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Introduction

Problem context and de�nition

�e well-known minimum dominating set problem (MDSP) deals with determining the 

smallest dominating set of a given graph G = (V ,E) . �e dominating set is a subset of 

the vertex set V such that each vertex in V is a member of the dominating set or is adja-

cent to a member of the dominating set. �e applications of MDSPs are quite rich. �e 

problems can be used in the study of social networks [1–3], design of wireless sensor 

networks [4], protein interaction networks [5, 6] and covering codes [7].

In a recent industrial application, the authors have been confronted with a more general 

variant of the MDSP which received, until now, only limited attention in the academic lit-

erature. We take the viewpoint of a company that runs a very large social network in which 

users can be modeled as nodes and the relationship among users can be modeled as edges. 

One of the important tasks of the company is monitoring all the activities (conversations, 

interactions, etc.) of the network users to detect anomalies such as cheating or spreading 

fake news. With millions of users, it is impossible to observe all users in the network. A 

potential solution is to construct a subset of users that can represent key properties of the 

network. �e typical dominating set could be a good candidate. But in the case of social 

network scale, it is still too expensive to construct a dominating set because the size of 
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the dominating set could be large. �erefore, we need to consider the general version of 

dominating set named k-dominating set Dk which is defined as following: each vertex either 

belongs to the Dk or is connected to at least one member of Dk through a path of no more 

than k edges. �e classical minimum dominating set corresponds to a special case when 

k = 1 . For value k > 1 , the cardinality of k-dominating set is less than that of 1-dominating 

set: |Dk | ≤ |D1| , the monitoring cost of the network is therefore reduced.

It should be noted that the value of k should be selected carefully. If k is too large, the 

users in the resulting dominating set cannot be the representatives for the original graph. 

But if k is too small, the monitoring cost would be very high due to the large size of the 

dominating set. In our application, k is in general set to 3. Figure 1 illustrates the solutions 

of the MkDSP (the k-dominating sets including the black nodes) in the cases of k = 1 and 

k = 3.

In this paper, we aim to construct the minimum k dominating set of a graph. �e prob-

lem is called the minimum k-dominating set problem (abbreviated as MkDSP for short). Its 

application in determining a good approximation of large-scale social networks can be also 

found in [8]. �e variant which requires vertices in k-dominating set to be connected can be 

used to form the backbone of an ad hoc wireless network as mentioned in [9, 10].

�e MDSP is proved NP-complete [8], thus the MkDSP is clearly NP-hard because it 

reduces to the classical MDSP when k = 1 . For further reading, we present a number of 

notations in the follows. If u is a vertex in the k-dominating set, and v is connected to u 

through a path with no more than k edges, we say u k-dominates (or covers) v or v is k-dom-

inated (or covered) by u. In context without ambiguity we could remove the prefix k for 

short. We call a vertex of dominating set as a k-dominating vertex or dominating vertex for 

short. A vertex is a k-covered or k-dominated vertex if it is covered by a dominating vertex. 

�e problem can be modeled as the following mixed-integer linear programming (MILP) 

model,

(1)
Minimize

∑

v∈V

zv ,

(2)
subject to

∑

v∈N (u,k)

zv ≥ 1, ∀u ∈ V ,

(3)zv ∈ {0, 1}, ∀v ∈ V .

Fig. 1 The dominating set (black vertices) for k = 1 (left) and k = 3 (right)
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where zv is the binary variable representing whether the vertex v belongs to the k-dom-

inating set, i.e., zv = 1 if and only if v ∈ Dk . �e objective (1) is to minimize the number 

of vertices in Dk while constraints (2) assure that each vertex u must be covered by at 

least one dominating vertex. Here, N (u, k) denotes the set of vertices that can cover u, 

i.e., the vertices connect to u through a path with no more than k edges. �e cardinality 

of N (u, k) plays an important role in the investigation of complexities of the algorithms 

presented in the next sections. In general, we denote nk = |N (u, k)| ; its value can be esti-

mated on average by nk = (d
k+1

− 1)/(d − 1) ≈ O(d
k
) , where d is the average degree of 

vertices in the graph and is equal to 2|E|
/

|V | . �e optimal algorithm to compute N (u, k) 

is the breadth first search algorithm which has the complexity of O(nk).

