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ABSTRACT

We study the dynamics of the FLRW flat cosmological models in which the vacuum energy density varies with time,Λ(t). In particular,
we investigate the dynamical properties of a generalized vacuum model, and we find that under certain circumstances the vacuum
term in the radiation era varies as Λ(z) ∝ (1 + z)4, while in the matter era we have Λ(z) ∝ (1 + z)3 up to z � 3 and Λ(z) � Λ for
z ≤ 3. The confirmation of such a behavior would be of paramount importance because it could provide a solution to the cosmic
coincidence problem as well as to the fine-tuning problem, without changing the well known (from the concordance Λ-cosmology)
Hubble expansion.
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1. Introduction

The analysis of the available high quality cosmological data
(supernovae type Ia, CMB, galaxy clustering, etc.) have con-
verged during the last decade towards a cosmic expansion his-
tory that involves a spatial flat geometry and a recent accelerat-
ing expansion of the universe (Spergel et al. 2007; Davis et al.
2007; Kowalski et al. 2008; Komatsu et al. 2009, and references
therein). This expansion has been attributed to an energy com-
ponent (dark energy) with negative pressure which dominates
the universe at late times and causes the observed accelerat-
ing expansion. The simplest type of dark energy corresponds
to the cosmological constant (see for review Peebles & Ratra
2003). The so called concordance Λ model accurately fits the
current observational data and thus is an excellent candidate for
the model which describes the observed universe.

However, the concordance model suffers from, among oth-
ers (cf. Perivolaropoulos 2008), two fundamental problems: (a)
the fine-tuning problem i.e., the fact that the observed value of
the vacuum density (ρΛ = Λc2/8πG) is more than 120 orders
of magnitude below that value found using quantum field the-
ory (Weinberg 1989) and (b) the coincidence problem i.e., the
matter energy density and the vacuum energy density are of
the same order prior to the present epoch, despite the fact that
the former is a function of time while the latter is not (Peebles
& Ratra 2003). Attempts to solve the coincidence problem have
been presented in the literature (see Egan & Lineweaver 2008,
and references therein), in which an easy way to overcome the
coincidence problem is to replace the constant vacuum energy
with a dark energy that evolves with time. The simplest approach
is to consider a tracker scalar field φ in which it rolls down the
potential energy V(φ) and therefore could mimic the dark en-
ergy (see Ratra & Peebles 1988; Weinberg 1989; Turner & White
1997; Caldwell et al. 1998; Padmanabhan 2003). Nevertheless,
the latter consideration does not really solve the problem be-
cause the initial value of the dark energy still needs to be
fine-tuned (Padmanabhan 2003). Also, despite the fact that the

current observations do not rule out the possibility of a dynam-
ical dark energy (Tegmark et al. 2004), they strongly indicate
that the dark energy equation of state parameter w ≡ PDE/ρDE
is close to –1 (Spergel et al. 2007; Davis et al. 2007; Kowalski
et al. 2008; Komatsu et al. 2009).

Alternatively, more than two decades ago, Ozer & Taha
(1987) proposed a different pattern in which a time varying Λ
parameter could be a possible candidate to solve the two funda-
mental cosmological puzzles (see also Bertolami 1986; Freese
et al. 1987; Peebles & Ratra 1988; Carvalho et al. 1992;
Overduin & Cooperstock 1998; Bertolami & Martins 2000;
Opher & Pellison 2004; Bauer 2005; Barrow & Clifton 2006;
Montenegro & Carneiro 2007, and references therein). In this
cosmological paradigm, the dark energy equation of state pa-
rameter w is strictly equal to –1, but the vacuum energy den-
sity (or Λ) is not a constant but varies with time. Of course,
the weak point in this theory is the unknown functional form of
the Λ(t) parameter. Also, in the Λ(t) cosmological model there
is a coupling between the time-dependent vacuum and matter
(Wang & Meng 2005; Alcaniz & Lima 2005; Carneiro et al.
2008; Basilakos 2009; Basilakos et al. 2009). Indeed, using the
combination of the conservation of the total energy with the vari-
ation of the vacuum energy, one can prove that the Λ(t) model
provides either a particle production process or that the mass of
the dark matter particles increases (Basilakos 2009, and refer-
ences therein). Despite the fact that most of the recent papers in
dark energy studies are based on the assumption that the dark
energy evolves independently of the dark matter, the unknown
nature of both dark matter and dark energy implies that at the
moment we cannot exclude the possibility of interactions in the
dark sector (e.g., Zimdahl et al. 2001; Amendola et al. 2003; Cai
& Wang 2005; Binder & Kremer 2006; Das et al. 2006; Olivares
et al. 2008, and references therein).

In this work we attempt to generalize the main cosmolog-
ical properties of the traditional Λ-cosmology by introducing
a time varying vacuum energy, and specifically to investigate
whether such models can yield a late accelerated phase of the
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cosmic expansion, without the need of the extreme fine-tuning
required, in the classical Λ-model. The plan of the paper is as
follows: The basic theoretical elements of the problem are pre-
sented in Sects. 2–4 by solving analytically (for a spatially flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) geometry) the
basic cosmological equations. In these sections we prove further
that the concordanceΛ-cosmology is a particular solution of the
Λ(t) models. In Sect. 5 we place constraints on the main param-
eters of our model by performing a likelihood analysis utilizing
the recent Union08 SnIa data (Kowalski et al. 2008). Also, in
Sect. 5 we compare the different time varying vacuum models
with the traditional Λ cosmology. In this section we treat an-
alytically, the basic cosmological puzzles (the fine-tuning and
the cosmic coincidence problem) with the aid of the time vary-
ing Λ(t) parameter. Finally, we draw our conclusions in Sect. 6.

