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Introduction

The Transportation Problem (TP) can be set among 
network optimization problems that are well-known in 
the research community. The objective of the TP is to 
minimize the total transportation cost for a shipment 
of a single commodity from a number of sources to a 
number of destinations without exceeding the capaci-
ties of each source and by satisfying the requirements 
of each destination. When the transportation cost on 
a given route is nonlinearly dependent on the discrete 
number of units transported, the TP becomes the non-
linear discrete optimization problem. Despite its ease 
of formulation, the Nonlinear Discrete Transportation 
Problem (NDTP) belongs to the class of the optimiza-
tion problems that are hard to solve.

Applications of different NDTPs extend over several 
fields in industry including transportation, logistics, op-
erational research, engineering, etc. That is because the 
adoption of a decision support system to help perform-
ing the correct selection of shipping mode minimizing 
transportation costs proves to be highly beneficial, ow-
ing to the complexity of the problem, the large number 
of variables involved and the number of possible options 

to be compared (Caputo et  al. 2006). For this reason, 
the cost effective transportation scheduling has received 
substantial attention among researchers and a number 
of different variations and extensions of the NDTP have 
been discussed in literature.

The most recent progress in this field can be found 
in several research works. For instance, Ozsen et  al. 
(2009) introduced a capacitated location-inventory 
problem that minimizes the sum of the fixed warehouse 
location costs, the transportation costs, and the inven-
tory costs. The optimization problem was formulated as 
a nonlinear integer-programming problem, solved by 
using a Lagrangian relaxation method. Monteiro et al. 
(2010) discussed the nonlinear discrete optimization 
problem of designing a one-period planning horizon 
supply chain with integrated and flexible decisions on 
location of plants and warehouses, on levels of produc-
tion and inventory, and on transportation models, con-
sidering stochastic demand and the ABC classification 
for finished goods. In addition, the outer approximation 
method was used to solve the optimization problem. 
Ağralı et al. (2012) presented a nonlinear discrete facil-
ity location problem with safety stock costs and applied 
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a generalized Benders decomposition method to obtain 
the optimum solution. Romeijn and Sargut (2011) pro-
posed a branch-and-price method for solving a class of 
stochastic transportation problems with single-sourcing 
constraints which included both continuous and discrete 
decision variables as well as the nonlinear cost functions. 
Carrizosa et  al. (2012) addressed a discrete location 
problem with nonlinear cost objective function and de-
veloped a heuristic approach for its solution. The objec-
tive in their work was to minimize the total transporta-
tion cost between clients and plants, plus an increasing 
nonlinear function of number of plants.

From the viewpoint of the mathematical formula-
tion, the NDTP represents a Mixed-Integer Nonlinear 
Programming (MINLP) optimization problem. The 
NDTP can be highly combinatorial and non-convex op-
timization problem. The optimum solution of a complex 
and non-convex MINLP problem with a high number of 
discrete decisions is in general very difficult to obtain. 
Although the MINLP methods are expected to solve the 
NDTP to optimality, it is of little use if the optimum so-
lutions are not available in time when decisions should 
be made. Therefore, a MINLP method which provides 
a good result within reasonable solution time, can be 
more useful in some cases (Lastusilta 2011). In this way, 
the selection of a suitable MINLP method, by which a 
specific NDTP can be appropriately solved, is frequently 
a critical issue in obtaining valuable results. 

In recent paper by Klanšek and Pšunder (2012), the 
capability of the MINLP optimization to solve a specific 
nonlinear discrete network problem was shown on the 
nonlinear discrete time-cost trade-off problem. The 
implemented research presents a natural continuation 
of the work introduced in reference (Klanšek, Pšunder 
2010), where the performance of different global non-
linear programming (NLP) optimization techniques was 
tested on a set of nonlinear (continuous) transportation 
problems. In a view of previous research, the aim of this 
paper is to present the suitability of five different MINLP 
methods for specifically the exact optimum solution of 
the NDTP. The evaluated MINLP methods include the 
extended cutting plane method (ECP) by Westerlund 
and Pettersson (1995), the branch and reduce method 
(BR) by Ryoo and Sahinidis (1996), the augmented pen-
alty/outer-approximation/equality-relaxation method 
(AP/OA/ER) by Viswanathan and Grossmann (1990), 
the branch and cut (BC) method by Lin and Schrage 
(2009), and the simple branch and bound (SBB) method 
by Leyffer (2001). The MINLP methods were applied to 
solve the NDTPs from the literature. The gained solu-
tions were compared and a correlative evaluation of the 
MINLP methods is shown to demonstrate their suitabil-
ity for solving the NDTPs.

1. MINLP Optimization Approach

The MINLP represents a mathematical programming 
technique which executes the discrete optimization of 
discrete variables simultaneously with the continuous 
optimization of continuous variables. Since the MINLP 

can manage nonlinear relationships between the vari-
ables, it was selected to solve the NDTP. The general 
nonlinear continuous/discrete optimization problem 
can be presented as a MINLP problem by following for-
mulation:

Minimize z = cTy + f(x),
subject to:
h(x) = 0;
g(x) ≤ 0;                           (MINLP-G)
By + Cx ≤ b;
x ∈ X = {x ∈ Rn: xLO ≤ x ≤ xUP};
y ∈ Y = {0, 1}m,

where: x denotes the vector of the continuous variables 
defined in compact set X, and y represents the vector of 
the binary variables. While the continuous variables x 
may appear linearly or nonlinearly in the objective func-
tion and constraints, the binary variables y can only ap-
pear linearly. Functions f(x), h(x) and g(x) are nonlinear 
functions contained in the objective function z, equal-
ity and inequality constraints, respectively. Finally, By + 
Cx ≤ b is a subset of mixed linear equality and inequality 
conditions. Note that functions f(x), h(x) and g(x) must 
be continuous and differentiable. 