It can be seen that both the number of binary variables and the number of constraints 

in the MILP model above are equal to the size of vertex set V. �is is a very large num-

ber of graphs arising in the context of social networks. Modeling and solving such a big 

formulation appears to be an impossible task for current MILP tools and computing 

capacity.

Literature review

Literature has attempted to deal with the MSDP. �e most efficient exact method for 

the problem and other variants is presented in [11] where a branch-and-reduce method 

is developed. Although this method can provide an optimal solution, it handles only 

small-size instances defined on graphs with a few hundred vertices in acceptable run-

ning time. Several efforts are spent to design approximation algorithms. Grandoni [12] 

proposes an algorithm in O(1.9053n) while Rooij and Bodlaender [11] propose algorithm 

in O(1.4969n) time and polynomial space.

�e MDSP can also be tackled by existing approaches proposed to solve its variants. 

�e most popular variant of the problem deals with a weight associated with each ver-

tex of the graph, called the minimum weight dominating set (MWDS) problem (Ugurlu 

et al. [13]). �e objective function seeks to minimize the total weight, without regarding 

the cardinality of the dominating set. �e best metaheuristic in terms of solution quality 

for the MWDS is recently introduced by [14]. It is a hybrid metaheuristic combining a 

tabu search with an integer programming solver. �e MILP solver is used to solve sub-

problems in which only a part of the decision variables, selected relative to the search 

history, are left free. �e authors also introduce an adaptive penalty to promote the 

exploration of infeasible solutions during the search, enhance the algorithm with pertur-

bations and node elimination procedures, and exploit richer neighborhood classes. �e 

performance of the method is investigated on small- and medium-size instances with up 

to 4000 vertices. For massive graphs, Wang et al. [15] develop a local search algorithm 

called FastMWDS. Two new ideas are used in FastMWDS. First, a new fast construction 

procedure with four reduction rules is proposed. �is procedure includes three parts: 

reducing, constructing, and shrinking. After this construction procedure, the size of 

massive graphs is reduced. Second, a new configuration checking with multiple values is 

designed, which can exploit the relevant information of the current solution.

Relating to MkDSP problem, a number of variants of this problem have been proposed 

and  studied. As most of the related problems studied in the literature are in the context 

of wireless networks, in works, the dominating set is usually required to be connected. 
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�e problem can be solved in polynomial time on several restricted graphs such as dis-

tance-hereditary graphs [16], HT-graphs [17], and graphs with bounded treewidth [18]. 

�e hardness and approximation algorithms are introduced in [19, 20]. Two approxima-

tion algorithms are also developed to solve the minimum 2-connected k-dominating set 

problem in [9]. �e first one is a greedy algorithm using an ear decomposition of 2-con-

nected graphs. �e second one is a three-phase algorithm that can be used to handle disk 

graphs only. Rieck et  al. [10] propose a distributed algorithm to provide approximate 

solutions. �e algorithm is tested on a small graph with only several hundred vertices.

To the best of our knowledge, the only work that proposes efficient algorithms to 

solve the MkDSP in the context of a large social network has been recently published 

by Campan et al. [8]. �e MkDSP is first converted to the classical minimum dominat-

ing set problem by adding edge connecting vertices that are not adjacent but have dis-

tance not exceeding k. �e MkDSP can now be solved by directly applying one of three 

greedy algorithms that work for the MDSP. �e performance of algorithms is tested on 

medium-size real social networks with up to 36,000 vertices and 200,000 edges. How-

ever, as shown in the experimental section, the method proposed in [8] cannot provide 

any solution for the instances with millions of vertices and edges in acceptable running 

time.

