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Abstract

Prior approaches for finding the longest simple path (LSP) in
a graph used constraints solvers and genetic algorithms. In
this work, we solve the LSP problem with heuristic search.
We first introduce several methods for pruning dominated
path prefixes. Then, we propose several admissible heuristic
functions for this problem. Experimental results demonstrate
the large impact of the proposed heuristics and pruning rules.

1 Introduction and Background

In the longest simple path (LSP) problem the aim is to
find the longest simple path (where no node is visited more
than once) between two given states in a graph. LSP is
a fundamental problem in graph theory, that is known to
be NP-hard, and even hard to approximate within a con-
stant factor (Karger, Motwani, and Ramkumar 1997). Nev-
ertheless, LSP can be solved in polynomial time for square
grids without obstacles (Keshavarz-Kohjerdi, Bagheri, and
Asgharian-Sardroud 2012). The motivation to solve LSP
comes from a variety of domains such as information re-
trieval on peer to peer networks (Wong, Lau, and King
2005), estimating the worst packet delay of Switched Eth-
ernet network (Schmidt and Schmidt 2010), multi-robot pa-
trolling (Portugal and Rocha 2010), and VLSI design where
the longest path should be found between two components
on a printed circuit board (Chen 2016).

Some prior work compiled a given LSP problem to
a constraint optimization problem and used a constraints
solver (Pham and Deville 2012). Others used genetic al-
gorithms (Portugal, Antunes, and Rocha 2010). As far as
we know, two prior works approached LSP as a heuristic
search problem. Stern et al. (2014) showed how to mod-
ify common heuristic search algorithms that were designed
for minimization (MIN) problems to solve maximization
(MAX) problems. They used LSP to demonstrate their re-
sults and proposed an admissible heuristic for LSP. Palombo
et al. (2015) proposed several admissible heuristics for solv-
ing the Snake-in-the-box (SIB) problem (Kautz 1958). SIB
is a reminiscent of LSP that is important for a useful type of
efficient error correction codes.
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In this paper, we build on these two works for solving
LSP with heuristic search. We first propose several meth-
ods to detect and prune states that are dominated by other
states. We then show how to integrate these pruning methods
into A* (Hart, Nilsson, and Raphael 1968) and Depth-First
Branch-and-Bound (DFBnB). Then, we propose several ad-
missible heuristics for LSP as well as a preprocessing phase
that reduces the search effort. Experimental results on both
uniform- and non-uniform cost grid maps demonstrate sub-
stantial speedups of our approaches.

2 A*and DFBnB for LSP

A path in a graph is called simple if it never passes through
the same vertex twice. The Longest Simple Path (LSP) on a
directed graph G = (V, E), a start vertex s € V, and a goal
vertex g € V is a simple path from s to ¢ such that no other
simple path from s to g is longer. We focus on LSP in which
the graph is explicitly given as input.

A fundamental difference between shortest path (SP) and
LSP is that the shortest path must be simple, as otherwise,
a shorter path would exist (note that the underlying graph
is not weighted). By contrast, the longest path may not be
simple. While finding the longest (not necessarily simple)
path in a graph can be done in time polynomial, finding the
longest simple path (i.e., LSP) is NP-Hard (Karger, Mot-
wani, and Ramkumar 1997).

To formulate LSP as a search problem, one needs to first
define a corresponding state space. For SP, a state represents
a vertex. This is not sufficient for LSP, since to know which
operators are applicable at a vertex n one must know the ver-
tices in the path from s to n to verify they are not added twice
to the resulting path. Following Stern et al. (2014) a state in
the LSP state-space will be denoted by N. N.7 represents
a graph-path in the underlying graph G from s to N.head
which is the last vertex in N.w. N.tail will denote all other
vertices in N.7r. The applicable operators from an LSP state
N correspond to extending N.7 with a single edge.

The following modifications to textbook A* are needed to
adapt it to MAX problems and LSP (Stern et al. 2014).

Admissibility in MAX problems. A function A is said to
be admissible for MAX problems iff for every state /V in the
search space it holds that h(N) is larger than or equal to the
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Figure 1: Examples of the pruning methods concepts and BCC heuristic on a grid map, S is the start vertex

remaining optimal cost to the goal (the length of the longest
simple path from N.head to g in the case of LSP).

Choosing from OPEN. In MIN problems, A* pops from
OPEN in every iteration the state N with the lowest g(INV) +
h(N). In MAX problems, A* pops from OPEN in every it-
eration the state N with the highest (V) 4+ h(V).