The MINLP formulation of the NDTP contains the 
nonlinear objective function subjected to the various 
constraints with continuous and binary variables. The 
continuous variables are used for continuous optimi-
zation, while the discrete binary variables are used for 
discrete decision optimization. The objective function is 
proposed to minimize the total transportation cost. The 
continuous variables define the transporting flows from 
sources to destinations. The binary variables represent 
the potential selection of integer solutions for continu-
ous variables inside the determined superstructure of 
different discrete solution alternatives. The system of 
equality and inequality constraints as well as the bounds 
on variables defines a supply, demand and transporting 
flow conditions.

The MINLP approach can be executed in three 
steps (Klanšek, Pšunder 2012). The first one comprises 
the generation of a superstructure with different alter-
natives for discrete solutions of continuous variables, 
the second one includes the development of the MINLP 
model formulation and the last one consists of a solution 
for the stated MINLP problem. Generating a suitable su-
perstructure of discrete alternatives represents an impor-
tant phase in the MINLP optimization (Kravanja et al. 
2005). The quality of the gained optimum result directly 
depends on the quality and quantity of the discrete solu-
tion alternatives accounted for in the superstructure. The 
MINLP superstructure for the NDTP is to be generated 
as a transportation problem superstructure consisting of 
various discrete alternatives for the transporting flows 
from which an optimum discrete solution is obtained 
within all variations. Selection of the optimum discrete 
solution from the developed superstructure of alterna-
tives requires a discrete decision optimization.

When the superstructure of discrete solution alter-
natives for transporting flows is generated, the MINLP 
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optimization is followed by the development of a MINLP 
model formulation for the NDTP. As soon as the MINLP 
model formulation for the NDTP is finished, the defined 
MINLP problem can be solved using a suitable MINLP 
method. Since the NDTPs can be highly combinatorial 
and non-convex optimization problems, the selection of 
a suitable MINLP method for a specific NDTP should be 
done attentively to achieve valuable results.

2. MINLP Optimization Model Formulation

Considering the formulation of the general MINLP opti-
mization problem (MINLP-G), the MINLP optimization 
model formulation for the NDTP is more specific, espe-
cially in terms of decision variables and constraints. In 
this way, the MINLP model formulation for the NDTP 
includes the objective function, the supply constraints, 
the demand constraints and the logical constraints for 
the discrete transporting flows. Thus, the objective of 
the NDTP is to minimize the nonlinear total transporta-
tion cost while meeting the supply, the demand and the 
transporting flow constraints. The MINLP model for-
mulation for the NDTP is given in the following form:

Minimize ( )
∈ ∈

=∑∑ , ,i j i j
i I j J

Cost f x , (1)
subject to:

∈
=∑ ,i j i

j J
x s ,  i∈I;  (2)

∈
=∑ ,i j j

i I
x d ,  j∈J;  (3)

∈
=∑ , , ,

( , )
i j k k i j

k K i j
y q x ,  i∈I;  j∈J; (4)

∈
=∑ , ,

( , )
1i j k

k K i j
y ,  i∈I; j∈J; (5)

≥, 0i jx ,  i∈I; j∈J;  (6)

{ }=, , 0,1
m

i j ky ,  i∈I; j∈J;  k∈K(i,j),  (7)

where: the Cost denotes the total transportation cost for 
a shipment of a single commodity from sources to des-
tinations, fi,j(xi,j) represents the cost function of trans-
porting flow xi,j from source i to destination j, si and dj 
are the capacities of each source i and each destination 
j, respectively. The objective function given in Eq. (1) 
denotes the sum of the individual cost contributions 
fi,j(xi,j) of the transporting flows xi,j. Formulations in 
Eq.  (2) and Eq. (3) define the supply and the demand 
constraints, respectively. The constraints presented in 
Eq. (2) require that the sum of the shipments from a 
source equals its supply, while the constraints given by 
Eq. (3) ensure that the sum of the shipments to a desti-
nation satisfy its demand.

Logical constraints in Eq. (4) and Eq. (5) must be 
fulfilled for the selection of discrete solutions for the 
continuous variables xi,j inside the superstructure of 
discrete alternatives. For this purpose, the set K is de-
fined to include discrete solution alternatives k, k∈K(i,j), 
into the superstructure of the NDTP. Discrete constants 
qk in Eq. (4) are defined for the discrete transporting 
flow solution alternatives. Since each defined discrete 
constant represents the potential discrete solution of its 

corresponding continuous variable, the binary variables 
yi,j,k are used to execute the selection of the discrete solu-
tions. In this way, the binary variables yi,j,k are used for 
the selection of the discrete solutions for transporting 
flows xi,j.