Problem challenges and contributions

One of the challenges to solve the MkDSP is to determine the domination relation 

between pairs of vertices. In general, this often leads to a procedure that we call k-neigh-

bor search to compute the set N (u, k) for vertex u, which is very expensive on mas-

sive graphs with k > 1 . As a consequence, approaches proposed in the literature that 

pre-compute the dominating set of every vertex are infeasible in the context of mas-

sive graphs. For example, the method proposed in [14] uses a decomposition method 

to tackle the MWDS and solves multiple sub-problems, each corresponds to an MILP 

and then uses several local search operators. To speed up the local search procedure, 

the set N (u, k) for every vertex u in the graph has to be pre-computed. Multiple MILP 

programs and the pre-computation of N (u, k) make the algorithm perform slowly in the 

case of very large-scale graphs. Similarly to the algorithm proposed in [15], even though 

it can handle large-scale instances in the context of social networks but it works only in 

the case where k = 1 . Applying this algorithm to solve our problem with k > 1 is not 

practical because when k increases, the algorithm gets stuck as it has to iteratively com-

pute the set N (u, k) for every vertex u.

�e MkDSP can be converted to a typical dominating set problem by inserting addi-

tional edges to the graph G that joint two non-adjacent vertices if the number of edges 

on the path among them is not greater than k. �is polynomial complexity conversion 

procedure allows using any efficient algorithm proposed for the 1-dominating set prob-

lem to solve k-dominating set problem. �e idea is proposed in [15]. However, insert-

ing edges increases significantly the degree of vertices in the graph, leading to tedious 

performance of the method in terms of computational speed when tackling large-scale 

social networks with millions of vertices as shown in the experiments in "Experimental 

results" section.
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In this paper, we consider the MkDSP in the context of social networks. Our main 

contribution is an algorithm that can efficiently solve the MkDSP. �e novel features of 

our method are (i) a prepossessing phase that reduces the graph’s size; (ii) a construction 

phase with different greedy algorithms; and (iii) a post-optimization phase that removes 

redundant vertices. In all phases, we also use techniques to reduce the number of times 

to compute k-neighbor set of vertices which is very expensive on graphs arisen in social 

networks.

We have investigated the performance of our method on different sets of graphs which 

are classified mainly by their size of vertex set. A graph is labeled as a large size category 

if it has more than 100 thousand vertices, while the small one has less than 10 thou-

sand vertices, the remaining cases are of medium size. �e obtained results show the 

performance of our method. It outperforms the algorithm currently used by the com-

pany mentioned above in terms of solution quality. It can also handle real large-scale 

instances with up to 17 million vertices that the algorithm proposed in [8] could not. 

Finally, it is worth noting that an extended abstract of this paper is published in [21]. 

In the current work, we describe in more details the main sections including literature 

review, heuristic method, and experimental results. In particular, we add an additional 

section to show the hardness of the problem and carry out more experiments to analyze 

the performance of the methods.

Solution methods

In this section, we describe in detail an efficient algorithm for large-scale MkDSP prob-

lems. Our heuristic consists of three phases: pre-processing phase to reduce the graph 

size, construction phase to build a k-dominating set that will be reduced in the post-

optimization phase by removing redundant vertices.

Pre-processing phase

As mentioned above, the first phase of our algorithms is reducing the size of the origi-

nal graph. We extend the reduction rules in [15] to k-dominating set by finding struc-

tures that we call k-isolated clusters. A k-isolated cluster is a connected component 

whose vertices are k-dominated by a single vertex. If there exists a vertex v ∈ V  such that 

|N (v, k)| = |N (v, k + 1)| , set N (v, k) is a k-isolated cluster associated with v. We can 

remove the vertices belonging to this k-isolated cluster from G and add vertex v to the 

k-dominating set. Algorithm 1 describes our reduction rule on small- and medium-size 

graphs. To estimate the complexity of Algorithm 1, it is easy to see that the  loop in 

Line 2 has |V| steps and in each step, k + 1 and k neighbors have been calculated. �ere-

fore, the complexity of Algorithm 1 in the worst case is O(|V |nk+1) . 
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Algorithm 1 does not work on large-size graphs due to the expensive cost of k-neigh-

bor search N (v, k) . As a sequence, on massive graphs with more than 100,000 vertices, 

we implement a modified version of Algorithm 1 that is shown in Algorithm 2. �e idea 

is based on the observation that, if |N (v, k)| �= |N (v, k + 1)| , it is highly possible that 

N (u, k) would not be an isolated cluster for every u ∈ N (v, k + 1) . We could thus ignore 

the isolated clusters checking on N (u, k) . In Algorithm  2, for each vertex v, the vari-

able f[v] is set to False if N (v, k) has a high probability of not being an isolated cluster. 