2. The time dependent vacuum in the expanding
universe

In the context of a spatially flat FLRW geometry the basic cos-
mological equations are:

ρtot = ρf + ρΛ = 3H2 (1)

and

d(ρf + ρΛ)
dt

+ 3H(ρf + Pf + ρΛ + PΛ) = 0, (2)

where ρf is the density of the “cosmic” fluid:

ρf (t) =

{
ρm(t) matter era
ρr(t) radiation era (3)

and

Pf (t) = βρf =

{
0 matter era β = 0
ρr

3 radiation era β = 1/3 (4)

is the corresponding pressure. Also ρΛ and PΛ denote the density
and the pressure of the vacuum component respectively. From a
cosmological point of view, at an early enough epoch, the above
generalized cosmic fluid behaves like radiation Pf = Pr = ρr/3
(β = 1/3), then behaves as matter Pf = Pm = 0 (β = 0) and
as long as PΛ = −ρΛ it creates an accelerated phase of the cos-
mic expansion (see below). Notice that in order to simplify our
formalism we use geometrical units (8πG = c ≡ 1) in which
ρΛ = Λ. In the present work, we would like to investigate the po-
tential of a time varying Λ = Λ(t) parameter to account for the
observed acceleration of the expansion of the universe. Within
this framework it is interesting to mention that the equation of
state takes the usual form of PΛ(t) = −ρΛ(t) = −Λ(t) (see Ozer
& Taha 1987; Peebles & Ratra 1988). Also, introducing in the
global dynamics the idea of the time-dependent vacuum, it is
possible to explain the physical properties of the dark energy as
well as the fine-tuning and the coincidence problem respectively
(see Sects. 5.1 and 5.2). Using now Eq. (2) we have the following
useful formula:

ρ̇f + 3(β + 1)Hρf = −Λ̇ (5)

and considering Eq. (1) we find:

Ḣ +
3(β + 1)

2
H2 =

Λ

2
(6)

where the over-dot denotes derivatives with respect to time. If
the vacuum term is negligible, Λ(t) −→ 0, the solution of the

above equation is reduced to H(t) = 2(β + 1)−1/3t. Therefore,
in the case of β = 0 (matter era) we get the Einstein-de Sitter
model as we should, H(t) = 2/3t, while for β = 1/3 we trace
the radiation phase of the universe i.e., H(t) = 1/2t. On the other
hand, if we consider the case of Λ(t) � 0 it becomes evident
(see Eq. (5)) that there is a coupling between the time-dependent
vacuum and matter (or radiation) component.

Of course, in order to solve the above differential equation
we need to define explicitly the functional form of the Λ(t) com-
ponent. Note that the traditional Λ = const. cosmology can be
described directly by the integration of the Eq. (6) (for more de-
tails see Sect. 3.1).

It is worth noting that the Λ(t) scenario has the caveat of
its unknown exact functional form, which however is also the
case for the vast majority of the dark energy models. In the liter-
ature there have been different phenomenological parametriza-
tions which treat the time-dependentΛ(t) function. In particular,
Freese et al. (1987) considered that Λ(t) = 3c1H2, with the con-
stant c1 being the ratio of the vacuum to the sum of vacuum
and matter density (see also Arcuri & Waga 1994). Chen & Wu
(1990) proposed a different ansatz in which Λ(t) ∝ a−2.

Recently, many authors (see for example Ray et al. 2007;
Sil & Som 2008, and references therein) have investigated the
global dynamical properties of the universe considering that the
vacuum energy density decreases linearly either with the energy
density or with the square Hubble parameter. Attempts to pro-
vide a theoretical explanation for the Λ(t) have also been pre-
sented in the literature (see Shapiro & Solá 2000; Babić et al.
2002; Grande et al. 2006; Solá 2008, and references therein).
There it was found that a time dependent vacuum could arise
from the renormalization group (RG) in quantum field theory.
The corresponding solution for a running vacuum is found to
be Λ(t) = c0 + c1H2(t) (where c0 and c1 are constants; Grande
et al. 2006) and it can mimic the quintessence or phantom be-
havior and a smooth transition between the two. Alternatively,
Schutzahold (2002) used a different pattern in which the vac-
uum term is proportional to the Hubble parameter, Λ(a) ∝ H(a)
(see also Carneiro et al. 2008), while Basilakos (2009) consid-
ered a power series form in H. Note that the linear pattern,
Λ(a) ∝ H(a), has been motivated theoretically through a pos-
sible connection of cosmology with the QCD scale of strong
interactions (Schutzhold 2002). In this context it has also been
proposed that the vacuum energy density can be defined from a
possible link of dark energy with QCD and the topological struc-
ture of the universe (Urban & Zhitnitsky 2009a–c).

In this paper we have phenomenologically identified a func-
tional form of Λ(a) for which we can solve the main differential
equation (see Eq. (6)) analytically. This is:

Λγm(t) = 3γH2(t) + 2mH(t) + 3n(β + 1 − γ)e2mt (7)

where the constants m and n are included for the consistency
of units (see below). Although the above functional form was
not motivated by some physical theory but rather phenomeno-
logically by the fact that it provides analytical solutions to the
Friedmann equation, its exact form can be physically justified
a posteriori within the framework of the previously mentioned
theoretical models (see Appendix A).

