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Abstract

The problem of matching not just two, but m different sets of objects to each other
arises in many contexts, including finding the correspondence between feature
points across multiple images in computer vision. At present it is usually solved
by matching the sets pairwise, in series. In contrast, we propose a new method,
Permutation Synchronization, which finds all the matchings jointly, in one shot,
via a relaxation to eigenvector decomposition. The resulting algorithm is both
computationally efficient, and, as we demonstrate with theoretical arguments as
well as experimental results, much more stable to noise than previous methods.

1 Introduction

Finding the correct bijection between two sets of objects X = {x1, x2, . . . , xn} and X ′ =
{x′

1, x
′
2, . . . , x

′
n} is a fundametal problem in computer science, arising in a wide range of con-

texts [1]. In this paper, we consider its generalization to matching not just two, but m different sets
X1, X2, . . . , Xm. Our primary motivation and running example is the classic problem of matching
landmarks (feature points) across many images of the same object in computer vision, which is a
key ingredient of image registration [2], recognition [3, 4], stereo [5], shape matching [6, 7], and
structure from motion (SFM) [8, 9]. However, our approach is fully general and equally applicable
to problems such as matching multiple graphs [10, 11].

Presently, multi-matching is usually solved sequentially, by first finding a putative permutation τ12
matching X1 to X2, then a permutation τ23 matching X2 to X3, and so on, up to τm−1,m. While
one can conceive of various strategies for optimizing this process, the fact remains that when the
data are noisy, a single error in the sequence will typically create a large number of erroneous
pairwise matches [12, 13, 14]. In contrast, in this paper we describe a new method, Permutation
Synchronization, that estimates the entire matrix (τji)

m
i,j=1 of assignments jointly, in a single shot,

and is therefore much more robust to noise.

For consistency, the recovered matchings must satisfy τkjτji = τki. While finding an optimal matrix
of permutations satisfying these relations is, in general, combinatorially hard, we show that for the
most natural choice of loss function the problem has a natural relaxation to just finding the n leading
eigenvectors of the cost matrix. In addition to vastly reducing the computational cost, using recent
results from random matrix theory, we show that the eigenvectors are very effective at aggregating
information from all

(
m
2

)
pairwise matches, and therefore make the algorithm surprisingly robust to

noise. Our experiments show that in landmark matching problems Permutation Synchronization can
recover the correct correspondence between landmarks across a large number of images with small
error, even when a significant fraction of the pairwise matches are incorrect.

The term “synchronization” is inspired by the recent celebrated work of Singer et al. on a similar
problem involving finding the right rotations (rather than matchings) between electron microscopic
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images [15][16][17]. To the best of our knowledge, the present work is the first in which the syn-
chronization framework is applied to a discrete group.

2 Synchronizing permutations

Consider a collection of m sets X1, X2, . . . , Xm of n objects each, Xi = {xi
1, x

i
2, . . . , x

i
n}, such

that for each pair (Xi, Xj), each xi
p in Xi has a natural counterpart xj

q in Xj . For example, in

computer vision, given m images of the same scene taken from different viewpoints, xi
1, x

i
2, . . . , x

i
n

might be n visual landmarks detected in image i, while xj
1, x

j
2, . . . , x

j
n are n landmarks detected in

image j, in which case xi
p ∼ xj

q signifies that xi
p and xj

q correspond to the same physical feature.

Since the correspondence between Xi and Xj is a bijection, one can write it as xi
p ∼ xj

τji(p) for some

permutation τji : {1, 2, . . . , n} → {1, 2, . . . , n}. Key to our approach to solving multi-matching is
that with respect to the natural definition of multiplication, (τ ′τ)(i) := (τ ′(τ(i)), the n! possible
permutations of {1, 2, . . . , n} form a group, called the symmetric group of degree n, denoted Sn.

We say that the system of correspondences between X1, X2, . . . , Xm is consistent if xi
p ∼ xj

q and

xj
q ∼ xk

r together imply that xi
p ∼ xk

r. In terms of permutations this is equivalent to requiring that
the array (τij)

m
i,j=1 satisfy

τkjτji = τki ∀i, j, k. (1)

Alternatively, given some reference ordering of x1, x2, . . . , xn, we can think of each Xi as realizing
its own permutation σi (in the sense of xℓ ∼ xi

σi(ℓ)), and then τji becomes

τji = σjσ
−1
i . (2)

The existence of permutations σ1, σ2, . . . , σm satisfying (2) is equivalent to requiring that (τji)
m
i,j=1

satisfy (1). Thus, assuming consistency, solving the multi-matching problem reduces to finding
just m different permutations, rather than O(m2). However, the σi’s are of course not directly
observable. Rather, in a typical application we have some tentative (noisy) τ̃ji matchings which we
must synchronize into the form (2) by finding the underlying σ1, . . . , σm.