If a vertex is marked False, it is not checked through the condition in Line 7, to avoid 

computing k-neighbor searches. �e complexity of Algorithm 2 is O(|V |nk+1/nk) . More 

precisely, the  loop in Line 5 repeats |V| times and there are |V |/nk vertices that we 

need to compute their ( k + 1)-neighbor set, which runs in O(nk+1) . 

k-dominating set construction phase

To begin this subsection, we introduce the greedy heuristic that is currently used by 

our partner mentioned in the first section. �e idea is originated from the observa-

tion that the higher degree vertex would tend to dominate more vertices. �us, the 

vertices in the graph are first rearranged in descending order of their degree and then 

consecutively consider each vertex in the received list. If the considering vertex v is 

uncovered, it is added to the k-dominating set Dk and all members of the k-neighbor 
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set N (v, k) is marked as covered. �is greedy heuristic is denoted as HEU1 and is 

shown in Algorithm 3.

�e complexity of HEU1 is O(|V | log(|V |) + |Dk |nk) . First, sorting the vertices in 

Lines 2–3 costs O(|V | log(|V |)) . In the  loop in Lines 6–13, there are |Dk | times a 

vertex is added to Dk . And at each addition operation, we need to compute N (v, k) , 

which runs in O(nk) ( loop in Lines 9–10). �erefore, the complexity of  loop 

in Lines 6–13 is O(|V | + |Dk |nk) . 

�e heuristic HEU1 is fast and can handle very large-scale instances but such a simple 

greedy algorithm cannot provide high-quality solutions. To search for better solutions, we 

now present the second greedy algorithm called HEU2 whose pseudo-code is provided in 

Algorithm 4. �is algorithm is different from the first one in the way to treat covered verti-

ces. In HEU1 , covered vertices are never added to the dominating set while in HEU2 , they 

can be still added if some conditions are satisfied. In Algorithm 4, N ′(k , v) denotes the set 

of uncovered vertices in N (k , v) . Line 10 in Algorithm 4 indicates that if the vertex v is 

uncovered or the number of uncovered vertices in N (k , v) is greater than a pre-defined 

parameter θ , vertex v will be selected as a dominating vertex. In practice, the operations 

from Line 6 to Line 16 of HEU2 are quite time-consuming. While HEU1 has to compute the 

k-neighbor sets for a number of vertices that is equal to the size of dominating set, the oper-

ations of Lines 6–16 in HEU2 have to compute the k-neighbor sets for every vertex in the 

graph. To speed up the process, we limit the running time for the operations 6–16 by the 

conditions in Line  7 using the parameter tloop . Here, t6−16 is the running time of the 

 loop 6–16. If tloop is set to a large value, the running time of the algorithm could be very 

high due to the computation of k-neighborhood sets of all vertices on Line 10. However, 

another observation is that once the running time t6−16 exceeds tloop , HEU1 will be applied 

on the remaining unexplored vertices. �at means if tloop is set to a too small value, HEU2 

would behave almost like HEU1 , possibly leading to low-quality solutions. �erefore, the 

parameter tloop should be neither too large nor too small. It should be neither less than tmin 

seconds nor greater than tmax seconds, and is computed as tloop = max
(

tmin, tmax .|V |
/

N

)

 

(seconds) where N is approximately the number of vertices in the largest instances. We 

select the values of tmin, tmax , and N mainly by experiments. In experiments, we set 



Page 8 of 15Nguyen et al. Comput Soc Netw             (2020) 7:4 

tmin = 400 , tmax = 950 , and N = 17, 000, 000 . If the running time of  loop at Line 6 

excesses tloop and there are still uncovered vertices (Line 17), HEU2 applies the same strat-

egy as in HEU1 for uncovered vertices (Lines 17–18).

�e complexity of Algorithm HEU2 is O(|V | log(|V |) + |V |nk) . �e sorting operation 

in Line 1 runs in O(|V | log(|V |)) . �e  loop in Lines 6–16 runs |V| times. Each time, 

if the considering vertex v is covered its k-neighbor set will be computed; otherwise, the 

uncovered subset N ′(v, k) of N (v, k) will be computed. �e computations of N (v, k) and 

N ′(v, k) have the same complexity as O(nk) . �erefore, the main operation is to construct a 

k-neighbor set with the complexity of O(nk) on average. 