Using now Eq. (7), the generalized Friedmann’s equation
(see Eq. (6)) becomes

Ḣ = −3(β + 1 − γ)
2

H2 + mH +
3n(β + 1 − γ)

2
e2mt (8)
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and indeed, it is routine to perform the integration of Eq. (8) to
obtain (see Appendix B):

H(t) =
√

nemtcoth

[
3(β + 1 − γ)√n

2
S (t)

]
(9)

where

S (t) =

{
(emt − 1)/m m � 0

t m = 0 (10)

while the range of values for which the above integration is valid
is n ∈ (0,+∞) (for negative n values see the Appendix B). Using
now the definition of the Hubble parameter H ≡ ȧ/a, the scale
factor of the universe a(t) evolves with time as

a(t) = a1 sinh
2

3(β+1−γ)

[
3(β + 1 − γ)√n

2
S (t)

]
. (11)

The relevant units of m � 0 should correspond to time−1, which
implies that m ∝ H0. The parameter a1 is the constant of integra-
tion given by

a1 ≡
(
ρ f 0

ρΛ0

) 1
3(β+1−γ)

(12)

where ρ f 0 and ρΛ0 are the corresponding densities at the present
time (for which a(t0) ≡ 1).

In this context, the density of the cosmic fluid evolves with
time (see Eq. (1)) as:

ρf (t) = 3H2(t) − Λγm(t) (13)

or

ρf (t) = 3(1 − γ)H2(t) − 2mH(t) − 3n(β + 1 − γ)emt. (14)

In the following sections, we investigate thoroughly whether
such a generalized vacuum component in an expanding universe
allows for a late accelerated phase of the universe, and under
which circumstances such an approach provides a viable solu-
tion to the fine-tuning problem as well as to the cosmic coinci-
dence problem.

3. The matter+vacuum scenario

In a matter+vacuum expanding universe (ρf ≡ ρm), we attempt
to investigate the correspondence of theΛ(t) pattern with the tra-
ditional Λ-cosmology in order to show the extent to which they
compare. In particular, we will prove that the Hubble expansion,
provided by the current time-dependent vacuum, is a general-
ization of the traditional Λ cosmology. Note that in the present
formalism the matter era corresponds to β = 0.

3.1. The standard Λ-cosmology

Let us first investigate the solution for (γ,m) = (0, 0). The vac-
uum term Eq. (7) of the problem becomes constant and is given
by Λ00(a) = Λ = 3n. In this framework, the Hubble function
(see Eq. (9)) is

HΛ(t) =

√
Λ

3
coth

⎛⎜⎜⎜⎜⎜⎝3
2

√
Λ

3
t

⎞⎟⎟⎟⎟⎟⎠ . (15)

Now, using the well know parametrization

Λ = 3n = 3H2
0ΩΛ ΩΛ = 1 − Ωm (16)

the scale factor of the universe is given by

aΛ(t) = a1 sinh
2
3

(
3H0
√
ΩΛt

2

)
(17)

where (see Eq. (12))

a1 =

(
ρm0

ρΛ0

)1/3

=

(
Ωm

ΩΛ

)1/3

· (18)

The cosmic time is related with the scale factor as

tΛ(a) =
2

3
√
ΩΛH0

sinh−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
ΩΛ

Ωm
a3/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (19)

Combining the above equations we can define the Hubble ex-
pansion as a function of the scale factor:

HΛ(a) = H0

[
ΩΛ + Ωma−3

]1/2
. (20)

In principle, H0 and Ωm are constrained by the recent WMAP
data combined with the distance measurements from the type Ia
supernovae (SNIa) and the Baryonic Acoustic Oscillations
(BAOs) in the distribution of galaxies. Following the recent cos-
mological results provided by Komatsu et al. (2009), we fix the
current cosmological parameters as H0 = 70.5 km s−1 Mpc−1

andΩm = 1−ΩΛ = 0.27. The current age of the universe (a = 1)
is t0Λ � 13.77 Gyr, while the inflection point takes place at

tIΛ =
2

3
√
ΩΛH0

sinh−1

⎛⎜⎜⎜⎜⎜⎝
√

1
2

⎞⎟⎟⎟⎟⎟⎠ , aIΛ =

[
Ωm

2ΩΛ

]1/3

· (21)

Therefore, we estimate tIΛ � 0.51t0Λ and aIΛ � 0.56.
Finally, due to the fact that the traditional Λ cosmology is a

particular solution of the current time varying vacuum models
with (γ,m) strictly equal to (0, 0), the constant value n is always
defined by Eq. (16). That is why all relevant cosmological quan-
tities are parametrized according to n = ΩΛH2

0 throughout the
paper.