Each discrete constant alternative is selected to be 
the discrete solution of the corresponding continuous 
variable only if the calculated value of the assigned bi-
nary variable is equal to 1. The discrete constant alter-
native is rejected if the calculated value of the assigned 
binary variable is equal to 0. Eq. (5) is defined to assure 
that only one discrete value is selected for each continu-
ous variable. Finally, Eq. (6) and Eq. (7) represent the 
required non-negativity conditions for the transporta-
tion flows and the domain of the binary variables, re-
spectively. The presented model formulation defines 
the balanced NDTP. The structure of the NDTP model 
implies that the total supply 

∈
∑ i
i I

s  must be equal to the 
total demand 

∈
∑ j
j J

d .

3. MINLP Optimization Methods

The field of MINLP optimization has not yet attained the 
state of maturity and reliability as linear, integer or non-
linear programming. For this reason, the comparisons 
between different MINLP optimization methods hold 
information for decision-makers about which one of 
them is good at solving a particular type of MINLP op-
timization problem. In this paper, the suitability of five 
different state-of-the-art MINLP optimization methods 
for solving the NDTP was investigated. The evaluated 
MINLP optimization methods include the ECP method 
by Westerlund and Pettersson (1995), the BR method by 
Ryoo and Sahinidis (1996), the AP/OA/ER method by 
Viswanathan and Grossmann (1990), the BC method by 
Lin and Schrage (2009), and the SBB method by Leyffer 
(2001).

The ECP method (Westerlund, Pettersson 1995) 
within the computer implementation AlphaECP by 
Westerlund and Pörn (2002) was the first MINLP tech-
nique applied to solve the test NDTPs. The ECP method 
represents an extension of Kelley’s cutting plane method 
(Kelley 1960) which was originally proposed for solving 
convex NLP problems. It requires only the solution of 
a Mixed-Integer Linear Programming (MILP) master 
problem in each iteration. The MILP master-problems 
can be optimally solved, but may also be solved to fea-
sibility or only to an integer relaxed solution in inter-
mediate iterations. Initially the nonlinear constraints 
are excluded from the original MINLP problem and the 
MILP part of the problem is solved (Lastusilta 2011). 
After the MILP solution is gained, the NLP algorithm is 
called with mixed-integer levels from the MILP solution 
with the intention of finding an MINLP solution. When 
the gained result satisfies all the constraints, a MINLP 
solution is found. If some of the nonlinear conditions 
are not fulfilled, at least one unsatisfied nonlinear con-
straint is linearized and the resulting MILP problem is 
solved. The search continues until the found optimum 
MILP solution is also an optimum MINLP solution and 
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all linearizations are valid under-estimators of the non-
linear constraints.

The second MINLP technique used was the BR 
method (Ryoo, Sahinidis 1996), which is implemented 
in a computational system BARON (Branch And Re-
duce Optimization Navigator) by Sahinidis and Tawar-
malani (2008). The BR method combines conventional 
branch and Bound Method (BB) with a broad variety 
of range reduction tests. The reduction tests are applied 
to every sub-problem of the search tree within pre- and 
post-processing phases to contract the search space and 
reduce the relaxation gap. Number of the reduction tests 
rest on duality and are employed in cases when the re-
laxation is convex and solved by an algorithm that pro-
vides the dual, in addition to the primal, solution of the 
relaxed problem. The BR method comprehends many 
compound branching schemes that accelerate the con-
vergence of standard branching strategies. Currently, the 
BR method can manage nonlinear functions that include 
exp(x), ln(x), xα for real α, βx for real β, xy and |x|. On 
the contrary, there is lack of support for other nonlin-
ear functions, including the trigonometric functions like 
sin(x), cos(x), arctan(x), etc.

The AP/OA/ER method (Viswanathan, Grossmann 
1990) inside the MINLP computer package DICOPT 
(DIscrete and Continuous OPTimizer) solves series of 
NLP sub-problems and MILP master problems. First the 
MINLP problem is decomposed into a continuous NLP 
sub-problem and a discrete MILP master problem. The 
NLP sub-problem corresponds to the continuous op-
timization of parameters with binary variables, which 
are temporarily fixed, and yields an upper bound to the 
MINLP objective function to be minimized. The MILP 
master problem represents a linear approximation of the 
MINLP optimization problem, where the MINLP ap-
proximation is improved during the iteration procedure. 
So, the MILP master problem involves a global linear 
approximation to the superstructure of alternatives and 
predicts a lower bound for the MINLP, where a new vec-
tor of binary variables is identified. The predicted lower 
bound increases as the cycle of major MINLP iterations 
(MILP plus NLP) proceeds. The NLP sub-problems and 
the MILP master problems are sequentially solved until 
the convergence of the AP/OA/ER method is reached.

The BC method (Lin, Schrage 2009) included in 
computational software LINDOGlobal converts the 
original nonlinear/non-convex optimization problem 
down into a list of linear/convex sub-problems. Each 
sub-problem is analysed and either (a) is shown not to 
have a feasible or optimum solution, or (b) an optimum 
solution to the sub-problem is found, or (c) the sub-
problem is further split into two or more sub-problems, 
which are then put on the list. The optimization begins 
with a presolving step, where the MINLP problem is 
solved using local search procedures by starting the 
search from a number of intelligently generated points. 
A solution found in presolving step may be used in the 
next step or it can be returned as the optimum solution. 
The next step is the solution of the outer-approximation 
of the MINLP problem. If the gained solution to the 
outer-approximation of the MINLP problem also rep-

resents the optimum solution to the original problem, 
the search may terminate, otherwise the BC procedure 
is used. The BC method subdivides the feasible region 
into more accurate approximations and places the new 
sub-problems on the list. When all sub-problems on the 
list are solved or fathomed, the solution process stops.