Experiments show that the performance of the algorithm HEU2 heavily depends on the 

value of θ . An interesting fact is that HEU2 behaves similarly as HEU1 if θ and tloop are set 

to very large numbers. If the value of θ is large enough, HEU2 provides the same solutions 

as HEU1 , but it is more time-consuming (due to the computation of N ′(v, k) in Line 10). 

�erefore, to get better solutions, we decide to execute HEU2 with several small integer val-

ues of θ from 0 to 4 and choose the best one.

Post-optimization phase

�e k-dominating set Dk obtained from algorithm HEU2 can contain redundant vertices 

that can be removed while the remaining vertices still k-dominate the graph. We imple-

ment a procedure named greedy redundant removal to remove such redundant vertices. 

�e algorithm is shown in Algorithm 5. 
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�e  loop in Lines 4–23 in Algorithm  5 considers every dominating vertex 

v ∈ Dk to check if it is redundant. �e variable S gets TRUE value if v is redundant 

and FALSE otherwise. If v is not redundant, there exists a vertex u in N (v, k) such 

that u is not covered by any vertex w in Dk \ {v} . Instead of computing N (u, k) and 

checking whether w ∈ N (u, k) , which are very expensive on large-scale instances, we 

verify if N (u, k1) and N (w, k2) are not disjoint. Here, k1 and k2 are positive integers 

such that k1 + k2 = k.

�e sorting operation in Line 1 runs in O(|Dk | log(|Dk |)) . �e  loop in Lines 

6–19 repeats for |Dk | times. �e  loop in Lines 9–14 operates nk iterations in the 

worst case. Inside this loop, there is a k1-neighbor set construction N (u, k1) in Line 

8. To verify the condition in Line 10, we sort the element of the small-size set and 

perform binary search of elements in the large-size set on the small-size set. �e 

complexity of this operation is O(max{nk1 , nk2} log(min{nk1 , nk2})) , where nk1 and nk2 

are cardinalities of sets N (u, k1) and N (w, k2) , respectively, leading to the complex-

ity O(|Dk |
2nk max{nk1 , nk2} log(min{nk1 , nk2})) of the whole Algorithm 5. We also note 

that if we do not separate k into k1 and k2 , the complexity of the algorithm becomes 

O(|Dk |
2n

2

k
).

It is observable that when the gap between k1 and k2 gets larger, the computational 

cost max{nk1 , nk2} log(min{nk1 , nk2})) gets higher. As a result, we set 
{

k1, k2} = {⌊1
/

2(k + 1)⌋, k − ⌊1
/

2(k + 1)⌋

}

 that guarantees |k1 − k2| ≤ 1 . Inside the 

 loop 6–19, a number of k2 neighbor sets N (w, k2) are computed while only one k1 

neighbor set N (u, k1) must be evaluated. �erefore, it is better if k1 ≥ k2 ; and we 

assign k1 = ⌊1
/

2(k + 1)⌋ and k2 = k − k1 . For example, in case of k = 3 , we set k1 = 2 

and k2 = 1 . �e complexity of Algorithm  5 becomes 
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O(|Dk |
2n3n2 log(n1)) ≈ O(|Dk |

2d
5
log(d)) , which is better than 

O(|Dk |
2n

2

3
) ≈ O(|Dk |

2d
6
) , the complexity of the algorithm if we directly verify the 

condition w ∈ N (u, k) . Here, we recall that d is the degree on average of vertices in 

the graph.

After finishing the greedy redundant vertex removal, we continue to perform the sec-

ond post-optimization phase by solving MILP programs as follows. We divide the verti-

ces in the obtained k-dominating set Dk of degree less than a given value dp into several 

groups; each contains np vertices maximum. For such a group B, let X be the set of 

neighbors of the vertices in B, i.e., X = ∪v∈BN (v, 1) . Let S be the set of vertices that are 

only dominated by vertices in B and not by ones in Dk \ B . We solve the following inte-

ger programming problem in a limited time of tp . �e number of groups is about |Dk |/np 

and the running time to tackle each group is limited to tp , the total running time in the 

worst case is therefore tp|Dk |
/

(np.nt) , where nt is the number of threads used for this 

phase.

