node
y the message My

a , for node z the message Mz
b and for every other node i the

message M i (recall that H is fixed, known by the referee).
The size of the message sent by Alice is O(nc(n+ |H| − 2)). Therefore, since

the randomized complexity of Index is Ω(N) we conclude that c(n + |H| − 2)
is Ω(N/n). We have N = ex(n,Ck) = Ω(n1+2/k), which proves the claim. ut

Combining Propositions 3 and 4 with the observations of Section 1.2, we
obtain the following:

Corollary 5 If H is a forest, then the problem H-Subgraph can be decided
by a deterministic protocol with simultaneous messages of logarithmic size. If
H contains a cycle, then a randomized protocol with simultaneous messages for
H-Subgraph requires messages of polynomial size.

3 The problem H-Induced Subgraph

Lemma 1. Let H be a fixed graph. The problems H-Induced Subgraph and
H-Induced Subgraph are equivalent. More precisely, there exists a protocol
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with message size b for solving H-Induced Subgraph if and only if there exists
a protocol with message size b for solving H-Induced Subgraph.

Proof. Let H be a fixed graph. Suppose that we have a protocol for solving
H-Induced Subgraph. We can use this protocol for solving H-Induced Sub-
graph as follows. Let G be the input graph. Note that H is an induced subgraph
of G if and only if H is an induced subgraph of G. Therefore, every node v can
consider the nodes that are not its neighbors and apply the protocol for detect-
ing H with this new, complementary neighborhood. Of course, if there is enough
information for reconstructing G (when the answer is positive) then there is
enough information for reconstructing G. ut

Corollary 6 Let H be an arbitrary graph with at least 3 nodes. If H /∈ {P1 +
P2, P3, 2P2, C4, P4} then any randomized ε-error protocol that solves H-Induced
Subgraph uses messages of size Ω(n).

Proof. This follows directly from Proposition 3 and Lemma 1 because, the graphs
listed above, are the only graphs with at least 3 nodes which are bipartite both
themselves and their complements. ut

Comment 1 Notice that P1 + P2 = P3, 2P2 = C4 and P4 = P4. Therefore,
in order to understand completely problem H-Induced Subgraph, the only
problems we need to study are P3-Induced Subgraph, C4-Induced Subgraph
and P4-Induced Subgraph. The case H = C4 in Proposition 4 directly provides
an Ω(n1/2) lower bound on the message size for any randomized ε-error protocol
that solves C4-Induced Subgraph. Therefore, the only two cases for which we
do not know the message size complexity yet are H = P3 and H = P4.

3.1 The problem P3-Induced Subgraph

Notice that a graph is P3-free if and only if it is the disjoint union of cliques.
There is a classical randomized “fingerprint” technique for testing whether two
vectors are equal. We are going to use this technique for solving P3-Induced
Subgraph. It works as follows. Let nc+3 < p ≤ 2nc+3 be a prime number. A
value t ∈ Zp is chosen uniformly at random using O(log(n)) public random bits.
Given an n-bits vector a = (a1, . . . , an), consider the polynomial Pa = a1 +
a2X+a3X

2 + . . . anX
n−1 in Zp[X] and let FP (a, t) = Pa(t). The value FP (a, t)

is sometimes called the “fingerprint” of vector a. Clearly two equal vectors have
equal fingerprints, and, more important, for any two different vectors a and b, the
probability that FP (a, t) = FP (b, t) is at most 1/nc+2 (because the polynomial
Pa − Pb has at most n roots and t was chosen uniformly at random, thus the
probability that t is a root of Pa − Pb is at most 1/nc+2, see [20]).

