
Solving the pickup and delivery problem with time windows
using reactive tabu search

William P. Nanry *, J. Wesley Barnes

Graduate Program in Operations Research and Industrial Engineering, The University of Texas at Austin,

Austin, TX 78712, USA

Received 13 July 1998; accepted 24 April 1999

Abstract

The pickup and delivery problem with time windows requires that a group of vehicles satisfy a collection
of customer requests. Each customer request requires the use of a single vehicle both to load a speci®ed
amount of goods at one location and to deliver them to another location. All requests must be performed
without violating either the vehicle capacity or the customer time window stipulated at each location. In
this paper, we present a reactive tabu search approach to solve the pickup and delivery problem with time
windows using three distinct move neighborhoods that capitalize on the dominance of the precedence and
coupling constraints. A hierarchical search methodology is used to dynamically alternate between neigh-
borhoods in order to negotiate di�erent regions of the solution space and adjust search trajectories. In order
to validate our technique's e�ectiveness, we have constructed a new set of benchmark problems for the
pickup and delivery problem with time windows based on Solomon's benchmark vehicle routing problem
with time windows data sets. Computational results substantiate the solution quality and e�ciency of our
reactive tabu search approach. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Tabu search; Coupling constraints; Neighborhood selection; Benchmark problems

1. Introduction

This paper presents a reactive tabu search approach, RTS-PDPTW, for solving the pickup and
delivery problem with time windows (PDPTW). The speci®c problem that we address requires the
satisfaction of a set of transportation requests by a homogeneous vehicle ¯eet housed at one
depot. Each transportation request requires picking up material at a predetermined location
during its associated time window and delivering it to a ``paired'' destination during its time
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window. Loading and unloading times are incurred at each location. In addition to the above
precedence constraints, each route must satisfy coupling constraints since paired pickup and de-
livery locations must be serviced by the same vehicle. Precedence and coupling constraints are
strictly enforced at all times.

Economic incidents such as the oil crisis of the early 1970s, deregulation of the US airline and
trucking industry in the 1980s, and a rapidly declining military budget have motivated both
private companies, government entities, and academic researchers to vigorously pursue new
methods to improve the e�ciency of logistics, distribution and transportation. This rekindled
interest has fueled the recent development in metaheuristic procedures. New developments in
adaptive memory strategies of tabu search (TS) have been especially productive in solving di�cult
combinatorial optimization problems with greater e�ectiveness than ever before. Time windows
constrained routing problems form a large segment of this class of combinatorial optimization
problems.

PDPTW routing problems arise under a variety of circumstances. They describe situations in
which vehicles must travel to a variety of places to deliver and/or pick up goods and provide
services. The enormous costs of acquisition or leasing of additional vehicles often compel man-
agers to exhaust the capacity of the existing ¯eet. Simultaneously, increasing fuel, maintenance,
and overtime costs strongly favor minimizing the usage of those vehicles. Practical applications of
the PDPTW include the dial-a-ride problem, airline scheduling, bus routing, tractor±trailer
problems, helicopter support of o�shore oil ®eld platforms and logistics and maintenance sup-
port. They also arise in less obvious situations such as VLSI circuit design, ¯exible manufacturing
systems, and evacuating casualties.

We assume that all parameters of the PDPTW are known with certainty. Each problem has a
set P of customers requiring service, either a pickup, P�, or a delivery, Pÿ and P� [ Pÿ �
P ; Pj j � n; and P�j j � Pÿj j � n=2. Each member of P� is uniquely paired with its successor in
Pÿ, forming n/2 predecessor±successor pairs (ps-pairs). The set of n customers is indexed by
subscripts, i and j. Other parameters required to de®ne a speci®c problem instance are travel
times between all pairs of locations, tij; the service duration time, si; demand, di; earliest service
start time, ei; and latest service start time, li, for each of the customers. di > 0 for pickup cus-
tomers and di < 0 for delivery customers. If si > 0, it is added to all tij for customer i. Thus,
nonzero si need not be considered explicitly by the solution algorithm after their e�ects are
accounted for in the tij and li. If customer j is the paired successor of customer i, tji will be set to
an arbitrarily large value, M, to make its selection undesirable. There are two other cases where
the travel time between locations will be set arbitrarily large. Vehicles leave the depot empty and
must travel to a supplier ®rst, not a delivery location. Since all vehicles are assumed to return to
the depot empty, the last stop a vehicle makes is to deliver any remaining supplies on the vehicle.
Travel times from the depot to a delivery location and from the supplier returning to the depot
will be set to M. All distances are assumed to satisfy the triangle inequality, unless otherwise
indicated.