If the feasible solution B′ has smaller size than B, we replace elements of B in Dk by B′ , 

i.e., Dk = (Dk \ B) ∪ B′ . �e values of dp, np , and tp must be carefully selected so that the 

performance of the algorithm is assured while the running time is still kept reasonable. 

By experiments, we decide to use the setting np = 15, 000 and tp = 6 s. �e algorithm 

is first run with the value of dp = 500 and then is repeated with dp = 5000 to search for 

further improvement.

Experimental results

�is section presents the results of the proposed methods on graphs of various sizes. 

Experiments are conducted on a computer with Intel Core i7—8750h 2.2 GHz running 

Ubuntu OS. �e programming language is Python using igraph package to perform 

graph computations. We use CPLEX 12.8.0 to solve MILP programs. �e pre-pro-

cessing and set dominating construction phases take 1 thread while the MILP solver 

takes 4 threads.

We test the approaches on three instance classes categorized by the size of their 

graphs. Small instances are taken from [14] with the number of vertices varying from 

50 to 1000. �is dataset contains 540 instances. To avoid long result tables, we select 

to show results for only five groups, each contains 10 instances with the same vertex 

and edge numbers. Six medium-size instances are from the Network Data Reposi-

tory source [22] which are also used by [8] to test their algorithm. �e third instance 

class includes six large-size instances: two with approximately 17 million verti-

ces and 30 million edges extracted from the data of our partner (soc-partner-1 and 

(4)
Minimize

∑

v∈X

zv ,

(5)
subject to

∑

v∈N (u,k)∩X

zv ≥ 1, ∀u ∈ S,

(6)zv ∈ {0, 1}, ∀v ∈ X .
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soc-partner-2) and four from Network Data Repository source. Table  1 shows the 

characteristics of the instances containing name, vertex size (column |V|), and edge 

size (column |E|). It also reports the results of the pre-processing phase including 

the number of isolated clusters (NoC) and the number of vertices in isolated clusters 

(NoR) in three cases corresponding to three values of k: 1, 2 and 3.

As can be seen in Table  1, the number of isolated clusters and reduces vertices 

increases when the value of k is higher. On the small graphs, these numbers are all 

zero except two classes s-4 and s-5 in the case k = 3 where the pre-processing phase 

can reduce 800 and 1000 vertices, respectively. Remarkably, in these cases, all the ver-

tices are reduced; hence, the algorithm gets the optimal solution right after the pre-

processing phase. On the medium-size graphs, the pre-processing procedure cannot 

remove any vertex. But in half instances of large graphs, the number of isolated clus-

ters and removed vertices is significant.

We compare the performance of four algorithms: the MILP formulation with run-

ning time limited to 400 s, the greedy algorithm currently used by our partner HEU1 , 

the best algorithm proposed by [8] called HEU3 , and our new algorithm called HEU4 

including all components mentioned in the last section. For each method, we report 

the objective value of its solutions (Sol) and the running time (T) in seconds. For the 

method using MILP formulation, we also show the gaps (Gap) returned by CPLEX. 

Because the MILP-based method cannot handle efficiently medium and large-size 

graphs, we only present its results obtained on small-size graphs. In result tables, the 

numbers in italic show the best found k-dominating sets over all methods and the 

marks “−” denote the instances that cannot be solved by HEU3 in the running time of 

several days or due to “out of memory” status.