3.2. “The general” Λ (t) model

In this section, we examine a more general class of vacuum mod-
els with (γ,m) � (0, 0) (hereafter Λγm model). The Hubble ex-
pansion and the corresponding evolution of the scale factor are
(see Eqs. (9) and (11))

H(t) =
√
ΩΛ H0 emtcoth

[
3(1 − γ)√ΩΛH0

2m
(emt − 1)

]
(22)

and

a(t) = a1 sinh
2

3(1−γ)

[
3(1 − γ)√ΩΛH0

2m
(emt − 1)

]
(23)

or

t(a) =
1
m

ln

⎡⎢⎢⎢⎢⎢⎣1 + 2m

3(1 − γ)√ΩΛH0
sinh−1

(
a
a1

)3(1−γ)/2⎤⎥⎥⎥⎥⎥⎦ . (24)

Obviously, if (γ,m) −→ (0, 0) (or emt − 1 ≈ mt) then the Λγm
model tends to the traditional Λ cosmology, which implies that
the latter should be considered as a particular solution of the
general Λγm model. Thus this limit together with Eq. (12) pro-
vides that

a1 =

(
Ωm

ΩΛ

) 1
3(1−γ)
· (25)
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Taking the above expressions into account, the basic cosmolog-
ical quantities as a function of the scale factor become

H(a) = H0
[
1 + g(a)

] [
ΩΛ + Ωma−3(1−γ)]1/2

(26)

and

Λγm(a) = 3γH2 + 2mH + 3H2
0ΩΛ(1 − γ)[1 + g(a)]2 (27)

where

g(a) =
2m

3
√

(1 − γ)ΩΛH0

sinh−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
ΩΛ

Ωm
a3(1−γ)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (28)

If we take (γ,m) = (0,m) with m � 0 (hereafter mild vacuum
model or Λ0m), the corresponding Hubble flow becomes:

H(a) =
[
1 + g(a)

]
HΛ(a) (29)

which means that as long as the function g(a) takes small values
(g(a)� 1), the Λ0m model has exactly the constant vacuum fea-
ture due to H(a) ≈ HΛ(a). In this context, utilizing Eq. (27) we
simply have

Λ0m(a) = 2mH(a) + 3H2
0ΩΛ[1 + g(a)]2. (30)

Finally, the fact that the vacuum term has units of time−2 implies
that the vacuum term is proportional to H2

0 or the constant m
has to satisfy the following scaling relation: m ∝ H0 (see also
Sect. 2). Therefore, in the far future the condition m ∝ H0 � 0
represents a super-accelerated expansion of the universe because

a(t) ∝ exp(
√
ΩΛH0emt

m ).

3.3. “The modified” Λ model

Now we consider (γ,m) = (γ, 0) with γ � 0 (hereafter Λγ0
model). From Eq. (9) we can easily write the corresponding
Hubble flow as a function of time

H(t) =
√
ΩΛ H0 coth

[
3(1 − γ)√ΩΛH0

2
t

]
. (31)

Using now Eqs. ((10), (11)), the scale factor of the universe a(t)
evolves with time as

a(t) = a1 sinh
2

3(1−γ)

[
3(1 − γ)√ΩΛH0

2
t

]
(32)

where

a1 =

(
Ωm

ΩΛ

)1/3(1−γ)
. (33)

Inverting Eq. (32) we estimate the cosmic time:

t(a) =
2

3(1 − γ)√ΩΛH0
sinh−1

⎛⎜⎜⎜⎜⎜⎜⎜⎝
√
ΩΛ

Ωm
a3(1−γ)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (34)

The corresponding inflection point (ä(tI) = 0) is found to be

tI =
2

3(1 − γ)√ΩΛH0
sinh−1

⎛⎜⎜⎜⎜⎜⎝
√

1 − 3γ
2

⎞⎟⎟⎟⎟⎟⎠ (35)

or

aI =

[
(1 − 3γ)Ωm

2ΩΛ

]1/3(1−γ)
(36)

which implies that the condition for which an inflection point is
present in the evolution of the scale factor is γ < 1/3.

As expected, for γ � 1 the above solution tends to the con-
cordance model, aγ0(t) −→ aΛ(t). Now from Eqs. ((31), (32)),
using the well known hyperbolic formula coth2x−1 = 1/sinh2x,
we arrive after some algebra:

H(a) = H0

[
ΩΛ + Ωma−3(1−γ)]1/2

. (37)

From this analysis it becomes clear that the Hubble expansion
predicted by the Λγ0 model extents well beyond that of the
usual Λ cosmology. To this end, utilizing Eq. (27) we can ob-
tain the vacuum energy density

Λγ0(a) = 3γH2(a) + 3ΩΛH2
0(1 − γ). (38)

As we have previously mentioned in Sect. 2, the above phe-
nomenological functional form (see Eq. (38)) is motivated theo-
retically by the renormalization group (RG) in the quantum field
theory (Shapiro & Solá 2000; Babić et al. 2002; Solá 2008).
Moreover, recent studies (see Grande et al. 2006; and Grande
et al. 2009) find that this solution alleviates the cosmic coinci-
dence problem (see Sect. 5.1). Obviously, at late enough times
(a  1) the above solution asymptotically reaches the de Sitter
regime Λ ∼ H2.

4. The radiation+vacuum scenario

In this section, we consider a universe that is spatially flat but
contains both radiation and a time vacuum term. This crucial
period in the cosmic history corresponds to β = 1/3. For clarity
reasons we re-formulate our approach by using ρf ≡ ρr and Pf ≡
ρr/3 in the following sections. These restrictions imply that

ρf0

ρΛ0
≡ ρr0

ρΛ0
=
Ωr

ΩΛ

where, Ωr � 10−4 is the radiation density parameter at the
present epoch derived by the CMB data (see Komatsu et al.
2009). Within this context, based on Eqs. (7), (11), and (12) we
present briefly the following cosmological situations:

– radiation+constant vacuum: (γ,m) = (0, 0): The scale fac-
tor is

a(t) =

(
Ωr

ΩΛ

) 1
4

sinh
1
2

( √
ΩΛH0t

)
. (39)