In MAX problems in general, the A* halting condition
must also change, since the f value of a goal may be larger
than its g value. However, in LSP there is a single goal and
one can only visit it once, and so the f and g values of the
goal are equal. Thus, choosing a goal for expansion is a suf-
ficient stopping condition.

When using Depth-first Branch and Bound (DFBnB) for
MAX problems a state N is pruned only if g(N) + h(N) <
the cost of the incumbent solution (Stern et al. 2014).

Solving LSP with A* or DFBnB raises several challenges.
First, while for an underlying graph G = (V, E), the SP
state-space is linear in |V'| the LSP state-space can be ex-
ponential in |V'|. For example, in a n x n square grid there
are n? states but O(2") different graph-paths from the top-
left corner to the bottom-right corner. Second, the LSP state-
space is a tree and every node has a unique path. Thus, the
duplicate detection mechanism used by A* and other algo-
rithms is not applicable. To address this, we propose more
aggressive path pruning mechanisms for LSP. Finally, most
prior work in developing admissible heuristics were for MIN
problems. Standard techniques such as PDBs (Culberson
and Schaeffer 1998; Felner, Korf, and Hanan 2004), delete
relaxation (Hoffmann and Nebel 2001), true distance heuris-
tics (Sturtevant et al. 2009) are all designed for MIN prob-
lems. We address the challenge by developing an effective
admissible heuristic for LSP.

3 Pruning Dominated States

While searching for an LSP we often encounter nodes that
can be pruned without losing optimally. We say that a state
N dominates N* if N enables to prune N‘. Pruning dom-
inated states is a well-known technique to speed up search
algorithms (Ibaraki 1977). We cover such pruning methods
for LSP next.

(1) Basic Symmetry Detection. We say that two nodes N
and N’ are symmetric if N.head = N'.head and their tails
cover exactly the same set of cells, not necessarily in the
same order. Figure la shows an example of two symmet-
ric paths. For every pair of symmetric states N and N, it
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holds that N dominates N‘ and vice versa. Therefore, if a
search generates two symmetric nodes, it can safely prune
one of them. This dominance detection method is called Ba-
sic Symmetry Detection (BSD) method. BSD implementa-
tion can be done naively such that every possible head lo-
cation h points to a list of nodes that have h as their head.
Then, a linear match between the lists of two tails should
be done. To speed-up performance, we have implemented
BSD with a fast non-cryptographic hashing function named
FNV (Fowler, Noll, and Vo 1991) for N.m and only com-
pared nodes with the same hash values.

(2) Reachable Dominance Detection (RDD). For a given
LSP state N, we can partition the vertices in the underly-
ing graph into three separate sets. (1) The set of visited cells
(N.7). (2) The set of reachable cells (N.R) that may be vis-
ited by a path that is an extension of N.7. (3) The remaining
cells are the blocked cells (N.B) — those that may never be
visited by a path that is an extension of N.7.

Corollary 1. State N dominates state N' if the follow-
ing conditions hold (1) N.head = N'.head, (2) |[N.7w| >
|N'.7|, and (3) N'.R C N.R.

Figure 1b shows an example of two LSP states, that sat-
isfy the dominance condition given in Corollary 1. The green
area represents the N.R vertices and the red area repre-
sents the N.w and N.B. As can be seen, all conditions of
Corollary 1 are valid. Thus, RDD will prune the right-hand
state. Implementing RDD efficiently requires fast set inclu-
sion computation. In our implementation, we used a simple
linear data structure to check the dominance over the reach-
able states. Indeed, this causes RDD to be sometimes slower
than BSD, as can be seen in our experimental results.

Pruning Dominated States During Search In A*, when
achild state C'is generated, we search for a state NV in OPEN
or CLOSED that may dominate C' or vice versa. If N dom-
inates C' then C' is not added to OPEN. If C' dominates [NV
then C' is added to OPEN but N is thrown away. Observe
that in RDD the dominance relation is asymmetric, that is,
one state dominates the other and not vice versa. For DF-
BnB we add a transposition table that contains all generated
states to match against any newly generated state. In DF-
BnB, however, RDD can only prune a new generated dom-
inated state but cannot prune an old state that is dominated.
This cuts down the effectiveness of RDD by half on aver-
age therefore we are skipping this combination for DFBnB
in our experiments.



4 Heuristics

In this section, we describe several admissible heuristic
functions for solving LSP problems.