Table 1 Instance characteristics and results of the pre-processing phase

Instances NoC NoR

Name |V| |E| k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

s-1 50 50 0 0 0 0 0 0

s-2 100 250 0 0 0 0 0 0

s-3 300 1000 0 0 0 0 0 0

s-4 800 10k 0 0 1 0 0 800

s-5 1000 15k 0 0 1 0 0 1000

soc-BlogCatalog 89k 2093k 0 0 0 0 0 0

ca-GrQc 4k 13k 0 0 0 0 0 0

ca-AstroPh 18k 197k 0 0 0 0 0 0

ca-HepPh 11k 118k 0 0 0 0 0 0

email-enron-large 34k 181k 0 0 0 0 0 0

ca-CondMat 21k 91k 0 0 0 0 0 0

soc-delicious 536k 1366k 0 0 0 0 0 0

soc-flixster 2523k 7919k 0 0 0 0 0 0

hugebubbles 2680k 2161k 532k 585k 617k 1063k 1224k 1360k

soc-livejournal 4033k 27933k 0 0 0 0 0 0

soc-partner-1 17642k 33397k 4850 4852 4852 4853 4867 4867

soc-partner-2 16819k 26086k 9799 9896 9896 9866 16171 16171
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Table 2 shows the experimental results on the small graphs which are average values 

over 10 instances. �e numbers in italic show the best found k-dominating sets overall 

methods. An interesting observation is that the MILP-based method can solve to opti-

mality more instances when k increases. More precisely, it can solve all instances with 

k = 3 . �erefore, for exact methods, instances with larger values of k tend to be easier. 

HEU1 is the worst in terms of solution quality, but it is the fastest. Considering HEU3 

and HEU4 ’s solution quality, HEU4 dominates HEU3 in 10 cases while HEU3 is better in 

only one case. HEU4 also provides better solutions than MILP formulation in several 

instances that cannot be solved to optimality, i.e., when gap values are greater than zero.

Table 3 shows the experiments on the medium-size graphs. �e algorithm HEU4 per-

forms better than HEU1 and HEU3 on all instances but one in terms of solution quality. 

And finally, Table 4 shows experiments for the large instances. As can be seen, although 

slower as expected, HEU4 still provides significantly better solutions than HEU1 . �e 

heuristic HEU3 gets trouble on large-scale instances when it cannot give any solution in 

several days of computation for five over six instances. �is shows the scalability of the 

new algorithm HEU4 compared with HEU3 . An interesting observation is that when the 

value of k increases, the running time of the algorithms tends to decrease. An explana-

tion for this phenomenon is that the increase of k leads to solutions with smaller cardi-

nality of k-dominating sets. More precisely, if the cardinality of k-dominating set Dk is 

smaller, the  loop 6–16 of Algorithm 4 would tend to be finished faster because the IF 

condition on Line 7 would halt the  loop 6–16 if every vertex is covered. In the post-

optimization phase, the cardinality of Dk also affects the running time of both steps. For 

the greedy redundant vertex removal, the number of operations of  loops 4–23 and 

9–14 of Algorithm 5 is proportional to the cardinality of Dk . For the post-optimization 

Table 2 Result of algorithms on small graphs

Data HEU1 MILP HEU3 HEU4

Sol T (s) Sol T (s) Gap Sol T (s) Sol T (s)

k = 1

 s-1 21.5 0.00 17.0 147.72 0.00 19.8 0.00 17.0 0.40

 s-2 29.3 0.00 19.9 403.94 0.90 23.6 0.00 19.9 0.54

 s-3 77.1 0.00 53.1 403.15 0.52 57.1 0.00 49.4 12.39

 s-4 90.3 0.00 64.3 400.27 0.98 56.4 0.01 53.0 12.59

 s-5 98.9 0.00 72.7 400.40 0.69 61.0 0.02 58.6 12.66

k = 2

 s-1 13.5 0.00 10.0 52.33 0.00 12.2 0.00 10.2 0.42

 s-2 10.9 0.00 5.8 36.97 0.00 6.7 0.00 5.9 0.47

 s-3 20.1 0.00 12.0 400.17 0.68 13.2 0.01 11.7 2.44

 s-4 15.7 0.00 4.6 403.21 0.78 4.3 0.13 4.3 7.56

 s-5 6.4 0.00 4.0 406.08 0.50 4.0 0.23 4.0 11.36

k = 3

 s-1 9.8 0.00 7.4 8.55 0.00 8.7 0.00 7.5 0.34

 s-2 3.0 0.00 2.0 0.09 0.00 2.0 0.00 2.1 0.35

 s-3 5.3 0.00 2.9 2.35 0.00 3.0 0.02 2.9 0.42

 s-4 1.0 0.00 1.0 0.02 0.00 1.0 0.42 1.0 0.02

 s-5 1.0 0.00 1.0 0.01 0.00 1.0 0.76 1.0 0.02
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using MILP, the number of programs to solve and their size also depend on the cardi-

nality of Dk . However, this phenomenon is not observed in HEU4 on several instances 

because of the execution of the post-optimization phase with CPLEX, whose running 

time could depend on not only the size of the dominating sets but also other unknown 

characteristics of input data.