The last MINLP optimization approach employed 
was the SBB method (Leyffer 2001). The SBB method 
combines the BB method known from MILP and local 
search NLP procedures. First the relaxed MINLP prob-
lem is solved using the provided starting point. If the 
obtained solution fulfils the integer condition, the search 
process stops, otherwise the optimization is continued 
using the BB procedure. The feasible space of the dis-
crete variables is subdivided in the BB procedure. The 
bounds on the discrete variables are tightened to new 
integer values to cut off the current non-integer results. 
Each time the bounds are tightened, a new, tighter NLP 
sub-problem is solved starting from the precedent NLP 
solution. The obtained objective function value from the 
solution of the NLP sub-problem is considered as lower 
bound on the objective in the contracted feasible space. 
If the NLP process reports a local infeasibility of a sub-
problem, it is presumed that there is no feasible solution 
to the sub-problem, although the infeasibility has been 
determined locally. When the optimization problem is 
convex, these presumptions will be fulfilled and the SBB 
procedure will provide proper bounds. The SBB method 
terminates when all sub-problems on the list are solved 
or fathomed.

4. Comparative Tests

4.1. Input Data
The set of test problems applied in this research was 
originally proposed by Michalewicz et  al. (1991). The 
considered test problems comprehend the 7×7 and the 
10× 0 node problems with six different nonlinear con-
tinuous cost functions. The input values for the capaci-
ties of the sources si, the capacities of the destinations 
dj and the cost parameters ci,j of the 7×7 problem are 
given in Table 1.

Considering the data given in Table 1, it can be 
stated that the 7×7 cost matrix is a symmetrical matrix 
with zero cost parameters on the diagonal and six cost 
parameters with large value of 1000 in comparison with 

Table 1. 7×7 cost matrix and source/destination capacities

Source si: 27 28 25 20 20 20 20
Destination dj: 20 20 20 23 26 25 26
Cost ci,j: 0 21 50 62 93 77 1000

21 0 17 54 67 1000 48
50 17 0 60 98 67 25
62 54 60 0 27 1000 38
93 67 98 27 0 47 42
77 1000 67 1000 47 0 35

1000 48 25 38 42 35 0
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the values of the rest cost parameters. The cost matrix 
and source/destination capacities of the 10×10 problem 
are introduced in Table 2.

The cost functions f(xi,j) applied in the tests were 
defined as proposed by Michalewicz et  al. (1991) and 
they are formulated in Table 3, and presented in Fig. 1.

Fig. 1. Cost functions
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Table 2. 10×10 cost matrix and source/destination capacities

Source si: 8 8 2 26 12 1 6 18 18 1
Destination dj: 19 2 33 5 11 11 2 14 2 1
Cost ci,j: 15 3 23 1 19 14 6 16 41 33

13 17 30 36 20 17 26 19 3 33
37 17 30 5 48 27 8 25 36 21
13 13 31 7 35 11 20 41 34 3
31 24 8 30 28 33 2 8 1 8
32 36 12 9 18 1 44 49 11 11
49 6 17 0 42 45 22 9 10 47
2 21 18 40 47 27 27 40 19 42

13 16 25 21 19 0 32 20 32 35
23 42 2 0 9 30 5 29 31 29

Table 3. Cost functions

Function 
A: f (xi,j) = arctan(PA (xi,j – S))/π + 0.5 +

arctan(PA (xi,j – 2 S))/π + 0.5 +
arctan(PA (xi,j – 3 S))/π + 0.5 +
arctan(PA (xi,j – 4 S))/π + 0.5 +
arctan(PA (xi,j – 5 S))/π + 0.5

Function 
B: f (xi,j) = (xi,j /S) (arctan(PB xi,j)/π + 0.5) +

(1 – xi,j /S) (arctan(PB (xi,j – S))/π + 0.5) +
(xi,j /S – 2) (arctan(PB (xi,j – 2 S))/π + 0.5)

Function 
C: f (xi,j) = xi,j

2

Function 
D: f (xi,j) = xi,j

0.5

Function 
E: f (xi,j) = (1 + (xi,j – 2 S)2)–1 + 

(1 + (xi,j – 2.25 S)2)–1 +
(1 + (xi,j – 1.75 S)2)–1 

Function 
F: f (xi,j) = xi,j (sin(5 π xi,j /4 S) + 1)
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Both input values of the parameters PA and PB 
were set to 1000. For 7×7 test problems, the input value 
for the parameter S was set to 2, while for 10×10 test 
problems an input value of 5 was applied. The total 
transportation cost objective function of each consid-
ered 7×7 and 10×10 test optimization problem was for-
mulated as follows:

( )
= =

=∑∑ , ,
1 1

m n

i j i j
i j

Cost c f x . (8)

It should be noted that the shape of the cost func-
tion f(xi,j) within the objective function was the same on 
all arcs, while the variation between arcs was obtained 
by using the cost parameters ci,j.

The MINLP superstructure of discrete solution al-
ternatives for the transporting flows was generated using 
the set of integer constants. All possible discrete solution 
options for the transporting flows are included into the 
MINLP optimization model. For example, alternative 
discrete solutions for transporting flow x1,2 for the 7×7 
problem are defined with integers 0, 1, 2,…, 20 taking 
into account the feasible space for this variable 0 ≤ x1,2 ≤ 
min {s1, d2}. The initial points for the MINLP solution 
of the test problems were generated using the classical 
north-west corner rule.