Given (τ̃ji)
m
i,j=1 and some appropriate distance metric d between permutations, we formalize Per-

mutation Synchronization as the combinatorial optimization problem

minimize
σ1,σ2,...,σm∈Sn

N∑

i,j=1

d(σjσ
−1
i , τ̃ji). (3)

The computational cost of solving (3) depends critically on the form of the distance metric d. In this
paper we limit ourselves to the simplest choice

d(σ, τ) = n− 〈P (σ), P (τ)〉 , (4)

where P (σ) ∈ R
n×n are the usual permutation matrices

[P (σ)]q,p :=

{
1 if σ(p) = q

0 otherwise,

and 〈A,B〉 is the matrix inner product 〈A,B〉 := tr(A⊤B) =
∑n

p,q=1 Ap,q Bp,q.

The distance (4) simply counts the number of objects assigned differently by σ and τ . Further-
more, it allows us to rewrite (3) as maximizeσ1,σ2,...,σm

∑m
i,j=1〈P (σjσ

−1
i ), P (τ̃ji)〉, suggesting the

generalization

maximize
σ1,σ2,...,σm

m∑

i,j=1

〈
P (σjσ

−1
i ), Tji

〉
, (5)

where the Tji’s can now be any matrices, subject to T⊤
ji = Tij . Intuitively, each Tji is an objective

matrix, the (q, p) element of which captures the utility of matching xi
p in Xi to xj

q in Xj . This

generalization is very useful when the assignments of the different xi
p’s have different confidences.

For example, in the landmark matching case, if, due to occlusion or for some other reason, the
counterpart of xi

p is not present in Xj , then we can simply set [Tji]q,p =0 for all q.
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2.1 Representations and eigenvectors

The generalized Permutation Synchronization problem (5) can also be written as

maximize
σ1,σ2,...,σm

〈P, T 〉 , (6)

where

P =




P (σ1σ
−1
1 ) . . . P (σ1σ

−1
m )

...
. . .

...

P (σmσ−1
1 ) . . . P (σmσ−1

m )


 and T =




T11 . . . T1m

...
. . .

...
Tm1 . . . Tmm


 . (7)

A matrix valued function ρ : Sn → C
d×d is said to be a representation of the symmetric group if

ρ(σ2)ρ(σ1) = ρ(σ2σ1) for any pair of permutations σ1, σ2 ∈ Sn. Clearly, P is a representation
of Sn (actually, the so-called defining representation), since P (σ2σ1) = P (σ2)P (σ1). Moreover,
P is a so-called orthogonal representation, because each P (σ) is real and P (σ−1) = P (σ)⊤. Our
fundamental observation is that this implies that P has a very special form.

Proposition 1. The synchronization matrix P is of rank n and is of the form P = U ·U⊤, where

U =




P (σ1)
...

P (σm)


 .

Proof. From P being a representation of Sn,

P =




P (σ1)P (σ1)
⊤ . . . P (σ1)P (σm)⊤

...
. . .

...

P (σm)P (σ1)
⊤ . . . P (σm)P (σm)⊤


 , (8)

implying P =U ·U⊤. Since U has n columns, rank(P) is at most n. This rank is achieved because
P (σ1) is an orthogonal matrix, therefore it has linearly independent columns, and consequently the
columns of U cannot be linearly dependent. �

Corollary 1. Letting [P (σi)]p denote the p’th column of P (σi), the normalized columns of U ,

uℓ =
1√
m




[P (σ1)]ℓ
...

[P (σm)]ℓ


 ℓ = 1, . . . , n, (9)

are mutually orthogonal unit eigenvectors of P with the same eigenvalue m, and together span the
row/column space of P .