Proposition 7. For any constant c > 0, P3-Induced Subgraph can be solved
with a randomized O(log n) message size protocol with 1/nc error.
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Proof. Let xi ∈ {0, 1}n be the input vector of node i, i.e., the characteristic
function of its closed neighborhoodN [i] = N(i)∪{i}. A protocol for P3-Induced
Subgraph consists in each node sending two numbers: its degree di and its
fingerprint mi = FP (xi, t). Let l(m) be the number of nodes that send the same
fingerprint m. The referee concludes that the input graph G is the disjoint union
of cliques (and therefore P3 is not an induced subgraph of G) if and only if all
the nodes with the same fingerprint m have degree l(m) − 1. It is not difficult
to realize that the previous protocol fails if and only if there are at least two
nodes i, j with different neighborhoods such that FP (mi, t) = FP (mj , t). For
each fixed pair of nodes this probability is at most 1/nc+2, so altogether the
probability of a wrong answer is at most 1/nc. ut

3.2 A deterministic protocol for P3-Induced Subgraph

Recall that when more than one round is allowed the messages, instead of being
sent to a referee, are written on a shared whiteboard.

Proposition 8. There exists a O(log n) message size deterministic two-round
protocol for solving P3-Induced Subgraph.

Proof. Let G be the input graph. Our protocol does the following. In the first
round each node v writes on the whiteboard its own ID together with the mini-
mum ID of its closed neighborhoodMv = min{ID(u) | u ∈ NG[v]}. In the second
round each node v writes only one bit. It writes the bit 1 if and only if for all
u ∈ NG[v] Mu = Mv and for all u /∈ NG[v] Mu 6= Mv.

Obviously, every node writes a 1 in the second round if and only if G is a
disjoint union of cliques. If G is indeed a disjoint union of cliques then, with the
information written on the whiteboard, it is possible to reconstruct it. ut

Open Problem 1 Is it possible to solve deterministically, in the SM-BCAST
model, the problem P3-Induced Subgraph using messages of size O(log n)?

4 The problem P4-Induced Subgraph

Let G1 and G2 be two disjoint graphs. The join operation G1 ? G2 consists in
connecting all the nodes of G1 with all the nodes of G2. Formally, it is defined as
follows: G1 ?G2 = (G1 +G2). The class of cographs is defined recursively. First,
an isolated node K1 is a cograph. Second, G 6= K1 is a cograph if and only if G
is the join or the union of two disjoint cographs [11, 23].

In this paper we provide a new characterization of cographs based on a new
notion we introduce here that we call twin ordering. Two nodes u and v of a
graph G are called twins if NG(u) \ {v} = NG(v) \ {u}.

A twin ordering of an n-node graph is an ordering v1, . . . , vn such that for
each j ≥ 2, the vertex vj has a twin in the graph induced by {v1, . . . , vj}.

Proposition 9. For a graph G the following are equivalent.

11



1. G is a cograph.
2. Every non trivial induced subgraph of G has a pair of twins.
3. G is P4-free.
4. G has a twin ordering.

Proof. The equivalence between the first three characterizations was proved in
[11] and [23]. It is clear that the second implies the fourth. Moreover, not only
there exists a twin ordering, but one can find it by repeatedly picking an arbitrary
node having a twin and removing such node. This follows from the assumption
that every non trivial induced subgraph has a pair of twins.

We prove that if G has a twin ordering, then it is P4-free. Take any subset of
nodes U = {vt, vl, vk, vj}, with t < l < k < j. For the sake of contradiction, let
us assume that the graph induced by U is P4. Among the choices for U , pick one
with j as small as possible. From hypothesis, there is a i < j such that vi and
vj are twins in the graph induced by {v1, . . . , vj}. Since P4 has no pairs of twins
we get that vi /∈ U . But this is a contradiction with the choice of U because the
graph induced by {vt, vl, vk, vi} is P4 and max{t, l, k, i} < j. ut

Let G = (V,E) be an n-node graph with V ⊆ N. The canonical ordering of
G is the twin ordering of G defined as follows. Instead of picking an arbitrary
node having a twin we select the lexicographically first pair of twins. Then we
choose, among these two nodes, the smaller one. The process continues, starting
by removing vn, until no further twins appear. So, a canonical ordering of an
arbitrary graph is of the form vk, . . . , vn and k = 1 if and only if G is a cograph.