4.2. Optimization Setup
The MINLP optimization model formulation for the 
NDTP was applied to solve the test problems. A high-
level language GAMS (General Algebraic Modelling Sys-
tem) by Brooke et al. (2012) was used for modelling and 
for the data inputs/outputs. GAMS/CPLEX (2012) was 
selected to perform the MILP solution procedures for 
AlphaECP, BARON and DICOPT, while LINDOGlobal 
and SBB required no particular selection of an MILP 
algorithm. CONOPT (generalized reduced-gradient 
algorithm) by Drud (1994) was selected to solve the 
NLP sub-problems for AlphaECP, DICOPT and LIN-
DOGlobal. MINOS (reduced gradient algorithm com-
bined with a quasi-Newton algorithm) by Murtagh and 
Saunders (1983) was selected to perform the NLP search 
processes for BARON and SBB. A time limit of 1000 
CPU seconds (~17 minutes) per test problem was set 
for the considered MINLP methods to perform the op-
timization.

The applied set of the test NDTPs was solved on 
a 64-bit operating system using the personal computer: 
Intel Core i7, 2.93 GHz, 8 GB RAM and 1 TB hard disc. 
The 7×7 test problems included 49 continuous variables 
(e.g. transporting flows xi,j), 1087 binary variables (e.g. 
discrete decision variables yi,j,k), an objective variable 
(e.g. variable Cost) and 112 constraints (e.g. 7 sup-
ply constraints, 7 demand constraints, 98 logical con-
straints). Similarly, the 10×10 test problems contained 
100 continuous variables, 616 binary variables, an objec-
tive variable and 220 constraints. The solution processes 
were finished within the given time limit and the best 
obtained discrete solutions for the test problems were 
reported by the MINLP algorithms.

4.3. Computational Results and Comparisons
Cost function A is a nonlinear continuous arc-tangent 
approximation of a five-step piece-wise linear function, 
see Fig.  1A. The discrete solutions of the test NDTPs 
with cost function A were achieved only by AlphaECP, 
DICOPT, LINDOGlobal and SBB since BARON could 
not handle the trigonometric function arctan(x) within 
the MINLP model. The obtained objective function val-
ues for the test problems with cost function A are given 
in Fig. 2.

Fig.  2 shows that the best objective function val-
ues for both the 7×7 and 10×10 test problems with cost 
function A were found by AlphaECP. The best objec-
tive function value for the 7×7 test problem was 171.59 
while the best discrete solution of the 10×10 test prob-
lem contains the objective function value of 66.89. Al-
phaECP obtained the discrete solution for the 7×7 test 
problem with cost function A which shows smaller ob-
jective function value in comparison with those gained 
by DICOPT (–10.11%), LINDOGlobal (–46.86%) and 
SBB (–29.71%). The discrete solution of the 10×10 test 
problem with cost function A found by AlphaECP in-
dicates smaller objective function value than the solu-
tions reached by DICOPT (–27.59%), LINDOGlobal 
(–22.99%) and SBB (–26.79%). The achieved best dis-
crete solutions for the 7×7 and 10×10 test problems with 
cost function A are presented in Tables 4 and 5.

Cost function B is a nonlinear continuous arc-tan-
gent approximation of a piece-wise linear function with 
three gradients, see Fig. 1B. Similarly as before, the dis-
crete solutions of the test problems with function B were 
reached only by AlphaECP, DICOPT, LINDOGlobal and 
SBB while BARON could not handle the arc-tangent 
functions in the MINLP model. The calculated objective 
function values for the test NDTPs with cost function B 
are shown in Fig. 3.

The best objective function values for both the 
7×7 and 10×10 test problems with cost function B were 
gained by SBB algorithm, see Fig.  3. The best discrete 
solution for the 7×7 test problem with cost function 
B indicates the objective function value of 349.98. The 
objective function value of the best found discrete so-
lution for the 10×10 test problem with cost function B 
was 169.59. Comparison between the achieved results 
for the 7×7 test problem shows that the objective func-
tion value obtained by SBB was smaller than those cal-
culated by AlphaECP (–3.58%), DICOPT (–0.28%) and 
LINDOGlobal (–11.95%). For the 10×10 test problem, 
the value of the objective with cost function B reached 
by SBB was smaller in comparison with those found by 
AlphaECP (–3.96%), DICOPT (–3.96%) and LINDO-
Global (–4.72%). The attained best solutions for the 7×7 
and 10×10 test NDTPs with cost function B are shown 
in Tables 6 and 7.

Cost function C represents a regular quadratic 
function, see Fig. 1C. The discrete solutions for the test 
NDTPs with cost function C were obtained by Alpha-
ECP, BARON, DICOPT, LINDOGlobal and SBB algo-
rithms, see Fig. 4.
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Fig. 4 demonstrates that all five considered MINLP 
methods found the identical discrete solution for the 
7×7 test problem with cost function C which contains 
the objective function value of 2648.00, see Table 8. On 
the other hand, the SBB method gained better discrete 
solution for the 10×10 test problem with cost function C 
than all the other tested MINLP methods. The best dis-
crete solution of the 10×10 test problem with cost func-
tion C includes the objective function value of 4466.00, 
see Table 9.