Proof. The columns of U are orthogonal because the columns of each constituent P (σi) are orthog-
onal. The normalization follows from each column of P (σi) having norm 1. The rest follows by
Proposition 1. �

2.2 An easy relaxation

Solving (6) is computationally difficult, because it involves searching the combinatorial space of a
combination of m permutations. However, Proposition 1 and its corollary suggest relaxing it to

maximize
P∈Mn

m

〈P, T 〉 , (10)

where M
m
n is the set of mn–dimensional rank n symmetric matrices whose non-zero eigenvalues

are m. This is now just a generalized Rayleigh problem, the solution of which is simply

P = m

n∑

ℓ=1

vℓ v
⊤
ℓ , (11)
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where v1, v2, . . . , vℓ are the n leading normalized eigenvectors of T . Equivalently, P = U · U⊤,
where

U =
√
m

( | | . . . |
v1 v2 . . . vn
| | . . . |

)
. (12)

Thus, in contrast to the original combinatorial problem, (10) can be solved by just finding the m
leading eigenvectors of T .

Algorithm 1 Permutation Synchronization

Input: the objective matrix T
Compute the n leading eigenvectors (v1, v2, . . . , vn)
of T and set U =

√
m [v1, v2, . . . , vn]

for i=1 to m do
Pi1 = U(i−1)n+1:in,1:n U⊤

1:n,1:n

σi = argmaxσ∈Sn〈Pi1, σ〉 [Kuhn-Munkres]
end for
for each (i, j) do

τji = σjσ
−1
i

end for
Output: the matrix (τji)

m
i,j=1 of globally consistent

matchings

Of course, from P we must still recover the in-
dividual permutations σ1, σ2, . . . , σm. How-
ever, as long as P is relatively close in form
(7), this is quite a simple and stable process.
One way to do it is to let each σi be the per-
mutation that best matches the (i, 1) block of
P in the linear assignment sense,

σi = arg min
σ∈Sn

〈P (σ), [P]i,1〉 ,

which is solved in O(n3) time by the Kuhn–
Munkres algorithm [18]1, and then set τji =

σjσ
−1
i , which will then satisfy the consistency

relations. The pseudocode of the full algo-
rithm is given in Algorithm 1.

3 Analysis of the relaxed algorithm

Let us now investigate under what conditions we can expect the relaxation (10) to work well, in
particular, in what cases we can expect the recovered matchings to be exact.

In the absence of noise, i.e., when Tji = P (τ̃ji) for some array (τ̃ji)j,i of permutations that al-
ready satisfy the consistency relations (1), T will have precisely the same structure as described by
Proposition 1 for P . In particular, it will have n mutually orthogonal eigenvectors

vℓ =
1√
m




[P (σ̃1)]ℓ
...

[P (σ̃m)]ℓ


 ℓ = 1, . . . , n (13)

with the same eigenvalue m. Due to the n–fold degeneracy, however, the matrix of eigenvectors
(12) is only defined up to multiplication by an arbitrary rotation matrix O on the right, which means
that instead of the “correct” U (whose columns are (13)), the eigenvector decomposition of T may
return any U ′ = UO. Fortunately, when forming the product

P = U ′ · U ′⊤ = U O O⊤U⊤ = U · U⊤

this rotation cancels, confirming that our algorithm recovers P = T , and hence the matchings
τji = τ̃ji, with no error.

Of course, rather than the case when the solution is handed to us from the start, we are more in-
terested in how the algorithm performs in situations when either the Tji blocks are not permutation
matrices, or they are not synchronized. To this end, we set

T = T0 +N , (14)

where T0 is the correct “ground truth” synchronization matrix, while N is a symmetric perturbation
matrix with entries drawn independently from a zero-mean normal distribution with variance η2.

In general, to find the permutation best aligned with a given n× n matrix T , the Kuhn–Munkres
algorithm solves for τ̂ = argmaxτ∈Sn〈P (τ), T 〉 = argmaxτ∈Sn(vec(P (τ)) · vec(T )). Therefore,

1 Note that we could equally well have matched the σi’s to any other column of blocks, since they are only
defined relative to an arbitrary reference permutation: if, for any fixed σ0, each σi is redefined as σiσ0, the
predicted relative permutations τji = σjσ0(σiσ0)

−1 = σjσ
−1
i stay the same.
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Figure 1: Singular value histogram of T under the noise model where each τ̃ji with probability p =
{0.10, 0.25, 0.85} is replaced by a random permutation (m = 100, n = 30). Note that apart from the ex-
tra peak at zero, the distribution of the stochastic eigenvalues is very similar to the semicircular distribution for
Gaussian noise. As long as the small cluster of deterministic eigenvalues is clearly separated from the noise,
Permutation Synchronization is feasible.

writing T = P (τ0) + ǫ, where P (τ0) is the “ground truth”, while ǫ is an error term, it is guaranteed
to return the correct permutation as long as

‖ vec(ǫ) ‖ < min
τ ′∈Sn\{τ0}

‖ vec(τ0)− vec(τ ′) ‖ /2.