(1) The Reachable Heuristic (Stern et al. 2014). For a
state /N consider the reachable cells N.R defined above.
Any of these cells might further appear in a valid simple
path. Thus, N.R can serve as an admissible heuristic (up-
per bound) for state /V. This heuristic is called the reachable
heuristic (hg). It returns 16 for both states in Figure 1b, as
there are 16 reachable vertices (the green area). To compute
hr for a state IV, we run a simple DFS starting from N.head
spanning all reachable vertices.

(2) The Bi-Connected Components Heuristic (Palombo
et al. 2015). A bi-connected graph is a graph that remains
connected after removing any single vertex. An equivalent
definition is that every two vertices have at least two vertex-
disjoint paths connecting them. A bi-connected component
(BCC) of a graph G is a maximal sub-graph of G that is bi-
connected. A cut-point is a vertex that belongs to two dif-
ferent bi-connected components. The resulting set of cut-
points and BCC form a Block-Cutpoint-Tree (BCT) that
can be constructed in linear time (Harary and Prins 1966;
Hopcroft and Tarjan 1973). Two bi-connected components
cannot have more than a single cut-point connecting them.
Thus, once a graph-path passes a cut-point, it can never re-
turn to that bi-connected component. Therefore, any sim-
ple graph-path passes through a single branch in the BCT.
In particular, any solution to an LSP problem must pass
through the BCT branch that starts in the BCC that con-
tains s and ends in the BCC that contains g. The BCC
heuristicchpoc(N)) returns the total number of reachable
vertices in each of BCC along this BCT branch, starting
from the BCC that contains the N.head. This heuristic was
used to solve SIB (Palombo et al. 2015). Figure 1c¢ demon-
strate hgcoo (IN), assuming that N.head = S. Components
are marked with blue lines and cut points with yellow stars.
Given this BCT, we can identify that the cells on the bottom-
left area are not on the LSP from s to g. The cells that are on
the BCT branch that leads from s to g are marked in green in
the right frame. hpcc counts only these vertices, returning
a value of 14. Hpi will count 20 hence BCC is better in this
case because it is tighter upper bound.

The BCC formulation can also be used to prune states.
This is done by identifying in a preprocessing phase all the
cells that are not on the BCT branch leading to the goal cell,
and considering these vertices as blocked cells. We found
experimentally that doing this preprocessing proved benefi-
cial, saving an average of 25% of the number of expanded
states, and saving approximately 30% of the CPU time.
Thus, all of our experiments below included this method.

(3) Alternate Steps Heuristic. The following novel
heuristic is applicable for cases where the underlying graph
can be represented as a bipartite graph, e.g., 4-connected
grid and SIB. Like a board of chess, grid cells can be di-
vided into black and white. A path along the board must
alternate between white and black cells. For an LSP state
N, let A be the difference between the number of white
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Figure 2: Room map and its solution (C* = 91)

cells and black cells in the set of reachable vertices. As-
sume N.head is white. If the goal is black, we can sub-
tract A from the number of reachable grid cells (i.e., hg).
If the goal is white, then we subtract A — 1 from hp. We de-
note the resulting heuristic by hgy arr, i.e., hgpyrarr(N) =
hr(N) — A if N.head and the goal are of the same color
and hptarr(N) = hp(N) — A + 1 otherwise.

There are two ways to apply this enhancement on top of
BCC: (1) Apply it on the entire set of all vertices in all
bi-connected components of the branch in the BCT. This
is called BCC+alternate (hpcctart). (2) Apply this en-
hancement separately for each bi-connected component and
then add them up. This is called BCC+separate+alternate

(hpcc+s+ALT)

S Experimental Results

In this section, we compare experimentally A* and DF-
BnB using the proposed pruning methods and the proposed
heuristics. The underlying graphs used in our experiments
are based on 4-connected grids with uniform cost and life
grids that are the same grids but traversing an edge into a
cell (x,y) costs y+1 (Thayer and Ruml 2008). We performed
two main groups of experiments: short-time experiments (10
minutes) with all the combinations of algorithms and long
experiments (1 hour) on large instances that will compare
only the naive baseline to our best method. Using BCC pre-
processing was always better than not using it and we always
report results with BCC preprocessing.