Fig. 2. Objective function values for test problems  
with cost function A

Fig. 3. Objective function values for test problems  
with cost function B

Fig. 4. Objective function values for test problems  
with cost function C
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Table 4. Best obtained discrete solution for the 7×7 test 
problem with cost function A

Discrete transporting flow xi,j

20 1 1 2 1 1 1
0 19 3 1 2 1 2
0 0 16 1 1 1 6
0 0 0 18 1 1 0
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 1 1 1 17

Objective function: 171.59

Table 5. Best obtained discrete solution for the 10×10 test 
problem with cost function A

Discrete transporting flow xi,j

2 0 3 0 3 0 0 0 0 0
4 0 4 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0
3 2 4 4 4 0 2 4 2 1
0 0 12 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 5 0 0 0 0 0 0 0
9 0 0 0 0 0 0 9 0 0
0 0 1 1 4 11 0 1 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 66.89
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2648

5123

2648
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Table 6. Best obtained discrete solution for the 7×7 test 
problem with cost function B

Discrete transporting flow xi,j

19 0 0 4 0 4 0

1 19 0 0 4 0 4

0 1 20 0 0 0 4

0 0 0 19 1 0 0

0 0 0 0 20 0 0

0 0 0 0 0 20 0

0 0 0 0 1 1 18
Objective function: 349.98

Table 7. Best obtained discrete solution for the 10×10 test 
problem with cost function B

Discrete transporting flow xi,j

0 0 0 0 8 0 0 0 0 0
1 0 0 0 3 0 0 2 2 0
0 0 0 0 0 0 2 0 0 0
0 2 10 3 0 10 0 0 0 1
0 0 12 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 2 0 0 0 4 0 0
8 0 10 0 0 0 0 0 0 0

10 0 0 0 0 0 0 8 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 169.59
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Table 8. Best obtained discrete solution for the 7×7 test 
problem with cost function C

Discrete transporting flow xi,j

20 0 1 2 2 2 0
0 20 2 2 2 0 2
0 0 17 1 1 2 4
0 0 0 18 1 0 1
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 0 0 1 19

Objective function: 2,648.00

Table 9. Best obtained discrete solution for the 10×10 test 
problem with cost function C

Discrete transporting flow xi,j

1 0 3 0 2 0 0 2 0 0
1 0 2 0 2 0 0 2 1 0
0 0 2 0 0 0 0 0 0 0
4 2 4 5 2 3 2 2 1 1
0 0 8 0 1 0 0 3 0 0
0 0 1 0 0 0 0 0 0 0
0 0 4 0 0 0 0 2 0 0

11 0 5 0 1 0 0 1 0 0
2 0 3 0 3 8 0 2 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 4,466.00

SBB optimization algorithm achieved the discrete 
solution for the 10×10 test problem with cost function C 
with a smaller objective function value in comparison to 
those found by AlphaECP (–1.41%), BARON (–1.59%), 
DICOPT (–12.82%) and LINDOGlobal (–6.14%).

Cost function D denotes a square root function, 
see Fig. 1D. This nonlinear concave cost function gives 
large contribution to the overall objective function value 
even for small values of decision variables. The objective 
function values of the test NDTPs with cost function D 
found by AlphaECP, BARON, DICOPT, LINDOGlobal 
and SBB are presented in Fig. 5.

BARON and LINDOGlobal algorithms achieved 
the best solution for the 7×7 test NDTP with function 
D which indicates the objective function value of 480.16, 
see Table 10. Considering the 10×10 test problem with 
cost function D, the best discrete solution with the ob-
jective function value of 377.25 was obtained by BAR-
ON, see Table 11.

BARON and LINDOGlobal calculated the identi-
cal discrete solution for the 7×7 test problem with cost 
function D which indicates smaller objective function 
value in comparison with those attained by AlphaECP 
(–13.67%), DICOPT (–20.21%) and SBB (–13.91%). For 
the 10×10 test NDTP with cost function D, the objective 
function value of the discrete solution found by BARON 
was smaller than those gained by AlphaECP (–6.66%), 
DICOPT (–14.95%), LINDOGlobal (–22.63%) and SBB 
(–11.75%).

Cost function E is rarely applied in the objective 
functions of practical NDTPs, see Fig. 1E. However, this 
non-convex cost function with peak was proposed by 
Michalewicz et al. (1991) in order to provide a severe 
test for optimization methods. AlphaECP, BARON,  
DICOPT, LINDOGlobal and SBB solved the test prob-
lems with peak cost function E within a given solution 
time, but found different discrete solutions. Fig. 6 pres-
ents the objective function values attained in the per-
formed tests with peak cost function E.

Fig. 5. Objective function values for test problems  
with cost function D
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Table 10. Best obtained discrete solution for the 7×7 test 
problem with cost function D

Discrete transporting flow xi,j

20 7 0 0 0 0 0
0 13 15 0 0 0 0
0 0 5 0 0 0 20
0 0 0 20 0 0 0
0 0 0 0 20 0 0
0 0 0 0 0 20 0
0 0 0 3 6 5 6

Objective function: 480.16

Table 11. Best obtained discrete solution for the 10×10 test 
problem with cost function D

Discrete transporting flow xi,j

1 2 0 5 0 0 0 0 0 0
0 0 0 0 0 0 0 8 0 0
0 0 0 0 0 0 2 0 0 0
0 0 22 0 0 3 0 0 0 1
0 0 10 0 0 0 0 0 2 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 6 0 0

18 0 0 0 0 0 0 0 0 0
0 0 0 0 11 7 0 0 0 0
0 0 1 0 0 0 0 0 0 0

Objective function: 377.25
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The best solutions for both the 7×7 and 10×10 
test NDTPs with peak cost function E were reached by 
BARON. For the 7×7 test problem, the gained best value 
of the objective function was 589.42. The best discrete 
solution found for the 10×10 test problem includes the 
objective function value of 71.79. The obtained best 
discrete solutions of both test problems with peak cost 
function E are presented in Tables 12 and 13.