By the symmetry of Sn, the right hand side is the same for any τ0, so w.l.o.g. we can set τ0 = e (the
identity), and find that the minimum is achieved when τ ′ is just a transposition, e.g., the permutation
that swaps 1 with 2 and leaves 3, 4, . . . , n in place. The corresponding permutation matrix differs
from the idenity in exactly 4 entries, therefore a sufficient condition for correct reconstruction is that

‖ǫ‖Frob = 〈ǫ, ǫ〉1/2 = ‖vec(ǫ)‖ < 1
2

√
4 = 1. As n grows, ‖ǫ‖Frob becomes tightly concentrated

around ηn, so the condition for recovering the correct permutation is η < 1/n.

Permutation Synchronization can achieve a lower error, especially in the large m regime, because
the eigenvectors aggregate information from all the Tji matrices, and tend to be very stable to per-
turbations. In general, perturbations of the form (14) exhibit a characteristic phase transition. As
long as the largest eigenvalue of the random matrix N falls below a given multiple of the smallest
non-zero eigenvalue of T0, adding N will have very little effect on the eigenvectors of T . On the
other hand, when the noise exceeds this limit, the spectra get fully mixed, and it becomes impossible
to recover T0 from T to any precision at all.

If N is a symmetric matrix with independent N (0, η2) entries, as nm→∞, its spectrum will tend to

Wigner’s famous semicircle distribution supported on the interval (−2η(nm)1/2, 2η(nm)1/2), and

with probability one the largest eigenvalue will approach 2η(nm)1/2 [19, 20]. In contrast, the non-
zero eigenvalues of T0 scale with m, which guarantees that for large enough m the two spectra will
be nicely separated and Permutation Synchronization will have very low error. While much harder
to analyze analytically, empirical evidence suggests that this type of phase transition behavior is
characteristic of any reasonable noise model, for example the one in which we take each block of T
and with some probability p replace it with a random permutation matrix (Figure 1).

To derive more quantitative results, we consider the case where N is a so-called (symmetric) Gaus-
sian Wigner matrix, which has independent N (0, η2) entries on its diagonal, and N (0, η2/2) entries
everywhere else. It has recently been proved that for this type of matrix the phase transition occurs

at λdet
min/λ

stochastic
max = 1/2, so to recover T0 to any accuracy at all we must have η < (m/n)1/2 [21].

Below this limit, to quantify the actual expected error, we write each leading normalized eigenvector
v1, v2, . . . , vn of T as vi = v∗i + v⊥i , where v∗i is the projection of vi to the space U0 spanned by the
non-zero eigenvectors v01 , v

0
2 , . . . , v

0
n of T0. By Theorem 2.2 of [21] as nm → ∞,

‖v∗i ‖2
a.s.−−−→ 1− η2

n

m
and ‖v⊥i ‖2

a.s.−−−→ η2
n

m
. (15)

It is easy to see that 〈v⊥i , v⊥j 〉
a.s.−−→ 0, which implies 〈v∗i , v∗j 〉 = 〈vi, vj〉 − 〈v⊥i , v⊥j 〉

a.s.−−→ 0,

so, setting λ = (1− η2n/m)−1/2, the normalized vectors λv∗1 , . . . , λv
∗
n almost surely tend to an

orthonormal basis for U0. Thus, U =
√
m [v1, . . . , vn] is related to the “true” U0 =

√
m [v01 , . . . , v

0
n]

by

λU
a.s.−−→ U0O + λE′ = (U0 + λE)O,

where O is some rotation and each column of the noise matrices E and E′ has norm η(n/m)1/2.
Since multiplying U on the right by an orthogonal matrix does not affect P , and the Kuhn–Munkres
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Figure 2: The fraction of (σi)
m
i=1 permutations that are incorrect when reconstructed by Permutation Synchro-

nization from an array (τ̃ji)
m
j,i=1, in which each entry, with probability p is replaced by a random permutation.