Let p be a prime and let φ = (φw)w∈V be a linearly independent family of
polynomials in Zp[X]. Let q = (qw)w∈V and q̄ = (q̄w)w∈V be defined by qw =∑
w′∈NG(w) φw′ and q̄w = qw+φw, for each w ∈ V . We also define αu,v = φu−φv,

βu,v = qu − qv and γu,v = q̄u − q̄v, for each u, v ∈ V . The derivated polynomials
of family φ are the following polynomials: (αu,v)u,v∈V , (βu,v)u,v∈V , (γu,v)u,v∈V .

Let u and v be twins. We associate to G−v the polynomials (φ′w)w∈V \{v} by
φ′w = φw, when w 6= u, and φ′u = φu + φv. By using this construction, starting
with φu(x) = xu, and following the canonical ordering vk, . . . vn, we obtain
polynomials φiu, for each k ≤ i ≤ n and each u in the graph G− {vn, . . . , vi+1}.
We call these polynomials the basic polynomials of G. The canonical family of
polynomials of G is the union of basic polynomials and their derivated. This
family has at most n× 3n2 = 3n3 polynomials.

We say that a vector m = ((aw, bw))w∈V ∈ (Zp)2n is valid for G at t ∈ Zp
if there is a linearly independent family of polynomials (φw)w∈V in Zp[X] such
that aw = φw(t) and bw = qw(t), for each w ∈ V .

Lemma 2. Letm = ((aw, bw))w∈V ∈ (Zp)2n be valid for G at t. Let u, v be twins
in G such that au 6= av. Then, the following vector m′ = ((a′w, b

′
w))w∈V \{v} ∈

(Zp)2n−2 is valid for G− v at t. For each w ∈ V \ {u, v}: a′w = aw and b′w = bw.
For w = u: a′u = au + av and b′u = bu − avδuv, where δuv ∈ {0, 1} and δuv = 1
if and only if au + bu = av + bv.
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Proof. Let (φw)w∈V be a linearly independent family of polynomials associated
to m. Since u and v are twins and au 6= av, we have that au+ bu = av + bv if and
only if u and v are adjacent. Hence, δuv = 1 if and only if u and v are adjacent.

Let (φ′w)w∈V \{v} be given by φ′w = φw for each w 6= u, and φ′u = φu + φv.
Clearly, this family is linearly independent.

For w 6= u we have that a′w = aw = φw(t) = φ′w(t). Moreover, b′w = bw
and bw = qw(t). Since u and v are twins either both are in NG(w) or none. In
both cases we have that b′w = q′w(t). By definition, a′u = au + av = φu(t) +
φv(t) = φ′u(t). Also, by definition, b′u = bu − δuvav. We know that bu = qw(t) =
δuvφv(t) + q′w(t). Hence, b′u = q′w(t). ut

Proposition 10. For any constant c > 0, P4-Induced Subgraph can be
solved with a randomized O(log n) message size protocol with 1/nc error.

Proof. Let G = (V,E) be an n-node graph. Let p be prime with 3nc+4 ≤ p ≤
6nc+4. The protocol applied to G is the following. Each node sends to the referee
the message mw such that m = (mw)w∈V is valid for G at t, where t is picked
uniformly at random in Zp. Each node computes such a message by defining
φw(x) = xw.