Comparison of the results for the 7×7 test problem 
with peak cost function E demonstrates that the objective 
function value found by BARON was smaller than those 
achieved by AlphaECP (–42.22%), DICOPT (–45.61%), 

LINDOGlobal (–46.37%) and SBB (–31.58%). BARON 
also attained better objective function value for the 
10×10 test NDTPs with peak cost function E than Al-
phaECP (–11.85%), DICOPT (–10.78%), LINDOGlobal 
(–10.62%) and SBB (–2.62%).

Cost function F is a highly non-convex function 
with multiple valleys and peaks, see Fig. 1F. This func-
tion with multiple sub-optimal points often causes dif-
ficulties for gradient-based methods to find the global 
optimum solution. The discrete solutions of the test 
problems with function F were achieved by AlphaECP, 
DICOPT, LINDOGlobal and SBB. BARON was not able 
to manage the sinus functions in the MINLP models of 
the test NDTPs. The objective function values found 
for the test problems with cost function F are shown in 
Fig. 7. The best values of the objective functions for both 
test NDTPs with cost function F were calculated by SBB 
method, see Tables 14 and 15. For the cost function F, 
Table 14 indicates the best discrete solution of the 7×7 
test problem with the objective function value of 444.58 
while Table 15 demonstrates the best discrete solution 
of the 10×10 test problem with the objective function 
value of 246.24.

SBB found the discrete solution for the 7×7 test 
problem with cost function F which shows better objec-
tive function value than those obtained by AlphaECP 
(–55.98%), DICOPT (–27.23%) and LINDOGlobal 
(–50.63%). The objective function value gained by SBB 
for the 10×10 test problem was also smaller than those 
reached by AlphaECP (–67.97%), DICOPT (–21.94%) 
and LINDOGlobal (–72.15%).

Fig. 6. Objective function values for test problems  
with cost function E
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Table 12. Best obtained discrete solution for the 7×7 test 
problem with cost function E

Discrete transporting flow xi,j

1 0 0 0 0 0 26
0 0 0 0 15 13 0
0 0 0 14 11 0 0
0 0 0 8 0 12 0
0 0 20 0 0 0 0
0 20 0 0 0 0 0

19 0 0 1 0 0 0
Objective function: 589.42

Table 13. Best obtained discrete solution for the 10×10 test 
problem with cost function E

Discrete transporting flow xi,j

0 1 0 3 2 0 0 2 0 0
1 0 1 0 2 0 0 2 2 0
0 0 0 1 0 0 0 1 0 0
0 0 26 0 0 0 0 0 0 0
0 0 3 0 2 0 2 4 0 1
0 0 0 0 1 0 0 0 0 0
0 1 1 1 0 0 0 3 0 0

17 0 1 0 0 0 0 0 0 0
1 0 1 0 3 11 0 2 0 0
0 0 0 0 1 0 0 0 0 0

Objective function: 71.79

Fig. 7. Objective function values for test problems  
with cost function F
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Table 14. Best obtained discrete solution for the 7×7 test 
problem with cost function F

Discrete transporting flow xi,j

20 1 0 0 6 0 0
0 19 9 0 0 0 0
0 0 11 0 0 2 12
0 0 0 20 0 0 0
0 0 0 0 18 2 0
0 0 0 0 0 20 0
0 0 0 3 2 1 14

Objective function: 444.58
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Table 15. Best obtained discrete solution for the 10×10 test 
problem with cost function F

Discrete transporting flow xi,j

6 1 0 1 0 0 0 0 0 0
6 0 0 0 0 0 0 0 2 0
0 0 0 1 0 0 1 0 0 0
0 1 22 3 0 0 0 0 0 0
0 0 0 0 5 0 0 7 0 0
0 0 0 0 0 0 0 0 0 1
0 0 5 0 0 0 0 1 0 0
6 0 6 0 6 0 0 0 0 0
1 0 0 0 0 11 0 6 0 0
0 0 0 0 0 0 1 0 0 0

Objective function: 246.24

5. Discussion

The following discussion is addressed to the suitability 
of the tested MINLP optimization methods for solving 
the NDTPs with different types of nonlinear cost func-
tions. At the beginning it should be noted that the ap-
plied test problems represent combinatorial and, in most 
of the considered cases, non-convex MINLP problems, 
for which the global optimum solution is, in general, 
difficult to be obtained. Taking into account the com-
plexity of the test problems and the obtained results, all 
five compared MINLP methods demonstrated the most 
favourable individual performance and found acceptable 
exact solutions.