(1) Short 10Min. Experiments In this set of experiments,
we generated open grids with all integer combinations of
sizes between 5x5 and 7x8 (total of 9 combinations). To
each of these grids, we randomly set 4%, 8%, 12%, 16%
cells as obstacles and created 10 random problem instances,
yielding a total of 40 instances per gird size. In total, we had
360 random instances. A timeout of 10 minutes was set for
solving each problem instance. Another set of problem in-
stances was on Room Maps depicted in Figure 2 where every
grid contains multiple rooms connected via narrow doors.
The doors are randomly positioned and inside the rooms,
there can be a few random obstacles. The number of rooms
in our grids varies between 3x2 and 5x6, where the room
size was between 2x2 and 5x5. 400 such room maps were
created for our experiments. Table 1 shows the results aver-
aged over all the instances of random grids and room maps
that were solved by all of the different algorithms that was
tested. There is a column for each of the pruning methods:
no pruning (NP, BSD, and RDD) and a row for each of the



Expanded Runtime

Heuristic A* DFBnB A* DFBnB

NP ‘ BSD ‘ RDD | NP ‘ BSD | NP ‘BSD‘ RDD | NP | BSD
Grids with random obstacles
R 45,21121,815(16,494 | 49,772 24,823 10,808 [ 2,626 |17,576| 601 | 448
R+ALT 34,271 (15,708 | 14,051 | 38,100 | 18,286 | 6,155| 1417 |14,386| 463| 338
BCC 8,366 | 2,703| 2,271| 9,623 | 3,447 377 110 204| 195| 105
BCC+ALT | 7,491 | 2,187 | 2,077| 8,651 | 2,869 300 82 262| 166 86
BCC+S+ALT| 7,348 | 2,097 | 2,025| 8,499 | 2,771 311 86 261| 188 94
Room maps

R 30,477 | 18,658 | 3,549 74,987 41,726 | 4,343 1,628 | 3411 1727 | 1403
R+ALT 23,865 (13,817 | 3,324 162,534 32,201 | 3,504 |1,158| 3,262|1,392| 1,050
BCC 10,935| 5,577| 1,618(34,059 (17,428 | 1,400| 714| 1,069|2,619]|1,789
BCC+ALT | 8,731 | 4,063 | 1,516(29,114(13,679| 1,090| 512| 1,008 |2,113|1,344
BCC+S+ALT | 6,135 | 2,326| 1,433|22,047| 9,020 596| 222| 1,005|1,295| 732

Table 1: Expanded states and runtime (sec.) grids with obstacles.
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Figure 3: Success rate for the 4-connected grid.

heuristics: R, R+ALT, BCC, BCC+ALT, and BCC+S+ALT.
The best two variants are highlighted in bold. Clearly, our
strong heuristics and pruning method outperformed the sim-
plest method by a factor of 20 in nodes and by a factor of
130 in time for random obstacles grids and factor 20 in time
for room maps. As could be expected the best heuristic was
BCC+S+ALT. The best pruning method was RDD in terms
of nodes expanded. But BSD was better in time because of
the simple data-structure is used.

(2) 1 Hour Experiments In our I-hour time limit ex-
periment, we only compared the most efficient heuristics
hpcco+s+Arr and pruning method (BSD) with the base-
line of Hp and no pruning (NP). We generated grids of size
10x10 up to 40x40 with 25%, 30%, 35% of obstacles. Fig-
ures 3 and 4 demonstrate the success rate of these variants
on all the problem instances on 4-connected grid and the life
grid, respectively. In both cases, DFBnB with BCC+ALT
when BSD was used had the best success rate.

To summarize the results, we observe the following. First,
the BCC heuristic is always better than Reachable. Second,
adding the alternating step on top of the BCC heuristic is
helpful, but not by a large margin. Third, it is always worth-
while to perform the BSD prunning. The RDD pruning al-
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Figure 4: Success rate life grid.

ways saves node expansions, but its runtime is sometimes
worse than that of BSD. Forth, on the small domains, A* and
DfBnB were quite similar. However, on the large domains,
DFBnB outperformed A*. So, DFBnB with BSD and the
BCC+S+ALT heuristic is the best variant we have and we
recommend using it.

6 Conclusion and Future Work

In this paper, we proposed several techniques for pruning
states that are dominated by other states, and a range of
admissible heuristics for solving LSP. Our proposed prun-
ing methods and heuristics improve the ability to solve LSP
problems in a reasonable time and proves the necessity to
provide strong heuristics and pruning methods.

Future work will continue in the following directions. (1)
We focused on finding an optimal solution to LSP. Future
work can explore how to tradeoff optimality for runtime. (2)
Our pruning methods, and in particular RDD, can be time-
consuming. Future work may develop more efficient data
structures that will allow fast searching of dominated states.
(3) A new dynamic programming algorithm for LSP (Fieger
etal. 2019) was proposed and deserves a deeper comparison.
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