Owing to the fact that in this period t � 1, the above solution
reduces to the following simple analytic approximation:

a(t) ≈ (2
√
ΩrH0t)1/2 with H(t) ≡ ȧ

a
≈ 1

2t
· (40)

– radiation+general vacuum: (γ,m) � (0, 0): this general
scenario provides

a(t) =

(
Ωr

ΩΛ

) 1
4γ1

sinh
1

2γ1

[
2γ1
√
ΩΛH0

m
(emt − 1)

]
(41)

where γ1 = 1 − 3γ/4. The vacuum component as a function
of time (see Eq. (7)) is

Λγm(t) ≈ 4(1 − γ1)

4γ2
1t2

+
m
γ1t

(42)
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or

Λγm(a) ≈ 4(1 − γ1)ΩrH2
0

a4γ1
+

2m
√
ΩrH2

0

a2γ1
· (43)

It is very interesting that during the radiation epochΛγm(a) ∝
a−4γ1 . For small values of γ or γ1 � O(1), the latter relation
implies that as long as the scale factor tends to zero the vac-
uum term moves rapidly to infinity (see Sect. 6). In the case
of (γ,m) = (0,m) (or γ1 = 1), the vacuum term (see Eqs. (42)
and (43)) varies with time as

Λ0m(t) ≈ m
t
≈ 2m

√
ΩrH2

0

a2
· (44)

Now the vacuum component evolves as Λγ0(a) ∝ a−2, in
agreement with the Chen & Wu (1990) model.

– radiation+modified vacuum: (γ,m) = (γ, 0), γ � 0: in this
cosmological model we have

a(t) =

(
Ωr

ΩΛ

) 1
4γ1

sinh
1

2γ1

[
2γ1

√
ΩΛH0 t

]
(45)

where γ1 = 1−3γ/4. The approximate solution now becomes

a(t) ≈ (2γ1

√
ΩrH0t)1/2γ1 with H(t) ≈ 1

2γ1t
· (46)

The vacuum component (see Eq. (7)) evolves with time as

Λγ0(t) ≈ 4(1 − γ1)

4γ2
1t2

(47)

or

Λγ0(a) ≈ 4(1 − γ1)ΩrH2
0

a4γ1
� Λγm(a). (48)

Obviously, for a −→ 0 (γ1 � O(1)) the vacuum energy den-
sity goes rapidly to infinity.

5. Tackling the cosmological puzzles

As we have stated already in the introduction, there is a pos-
sibility for the vacuum energy to be a function of time rather
than having a constant value. Therefore, in this section we com-
pare the cosmic phases of the Λ(t) scenarios (described in the
previous sections) and the concordance Λ-cosmology. The aim
here is to investigate the consequences of such a comparison on
the basic cosmological puzzles, namely the cosmic coincidence
problem and fine-tuning problem.

5.1. The coincidence problem

In order to investigate the coincidence problem we define the
time-dependent proximity parameter of ρm(a) (see Eq. (14)) and
ρΛ(a) (see Egan & Lineweaver 2008, and references therein):

r(a) ≡ min

[
ρΛ(a)
ρm(a)

,
ρm(a)
ρΛ(a)

]
(49)

where in this work we use ρΛ(a) ≡ Λ(a) (see Eq. (7)). If the two
densities differ by many orders of magnitude then r � 0. If on the
other hand the two densities are equal the proximity parameter
is r = 1. The current observational data shows that the proximity
parameter at the present time (a = 1) is r0 =

ρm(1)
ρΛ(1) =

Ωm
ΩΛ
� 0.37.

A cosmological model may therefore suffer from the so called

coincidence problem if its proximity parameter is close to zero
before the inflection point, r(a < aI) ∼ 0. As an example, for the
traditional Λ-cosmology we have r(a < 0.56) ∼ 0. On the other
hand, if for a particular model we find that r(a < aI) = O(1) then
this model possibly does not suffer from the cosmic coincidence
problem.

In particular, suppose that we have a cosmological model
which accommodates a late time accelerated expansion and
contains n-free parameters, described by the vector ε =
(ε1, ε2, ..., εn). The main question that we should address here is
the following: “what is the range of input (ε1, ε2, ..., εn) parame-
ters for which the coincidence problem can be avoided?” Below
we implement the following tests.

(i) We find the range of the free parameters of the considered
cosmological model that implies r � r0 for at least two dif-
ferent epochs, one of which is precisely the present epoch.

(ii) We know that for epochs between the inflection point and
the present time aI ≤ a ≤ 1, the proximity parameter is
r(a) ≥ r0. As an example, for the traditional Λ-cosmology
we have r(a) ≥ 0.37. Thus, the goal here is to define the
range of the free parameters in which at least a second re-
gion with r(a < aI) ≥ r0 occurs before the inflection point
(a < aI).

(ii) Once steps (i) and (ii) are accomplished, we finally check
whether the remaining parameters fit the recent SnIa data by
performing a standard χ2 minimization. In this work, we use the
so called Union08 sample of 307 supernovae of Kowalski et al.
(2008). In particular, the χ2 function can be written as:

χ2(ε) =
307∑
j=1

[
μth(a j, ε) − μobs(a j)

σ j

]2

· (50)

where a j = (1+ z j)−1 is the observed scale factor of the universe,
z j is the observed redshift, μ is the distance modulus μ = m−M =
5log dL + 25 and dL(a, ε) is the luminosity distance, given by

dL(a, ε) =
c

H0a

∫ 1

a

dx
x2E(x)

, (51)

where ε is the vector containing the unknown free parameters
and c is the speed of light (≡1 here).