The ECP method implemented in a computational 
system AlphaECP was found to be a very suitable MIN-
LP optimization technique for solving NDTPs, which 
contain continuous arc-tangent approximations of a step 
piece-wise linear cost functions or quadratic cost func-
tion. Furthermore, the test results showed that the ECP 
method is also an applicable tool for the NDTPs with 
continuous arc-tangent approximation of a piece-wise 
linear cost function with gradients and for those with 
square root cost functions. However, the non-convex 
cost functions with valleys and peaks defined inside the 
NDTP model may cause difficulties for the ECP method 
to find high quality result in reasonable solution time.

The BR method, within the optimization software 
BARON, appears to be the more robust of the MINLP 
solution techniques. The BR optimization method was 
found to be very efficient MINLP search procedure for 
solving the NDTPs, with convex quadratic cost func-
tions, concave square root cost functions and even for 
non-convex cost functions, such as the peak cost func-
tion. For the majority of executed tests with these types 
of cost functions, the BR method found the best solu-
tions. On the other hand, the lack of the support for 
trigonometric functions reduces the applicability of the 
BR optimization method for solving the NDTPs.

The AP/OA/ER method of the DICOPT software 
was determined to be a reliable MINLP technique for 
solving the NDTPs that can contain a wide variety of 
nonlinear functions. When the searches for the opti-

mum solutions of the test NDTPs were launched, the 
AP/OA/ER method usually found reasonably good so-
lutions already in a first few major iterations and had 
continued to report better solutions until the time limit 
was reached. The AP/OA/ER method was ascertained 
to be suitable MINLP search procedure for the NDTPs 
with continuous arc-tangent approximation of a piece-
wise linear functions with gradients. The gained results 
for the test problems with quadratic cost function have 
indicated that the search for the global optimum of con-
vex NDTPs may not necessarily be finished in a short 
solution time. On the other hand, the performed tests 
showed that AP/OA/ER method can obtain moderate 
and acceptable results even for the NDTPs with highly 
non-convex functions.

The BC method inside the computer package LIN-
DOGlobal is appropriate MINLP technique for solving 
the NDTPs, which include convex quadratic functions. 
The NDTPs with concave square root functions can 
be solved by BC method, although, in some cases, the 
convergence of a high quality solution may not be eas-
ily reached. The BC method showed moderate perfor-
mance for the solution of the NDTPs, with continuous 
arc-tangent approximation of a piece-wise linear func-
tions with gradients. Finding high quality solutions for 
the NDTPs, with continuous non-convex functions such 
as arc-tangent approximations of a step piece-wise lin-
ear functions or functions with valleys and peaks were 
found to be tougher task for the BC method, which may 
require longer solution time.

The SBB method was stated to be a very convenient 
MINLP optimization method for solving the NDTPs, 
which comprise continuous arc-tangent approxima-
tions of piece-wise linear cost functions with gradients, 
quadratic cost functions or non-convex cost functions 
with multiple valleys and peaks. The SBB reached the 
best solutions for the test NDTPs with these types of cost 
functions. The executed tests indicated that the SBB can 
found acceptable results in reasonable solution time also 
for the NDTPs with square root cost functions. How-
ever, the non-convexities, within the NDTP model, may 
sometimes also cause difficulties for the SBB method to 
achieve the high quality solution fast enough, as it can be 
seen from the gained results for test problems with con-
tinuous arc-tangent approximations of a step piece-wise 
linear cost functions and those with peak cost functions.

The final findings are related to the MINLP solu-
tion of the convex NDTP. The test NDTPs, with quadrat-
ic cost function C, represents the convex optimization 
problems, for which gradient-based MINLP techniques 
can find the global optimum solutions, provided that the 
solution time limit is large enough. Gained results, for 
the 10×10 test problem with cost function C, show that 
tightly set solution time limit may prevent the MINLP 
methods to obtain the global optimum solution even 
for convex NDTPs. Since the 7×7 test problem included 
larger number of decision variables and smaller num-
ber of constraints than the 10×10 test problem, the op-
timization results also showed that the number of con-
straints had larger influence on the MINLP solution of 
the test NDTPs, with cost function C, than the number 
of decision variables.
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Conclusions

The aim of this paper was to present the suitability of 
five different state-of-the-art MINLP methods, spe-
cifically for the exact optimum solution of the NDTP. 
The evaluated MINLP methods included the extended 
cutting plane method, the branch and reduce method, 
the augmented penalty/outer-approximation/equality-
relaxation method, the branch and cut method, and the 
simple branch and bound method. The MINLP methods 
were tested on a set of NDTPs from the literature. 

The considered test problems comprehend the 7×7 
and the 10×10 node problems with six different nonlin-
ear continuous cost functions. A solution time limit per 
test problem was determined for the MINLP methods 
to perform the optimization. The gained solutions were 
compared and a correlative evaluation of the considered 
MINLP methods was shown to demonstrate their suit-
ability for solving the NDTPs.

Based on the presented results, the most performed 
tests show that each MINLP method was able to solve 
a specific NDTP within determined solution time to a 
better solution than the other considered MINLP tech-
niques. Such differences between the gained results were 
expected to a certain degree since the applied test prob-
lems represent combinatorial and, in most of the con-
sidered cases, non-convex MINLP problems for which 
the global optimum solution is, in general, difficult to 
be obtained. Nevertheless, all five compared MINLP 
methods demonstrated the most favourable individual 
performance and found acceptable exact solutions for 
the applied test NDTPs. None of the evaluated MINLP 
methods was found to be generally better than the others.
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