The plots show the mean and standard deviation of errors over 20 runs as a function of p for m = 10 (red),
m=50 (blue) and m=100 (green). (Left) n=10. (Center) n=25. (Right) n=30.

algorithm is invariant to scaling by a constant, this equation tells us that (almost surely) the effect
of (14) is equivalent to setting U = U0+λE. In terms of the individual Pji blocks of P = UU⊤,
neglecting second order terms,

Pji = (U0
j + λEj)(U

0
i + λEi)

⊤ ≈ P (τji) + λU0
j E

⊤
i + λEjU

0⊤
i ,

where τji is the ground truth matching and U0
i and Ei denote the appropriate n× n submatrices

of U0 and E. Conjecturing that in the limit Ei and Ej follow rotationally invariant distributions,
almost surely

lim ‖U0
j E

⊤
i + EjU

0⊤
i ‖Frob = lim ‖Ei + Ej ‖Frob ≤ 2ηn/m.

Thus, plugging in to our earlier result for the error tolerance of the Kuhn–Munkres algorithm, Per-
mutation Synchronization will correctly recover τji with probability one provided 2ληn/m< 1, or,
equivalently,

η2 <
m/n

1 + 4(m/n)−1
.

This is much better than our η < 1/n result for the naive algorithm, and remarkably only slightly

stricter than the condition η < (m/n)1/2 for recovering the eigenvectors with any accuracy at all.
Of course, these results are asymptotic (in the sense of nm → ∞), and strictly speaking only apply
to additive Gaussian Wigner noise. However, as Figure 2 shows, in practice, even when the noise is
in the form of corrupting entire permutations and nm is relatively small, qualitatively our algorithm
exhibits the correct behavior, and for large enough m Permutation Synchronization does indeed
recover all (τji)

m
j,i=1 with no error even when the vast majority of the entries in T are incorrect.

4 Experiments

Since computer vision is one of the areas where improving the accuracy of multi-matching problems
is the most pressing, our experiments focused on this domain. For a more details of our results,
please see the extended version of the paper available on project website.

Stereo Matching. As a proof of principle, we considered the task of aligning landmarks in 2D
images of the same object taken from different viewpoints in the CMU house (m = 111 frames
of a video sequence of a toy house with n = 30 hand labeled landmark points in each frame) and
CMU hotel (m = 101 frames of a video sequence of a toy hotel, n = 30 hand labeled landmark
points in each frame) datasets. The baseline method is to compute (τ̃ji)

m
i,j=1 by solving

(
m
2

)
inde-

pendent linear assignment problems based on matching landmarks by their shape context features
[22]. Our method takes the same pairwise matches and synchronizes them with the eigenvector
based procedure. Figure 3 shows that this clearly outperforms the baseline, which tends to degrade
progressively as the number of images increases. This is due to the fact that the appearance (or de-
scriptors) of keypoints differ considerably for large offset pairs (which is likely when the image set
is large), leading to many false matches. In contrast, our method improves as the size of the image
set increases. While simple, this experiment demonstrates the utility of Permutation Synchroniza-
tion for multi-view stereo matching, showing that instead of heuristically propagating local pairwise
matches, it can find a much more accurate globally consistent matching at little additional cost.
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(a) (b) (c)

Figure 3: (a) Normalized error as m increases on the House dataset. Permutation Synchronization (blue)
vs. the pairwise Kuhn-Munkres baseline (red). (b-c) Matches found for a representative image pair. (Green
circles) landmarks, (green lines) ground truth, (red lines) found matches. (b) Pairwise linear assignment, (c)
Permutation Synchronization. Note that less visible green is good.

Figure 4: Matches for a representative image pairs from the Building (top) and Books (bottom) datasets.
(Green circles) landmark points, (green lines) ground truth matchings, (red lines) found matches. (Left) Pair-
wise linear assignment, (right) Permutation Synchronization. Note that less visible green is better (right).