On input m ∈ (Zp)2n the referee iterates at most n− 1 times trying to build
the canonical ordering {v1, . . . , vn}. In iteration i he starts with a graph Gi

and a vector mi ∈ (Zp)2(n−i+1) (with G1 = G and m1 = m). He determines if
there is a pair of nodes u and v in Gi such that aiu 6= aiv and either biu = biv or
aiu + biu = aiv + biv He selects, among all these, the lexicographically first pair of
nodes. If no such pair exists, then he rejects. Otherwise, he sets Gi+1 = Gi − v,
setting vn−i+1 = v (w.l.o.g, we assume that v < u). Then he computes mi+1

from mi according to Lemma 2. If the referee reaches iteration n− 1 he accepts.
What is the probability that the referee does not construct the canonical

ordering of G? This could happen only when the chosen t is a zero of at least one
member of the canonical family of G. As this family has at most 3n3 polynomials,
this occurs with probability at most 3n3(n/p) ≤ 1/nc. ut

4.1 A deterministic protocol for P4-Induced Subgraph

The definition of cographs by closure operations comes with the following natural
hierarchy, which we call the bottom-up hierarchy, and which will be needed in
the proof of Proposition 11. First, Σ0 = Π0 = {K1}. Second, for i ≥ 0, Σi+1 is
the set of disjoint unions of graphs in Πi and Πi+1 is the set of joins of graphs
in Σi. A graph G is a cograph if and only if G ∈ Σi for some i. Notice that Σ1

corresponds exactly to the class of disjoint unions of isolated nodes K1+. . .+K1.
On the other hand, Π1 corresponds to the class of all cliques. More precisely,
Π1 = {Kn}n>0, where Kn is the n-node clique.

Notice that G ∈ Σi ⇐⇒ G ∈ Πi. We can prove this by induction. This is
obviously true for i = 1. Assume now that G = G1+G2 ∈ Σi for some i > 1. The
result follows from the induction hypothesis because G = G1 +G2 = G1 ? G2.

Σ2 is exactly the class of P3-free graphs because, as we saw previously, P3-
free graphs are exactly the disjoint unions of cliques. Since P3 = P1 + P2 and
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considering the previous observation, we conclude that Π2 is the class of (P1 +
P2)-free graphs.

Let G be a cograph. In [10] the authors define the height of G as the minimum
i such that G ∈ Σi ∪Πi. We do not know if there is a one-round deterministic
protocol. However, any fixed level of the bottom-up hierarchy has a deterministic
protocol with a bounded number of rounds:

Proposition 11. Let h > 0 be a fixed positive integer. Then, there exists a
2(h− 1)-round protocol for the classes Σh and Πh with messages of size log n.

Proof. We prove the existence/correctness/complexity of such protocols by in-
duction on h. For h = 2 we use the two-round protocol of Proposition 8.

For the general case, first note that if the distance between two nodes is
finite and strictly larger than 2, then P4 is an induced subgraph of G. Let us
now describe the protocol for Σh when h > 2 (the one for Πh is symmetric).
In the first round of the protocol, every node v writes on the whiteboard the
minimum ID of the nodes in its closed neighborhood NG[v] = NG(v) ∪ {v}. In
the second round, every node v writes the minimum ID among the IDs written
by the nodes in its closed neighborhood.

If the graph G is indeed P4-free, then after these two rounds, every node
knows the partition G = G1 +G2 + · · ·+Gk of G into its connected components.
In the third round, every node includes in its message the verification that this
partition is correct: if some node in Gi is connected to a node in Gj with i 6= j
then, its message will state this fact. If this happens, then protocol concludes
that G is not in Σh: in this case G is not even a cograph, because it contains an
induced path of length 3, that is, a copy of P4.

Assuming G is a cograph, every node knows its partition into connected
components after the second round. Thus, in the third round, we can start
performing the protocol forΠh−1 separately in each of the connected components
Gi. If some Gi is not in Πh−1, then G /∈ Σh. If all of these graphs are in Πh−1,
the recursively called protocols reconstruct the graphs Gi, and our protocol for
Σh reconstructs G as their disjoint union. ut

Open Problem 2 Is it possible to solve deterministically, in the SM-BCAST
model, the problem P4-Induced Subgraph using messages of size O(log n)?
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