A cosmological model for which the present tests are suc-
cessfully passed should not suffer from the coincidence prob-
lem. Below we apply our tests to the current Λ(t) cosmological
models (see also Table 1).

– The modified vacuum model with ε = (γ, 0, ...0): We sample
the unknown γ parameter as follows: γ ∈ (−1, 1/3) in steps
of 10−4. We confirm that in the range of γ ∈ [0.004, 0.03] the
Λγ0 model1 satisfies both the criteria (i); and (ii) respectively.
Also, we verify that this range of values fits the SnIa data,
χ2

min/d.o.f. � 1.01 very well. Notice that for γ > 0.03 the
criterion (i) is not satisfied. As an example, in the upper panel
of Fig. 1 we present the evolution of the proximity parameter
for γ = 0.004 (solid line) and 0.03 (dashed line). It becomes

1 Note that from a theoretical viewpoint the predicted value of the
γ parameter is |γ| = 1

12π
M2

M2
P

, where MP is the Planck mass and M is

an effective mass parameter representing the average mass of the heavy
particles of the Grand Unified Theory (GUT) near the Planck scale, af-
ter taking into account their multiplicities. In the case of M ∼ MP we
can derive an upper limit of |γ| ≤ 1/12π (for more details see Basilakos
et al. 2009).
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Table 1. Numerical results.

Model γ m/H0 t0
Λ(tinf )
Λ(t0)

Λ(tpl)

Λ(t0)

Λ 0 0 13.77 1 1
Λγ0 0.004 0 13.82 10102 10124

Λ0m 0 2.4 × 10−3 13.75 1051 1063

Λγm 0.004 2.8 × 10−3 13.80 10102 10124

The 1st column indicates the vacuum model used; the last two rows
correspond to the fine-tuning problem.

clear is that for 0.1 ≤ a ≤ 0.34 (or 2 ≤ z ≤ 10) the vacuum
density is low enough (r ∼ 0) to allow galaxies and galaxy
clusters to form (Garriga et al. 1999; Basilakos et al. 2009).
From now on, we will utilize γ � 0.004 that corresponds
to the best fit parameter. Thus it becomes clear that the Λγ0
model passes the above criteria and does not suffer from the
cosmic coincidence problem.

– The mild vacuum model with ε = (0,m, ...0): In this cosmo-
logical model we find that for m ≥ 0.17H0, the correspond-
ing age of the universe is t0 ≤ 12.7 Gyr. The latter appears to
be ruled out by the ages of the oldest known globular clusters
(Krauss 2003; Hansen et al. 2004). Using this constraint the
unknown m parameter has an upper limit of 0.17H0, and we
perform the following sampling: m ∈ [5 × 10−4H0, 0.17H0)
in steps of 5 × 10−4H0. Within this range, we find that the
required (i) and (ii) criteria are not satisfied. Thus, the Λ0m

cosmological model suffers from the coincidence problem.
The resulting minimization provides: m = 2.4+6

−1 × 10−3H0

with χ2
min/d.o.f. � 1.01. Note that the errors of the fitted pa-

rameters represent 1σ uncertainties.
– The general vacuum model with ε = (γ,m, ...0): This

vacuum cosmological model contains 2 free parameters.
Using the sampling mentioned previously, we obtain that
our main criteria for the Λγm scenario are fullfilled for
γ ∈ [0.004, 0.02], m ∈ [1.4 × 10−3H0, 9 × 10−3H0] with
χ2

min/d.o.f. ∈ [1.01, 1.02]. Throughout the rest of the pa-
per we will use the best fit parameters. These are: m �
2.8 × 10−3H0 and γ � 0.004

In addition to the SnIa data, we further check our statistical
results using the dimensionless distance to the surface of the
last scattering R = 1.71 ± 0.019 (Komatsu et al. 2009), and
the baryon acoustic oscillation (BAO) distance at z = 0.35,
A = 0.469 ± 0.017 (Eisenstein et al. 2005; Padmanabhan et al.
2007). We find that the above results remain unaltered.

5.2. The cosmic evolution – fine-tuning problem

Using now our best fit parameters for the different kind of vac-
uums, we present in Fig. 1 the corresponding normalized en-
ergy densities, vacuum Λ(a)/H2

0, matter ρm(a)/H2
0 and radiation

ρr(a)/H2
0 as a function of the scale factor. We verify that both

the Λγ0 (solid line) and Λγm (open stars) solutions are models
that provide large values for the vacuum energy density at early
epochs, in contrast with the usual Λ cosmology (open circles) in
which the vacuum energy density remains constant everywhere.
Also, within a Hubble time (0 < a ≤ 1) and for each (γ,m) pair
we find the well known cosmic behavior for the matter density
ρm(a) ∝ a−3 and the radiation density ρr(a) ∝ a−4 respectively.
As an example, in Fig. 1 we present the density evolution of
the cosmic fluid for the Λγ0 cosmological model: matter (long
dashed line) and radiation (dashed line). For a comparison we
also plot the predictions of the traditional Λ cosmology: matter

Fig. 1. Upper panel: the evolution of the proximity parameter for the
Λγ0 cosmological model. Note that the scale factor is normalized to
unity at the present time. The lines correspond to γ = 0.004 (solid)
and γ = 0.03 (dashed). Bottom panel: the evolution of the radia-
tion, matter and vacuum density considering different kind of vacu-
ums (after fitting the constants using the Union08 SnIa data and Ωm =
0.27, H0 = 70.5 km s−1 Mpc−1). I) Traditional Λ-cosmology: radiation
density (open triangles), matter density (open squares) and constant
vacuum density (open circles). II) Modified Λ-cosmology, γ � 0, Λγ0:
radiation density (dashed line), matter density (long-dashed line) and
vacuum density (solid line). III) The evolution of the mild vacuum,
m � 0, Λ0m and IV) the evolution of the general vacuum, Λγm (open
stars).