Conclusion

In this paper, we study the k-dominating problem in the context of very large-scale input 

data. �e problem has important applications in social network monitoring and man-

agement. Our main contribution is a new heuristic with three components: the pre-pro-

cessing phase, the greedy solution construction, and the post-optimization phase. We 

perform extensive experiments on graphs of vertex size varying from several thousand 

to tens of millions. �e obtained results show that our algorithm provides a better trade-

off between the solution quality and the computation time than existing methods. In 

particular, it helps to improve the solutions of the method currently used by our indus-

trial partner. All in all, our new algorithm becomes the state-of-the-art approach pro-

posed to solve the MkDSP on very large-scale graphs of social networks with million 

vertices and edges.

Table 3 Result of algorithms on medium graphs

Data HEU1 HEU3 HEU4

Sol T (s) Sol T (s) Sol T (s)

k = 1

 ca-GrQc 1210 0.00 803 0.15 776 1.38

 ca-HepPh 2961 0.01 1730 1.54 1662 6.49

 ca-AstroPh 3911 0.02 2175 1.79 2055 15.22

 ca-CondMat 5053 0.04 3104 4.20 2990 21.35

 email-enron-large 12283 0.10 2005 4.48 1972 37.71

 soc-BlogCatalog 49433 0.72 4896 26.89 4915 1839.26

k = 2

 ca-GrQc 415 0.00 285 0.10 260 1.77

 ca-HepPh 879 0.00 473 0.99 410 13.76

 ca-AstroPh 1073 0.02 457 2.93 381 47.02

 ca-CondMat 1617 0.02 922 1.65 806 17.32

 email-enron-large 1256 0.03 360 7.91 346 31.45

 soc-BlogCatalog 2870 0.18 _ _ 229 883.09

k = 3

 ca-GrQc 251 0.01 120 0.35 102 2.71

 ca-HepPh 430 0.02 138 14.63 117 53.76

 ca-AstroPh 438 0.06 122 75.60 106 203.18

 ca-CondMat 898 0.02 302 5.82 266 63.16

 email-enron-large 724 0.14 _ _ 92 203.72

 soc-BlogCatalog 87 0.06 _ _ 15 1616.70
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Table 4 Result of algorithms on large graphs

Data HEU1 HEU3 HEU4

Sol T (s) Sol T (s) Sol T (s)

k = 1

 soc-delicious 215261 19.07 56066 1464.84 56600 5679.63

 soc-flixster 1452450 999 _ _ 91543 27374.44

 hugebubbles 1213638 2087.83 _ _ 1169394 7498.20

soc-livejournal 1538044 2689.72 _ _ 930632 75185.96

 soc-partner-1 6263241 64228.04 _ _ 29278 26740.42

 soc-partner-2 4129393 19109 _ _ 38303 38644.65

k = 2

 soc-delicious 34516 3.57 _ _ 8155 2064.00

 soc-flixster 48789 85.93 _ _ 9860 23694.58

 hugebubbles 943233 792.96 _ _ 777960 41874.54

 soc-livejournal 447552 1582.87 _ _ 189121 16728.22

 soc-partner-1 11102 59.78 _ _ 12200 31962.21

 soc-partner-2 20343 84.15 _ _ 19896 27159.79

k = 3

 soc-delicious 14806 2.44 _ _ 1505 1695.77

 soc-flixster 20996 29.71 _ _ 313 3333.45

 hugebubbles 843077 649.47 _ _ 688817 17221.76

 soc-livejournal 211894 394.98 _ _ 83710 42600.51

 soc-partner-1 6337 55.57 _ _ 5158 5200.14

 soc-partner-2 12807 78.3 _ _ 10905 5481.59
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