Repetitive Structures. Next, we considered a dataset with severe geometric ambiguities due to
repetitive structures. There is some consensus in the community that even sophisticated features
(like SIFT) yield unsatisfactory results in this scenario, and deriving a good initial matching for
structure from motion is problematic (see [23] and references therein). Our evaluations included 16
images from the Building dataset [23]. We identified 25 “similar looking” landmark points in the
scene, and hand annotated them across all images. Many landmarks were occluded due to the camera
angle. Qualitative results for pairwise matching and Permutation Synchronization are shown in Fig 4
(top). We highlight two important observations. First, our method resolved geometrical ambiguities
by enforcing mutual consistency efficiently. Second, Permutation Synchronization robustly handles
occlusion: landmark points that are occluded in one image are seamlessly assigned to null nodes in
the other (see the set of unassigned points in the rightmost image in Fig 4 (top)) thanks to evidence
derived from the large number of additional images in the dataset. In contrast, pairwise matching
struggles with occlusion in the presence of similar looking landmarks (and feature descriptors). For
n = 25 and m = 16, the error from the baseline method (Pairwise Linear Assignment) was 0.74.
Permutation Synchronization decreased this by 10% to 0.64. The Books dataset (Fig 4, bottom)
contains m = 20 images of multiple books on a “L” shaped study table [23], and suffers geometrical
ambiguities similar to the above with severe occlusion. Here we identified n = 34 landmark points,
many of which were occluded in most images. The error from the baseline method was 0.92, and
Permutation Synchronization decreased this by 22% to 0.70 (see extended version of the paper).

Keypoint matching with nominal user supervision. Our final experiment deals with matching
problems where keypoints in each image preserve a common structure. In the literature, this is
usually tackled as a graph matching problem, with the keypoints defining the vertices, and their
structural relationships being encoded by the edges of the graph. Ideally, one wants to solve the
problem for all images at once but most practical solutions operate on image (or graph) pairs.
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Note that in terms of difficulty, this problem is quite distinct from those discussed above. In
stereo, the same object is imaged and what varies from one view to the other is the field of view,
scale, or pose. In contrast, in keypoint matching, the background is not controlled and even so-
phisticated descriptors may go wrong. Recent solutions often leverage supervision to make the
problem tractable [24, 25]. Instead of learning parameters [24, 26], we utilize supervision di-
rectly to provide the correct matches on a small subset of randomly picked image pairs (e.g., via
a crowdsourced platform like Mechanical Turk). We hope to exploit this ‘ground-truth’ to signif-
icantly boost accuracy via Permutation Synchronization. For our experiments, we used the base-
line method output to set up our objective matrix T but with a fixed “supervision probability”, we
replaced the Tji block by the correct permutation matrix, and ran Permutation Synchronization.

Figure 5: Normalized error as degree of supervi-
sion varies. Baseline method PLA (red) and Per-
mutation Synchronization (blue)

We considered the “Bikes” sub-class from the Cal-
tech 256 dataset, which contains multiple images of
common objects with varying backdrops, and chose
to match images in the “touring bike” class. Our
analysis included 28 out of 110 images in this dataset
that were taken “side-on”. SUSAN corner detec-
tor was used to identify landmarks in each image.
Further, we identified 6 interest points in each im-
age that correspond to the frame of the bicycle. We
modeled the matching cost for an image pair as the
shape distance between interest points in the pair.
As before, the baseline was pairwise linear assign-
ment. For a fixed degree of supervision, we ran-
domly selected image pairs for supervision and es-
timated matchings for the rest of the image pairs. We performed 50 runs for each degree of su-
pervision. Mean error and standard deviation is shown in Fig 5 as supervision increases. Fig 6
demonstrates qualitative results by our method (right) and pairwise linear assignment (left).

5 Conclusions

Estimating the correct matching between two sets from noisy similarity data, such as the visual
feature based similarity matrices that arise in computer vision is an error-prone process. However,
when we have not just two, but m different sets, the consistency conditions between the

(
m
2

)
pair-

wise matchings severely constrain the solution. Our eigenvector decomposition based algorithm,
Permutation Synchronization, exploits this fact and pools information from all pairwise similarity
matrices to jointly estimate a globally consistent array of matchings in a single shot. Theoretical
results suggest that this approach is so robust that no matter how high the noise level is, for large
enough m the error is almost surely going to be zero. Experimental results confirm that in a range
of computer vision tasks from stereo to keypoint matching in dissimilar images, the method does
indeed significantly improve performance (especially when m is large, as expected in video), and
can get around problems such as occlusion that a pairwise strategy cannot handle.
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Figure 6: A representative triplet from the “Touring bike” dataset. (Yellow circle) Interest points in each
image. (Green lines) Ground truth matching for image pairs (left-center) and (center-right). (Red lines) Matches
for the image pairs: (left) supervision=0.1, (right) supervision=0.5.
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