(open squares) and radiation (open triangles). From Fig. 1 it be-
comes clear that the radiation-matter equality takes place close
to arm � 3.7 × 10−4 � Ωr/Ωm. For those vacuum models where
m � 0 (Λ0m and Λγm), we verify that the behavior of their cos-
mic fluid (matter+radiation) deviates from the Λ solution in the
far future (t  t0), since the exponential term emt in Eq. (14)
plays an important role in the global dynamics (see Sect. 3.4 and
below).

In particular, for the Λγ0 vacuum scenario (the same be-
havior holds for Λγm) we have revealed the following phases:
(a) at early enough times (α < arm) the scale factor of the
universe tends to its minimum value, a −→ 0, which means
that the vacuum energy density initially moves quickly to in-
finity. So, as long as the scale factor increases the vacuum en-
ergy rolls down rapidly as Λγ0(a) ∝ a−4γ1 (where γ1 ∼ O(1)).
This evolution may solve the fine-tuning problem. Indeed, for
γ ∈ (0, 1/3), we find that prior to the inflation point (tinf ∼
10−32 s), the vacuum energy density divided by its present value
is Λ(tinf)/Λ(t0) ∼ 10102 Finally, if we consider that the func-
tional form of Λ(a) ∝ a−4γ1 is still valid during the Planck time
(tpl ∼ 10−43 s), then Λ(tpl)/Λ(t0) ∼ 10124 (see the last rows in
Table 1); and (b) in the matter era the vacuum density continues
to roll down but with a different power law Λγ0(a) ∝ a−3(1−γ)
and it tends to a constant value close to a ∼ 0.25 (z ∼ 3).
Finally, for a ≥ 0.25 the vacuum energy density is effectively
frozen to the nominal value, Λγ0(a) � Λ = 3ΩΛH2

0 , which im-
plies that the considered time varying vacuum model explains
why the matter energy density and the dark energy density are

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912575&pdf_id=1
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Fig. 2. Upper panel: comparison of the scale factor provided by our Λγ0
model with the traditional Λ cosmology (open points). Note that we use
Ωm = 0.27 and H0 = 70.5 km s−1 Mpc−1 model. In the bottom panel
we present the deviation of the scale factors between the Λγ0 and Λγm
model respectively. Note that the scale factor is normalized to unity at
the present time.

of the same order prior to the present epoch. The moment of
radiation-vacuum equality occurs at arv � 0.1 � (Ωr/ΩΛ)1/4.
Similarly, the moment of matter-vacuum equality takes place at
amv � 0.72 � (Ωm/ΩΛ)1/3. From the observational viewpoint,
in order to investigate whether the vacuum energy density fol-
lows the above evolution, we need a robust cosmological probe
at redshifts z ≥ 3. In a recent paper (Basilakos et al. 2009) we
have investigated how realistic it would be to detect differences
among the vacuum models. In particular, we have found that the
Sunayev-Zeldovich cluster number-counts (as expected from the
survey of the South Pole Telescope, Staniszewski et al. 2009, and
the Atacama Cosmology Telescope, Hincks et al. 2009) indicate
that we may be able to detect significant differences among the
vacuum models in the redshift range 2.5 ≤ z ≤ 3 at a level of
∼6−12%, which translates in number count differences over the
whole sky of ∼100 clusters (see Fig. 6 in Basilakos et al. 2009).

Finally, in Fig. 1 we also show the evolution of the mild vac-
uum modelΛ0m(a) (dot line), in which γ = 0. Briefly, we get the
following dependence: (a) Λ0m ∝ a−2γ1 for a < arm, while we
estimate that Λ0m(tinf)/Λ0m(t0) ∼ 1051 and Λ0m(tpl)/Λ0m(t0) ∼
1063; (b) between arm ≤ a ≤ 0.08 we have Λ0m ∝ a−3/2; and (c)
for a ≥ 0.08 the Λ0m becomes constant.

We would like to end this section with a discussion of the
evolution of the scale factor. In particular, our approach provides
an evolution of the scale factor in theΛγ0 model seen in the upper
panel of Fig. 2 as the solid line, which mimics the corresponding
scale factor of the Λ cosmological model (open points), despite
the fact that they describe the vacuum term differently. On the
other hand, in the bottom panel of Fig. 2 we present the corre-
sponding deviation [(aγm − aγ0)/aγ0]%, of the growth factors. It
becomes evident that within the range 0 < H0t < 5 the evolu-
tion of the scale factor provided by the Λγm model closely re-
sembles, the corresponding scale factor of the Λγ0 model (the
same result holds also for the Λ cosmology). However, for mod-
els where m � 0 the situation is somewhat different in the far
future. Indeed, for H0t ≥ 5 the Λγm (or Λ0m) cosmological
scenario deviates from the Λγ0 (or Λ) model by ∼5−10%. Thus,

we conclude that the models with m � 0 give a super-accelerated
expansion of the universe in the far future with respect to those
vacuum models where m = 0.

6. Conclusions
The reason why a cosmological constant leads to a late cosmic
acceleration is because it introduces in Friedmann’s equation a
component which has an equation of state with negative pres-
sure, PΛ = −ρΛ. In the last decade the so called concordance
Λ-cosmology is considered to be the model which describes
the cosmological properties of the observed universe because
it fits the current observational data accurately. However, the
traditional Λ cosmology suffers from two fundamental puzzles.
These are the fine-tuning and the cosmic coincidence problems.
An avenue through which the above cosmological problems
could be solved is via the time varying vacuum energy which
has the same equation of state as the traditional Λ-cosmology.

Below we wish to present the basic assumptions and conclu-
sions of our analysis.

– We are assuming a time varying vacuum pattern in which
the specific functional form is: Λ(t) = 3γH2(t) + 2mH(t) +
3n(β + 1 − γ)e2mt, where β = 0 (matter era) or β = 1/3
(radiation era), n = 3ΩΛH2

0 , while the pair (γ,m) character-
izes the different types of vacuum. Note that the above func-
tional form includes the effect of the quantum field theory
(for m = 0) (Shapiro & Solá 2000; Babić et al. 2002; Grande
et al. 2006; Solá 2008) and it also extents recent studies (see
for example Ray et al. 2007; Carneiro et al. 2008; Sil & Som
2008; Basilakos 2009). In this context we can easily prove
that the cosmological constant is a particular solution of the
general vacuum, that (γ,m) = (0, 0). We have also investi-
gated the following models: (a) modified vacuum in which
(γ,m) = (γ, 0), mild vacuum with (γ,m) = (0,m) and gen-
eral vacuum in which (γ,m) � (0, 0). In this framework we
find that the time evolution of the basic cosmological func-
tions (scale factor and Hubble flow) is described in terms of
hyperbolic functions which can accommodate a late time ac-
celerated expansion equivalent to the standard Λ model.

– We find that within the framework of either the modified or
general vacuum models the corresponding vacuum term in
the radiation era varies as Λ(a) ∝ a−4 while in the matter-
dominated era we have Λ(a) ∼ a−3 up to z = a−1 − 1 � 3
while Λ(a) � Λ = 3ΩΛH2

0 for z ≤ 3. This vacuum mech-
anism simultaneously sets (a) the value of Λ at the present
time to its observed value; and (b) at the Planck time to
a value which is 10124 at its present value (Λ(tpl)/Λ(t0) ∼
10124). Additionally, we verify that our models appear to
overcome the cosmic coincidence problem. Finally, in or-
der to confirm the above results, we need to define a robust
cosmological probe at high redshifts (z ≥ 3). In Basilakos
et al. (2009) we propose that the future cluster surveys based
on the Sunayev-Zeldovich detection method will possibly
distinguish the closely resembling vacuum models at high
redshifts.
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Appendix A
In this appendix we provide a physical justification of the func-
tional form of Λ(a) used in our paper. As we have already
mentioned in section two the vacuum energy density can take
several forms, depending on the theoretical approach. Briefly,
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the renormalization group from the quantum field theory intro-
duces only even powers of H out of which the H2 is the leading
term (Grande et al. 2006; Solá 2008, and references therein). In
another vein, the aforementioned possibility that the vacuum en-
ergy could be evolving linearly with H has been motivated the-
oretically through a possible connection of cosmology with the
QCD scale of strong interactions (see Schutzhold 2002; Carneiro
et al. 2008). In this framework it has also been proposed a pos-
sible link of dark energy with QCD and the topological struc-
ture of the universe (Urban & Zhitnitsky 2009). The simplest
approach therefore to introduce the effects of the DE is to con-
sider a potential V(φ) � V0 + m2φ2/2, where the homogeneous
scalar field φ obeys the Klein-Gordon equation. It is well known
that for H � const. the corresponding φ evolves with time as
φ(t) � φ0emt (where in general m is a complex number). In this
context, one would expect that the functional form of the Λ(t)
should contain also an additional term of φ2(t) ∝ e2mt in order
to take into account the possible link between dark energy and
QCD.

All the above options have merits and demerits. In the cur-
rent paper the functional form of Λ(t) is motivated by a com-
bination of the above possibilities, namely H2(t) [RG], H(t)
[QCD] and e2mt (dark energy). In particular, the linear combi-
nation reads as follows:

Λ(t) = n1H2(t) + n2H(t) + n3e2mt

which obviously is very similar to the original (phenomenologi-
cally selected) form of Λ(t) (Eq. (7)). Finally, from a mathemat-
ical point of view we can select the constants n1, n2 and n3 to
match those presented in the original Eq. (7).

Appendix B
With the aid of the differential equation theory we present solu-
tions that are relevant to our Eq. (8). If we have a Riccati differ-
ential equation which is given by the following special form

dy
dx
= f (x)y2(x) + my(x) − ne2mx f (x) (52)

then the general solution of Eq. (52) for n > 0 is

y(x) =
√

nemxcoth

[
−√n

∫ x

x0

emu f (u)du

]
. (53)

On the other hand, if n < 0 then the solution of Eq. (52) is

y(x) =
√|n|emxcot

[
−√|n|∫ x

x0

emu f (u)du

]
. (54)

Note that in our formulation the function f (x) is a constant:
f (x) = −3(β + 1 − γ)/2. Also, n < 0 implies that Ωm > 1 (or
Λ < 0).
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