Each problem has a set V of available vehicles, indexed by k, such that Vj j � m, and each
vehicle has a known capacity C. We have used the transformation developed by Laporte (1992) to
represent a solution to the PDPTW, i.e., a solution is given by a vector indicating the order in
which customers are served by the unique vehicles to which they are assigned. The solution is
denoted by
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T � s0; s1; s2 . . . ; sn�mÿ1; sn�mf g; �1�
where si is the index of the customer, vehicle, or depot ``node'' in the ith position of the route. By
convention, the node in position 0 is the depot depicted as s0 � 0. Customers and vehicles may
occupy any position from 1 to n + m. Nodes indexed 1 through n are customer nodes. Nodes
indexed n + 1 through n + m are vehicle nodes. Customers lying to the left of a vehicle node, sk,
and to the right of a depot node or another vehicle node are assigned to vehicle sk.

The m vehicle nodes are modeled after the depot such that dk � d0� 0, sk � s0� 0, ek � e0� 0,
and lk � l0. Hence, the travel times from customers to the vehicle nodes are:

ti;j � ti;0 for i 2 Pÿ; j 2 V and j > n; �2a�
ti;j � t0;j for j 2 P�; i 2 V and i > n; �2b�
ti;j � M for i 2 P�; j 2 V and j > n; �2c�
ti;j � M for j 2 Pÿ; i 2 V and i > n: �2d�

We assume that the number of vehicles required will not impose a limitation. Hence, m can be
initialized at n/2 and N is the set of all modeled nodes representing all customers, vehicles and the
depot, Nj j � n� m� 1.

Since waiting is allowed, de®ne the arrival time, Ai, departure time, Di and waiting time, Wi, at
customer i as follows:

Asi � Dsiÿ1
� tsiÿ1;si for i 2 N ; �3�

Di � max Ai; ei� � for i 2 P and Di � 0 for i 2 V ; �4�
Wi � max 0; ei� ÿ Ai� � Di ÿ Ai: �5�

Note that Wi > 0 whenever a vehicle arrives at customer i prior to ei

The early service start time window constraints will be treated as ``soft'' constraints allowing
the vehicle to wait if it arrives before the earliest service start time. The late service start time
window constraints must be strictly satis®ed in any feasible solution. These constraints are rep-
resented:

Ai6 li 8i 2 N : �6�
If i is a vehicle node, Eq. (6) determines if the route is completed during the normal working day.

All solutions considered during our search procedure are required to satisfy the precedence and
coupling constraints, i.e., the same vehicle that picks up supplies will deliver them to their delivery
site and the pickup site will be visited prior to the delivery site. Unlike the precedence and cou-
pling constraints, we do allow the traversal of solutions that violate the customer time window
constraints. This search capability is required by the fact that the feasibility region may be disjoint
with regard to these constraints for any reasonable neighborhood (Van der Bruggen et al., 1993).
The vehicle capacity constraints, which may also be violated during the search, are expressed:

loadsi 6C 8i 2 m� n; �7a�
where

loadsi � loadsiÿ1
� di for i6m� n and loadsk � 0 for k 2 V : �7b�
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A penalty structure for time window and load violations associated with each solution is
provided below:
1. STW totals the amount of time windows violations for the solution and is computed by

STW �
Xn�m

i�1

max 0;Ai� ÿ li�; �8�

where the expression Ai ÿ li > 0 indicates either that the vehicle arrived at customer i after the
late service time or the vehicle returned to the depot late.
2. Sld totals the amount of overload for all vehicles, k � 1; . . . ;m, used in a solution and is com-

puted by

Sld �
X
8k

max 0; loadk� ÿ C�; �9�

STW and Sld are computed for two purposes. First, the time windows and overload violations,
appropriately weighted, will be added to the objective function for infeasible solutions. Addi-
tionally, the time windows and overload violations are used in a two-level open hashing structure
to further discriminate between solutions (Horowitz et al., 1993; Carlton, 1995).

The total travel time is the sum of all inter-node distances in the solution. A solution's total
travel time is given by

Pm�mÿ1
i�0 tsi;si�1

. In our experiments, the penalty for time windows, PENTW, is
set equal to 1 to re¯ect the actual total time that the solution violates the li. The penalty for
capacity violations, PENld, is set to 100. The objective function is thus de®ned as

Zt T� � �
Xn�mÿ1

i�0

tsi;si�1
� PENTW � STW � PENld � Sld: �10�

Reactive tabu search (RTS) developed by Battiti and Tecchiolli (1994) is a robust search
technique that enhances classical tabu search (Glover, 1989, 1990; Glover and Laguna, 1997) by
allowing the algorithm to automatically adjust the search parameters based on the state and
quality of the search. Thus, rather than using constant parameter values or selecting randomly
from a set of possible parameter values, RTS enables the algorithm to choose strategies and
parameter values at each iteration. Further, RTS enables the search process not only to detect the
presence of chaotic attractor basins in the solution topology but also provides a method to escape
from such basins and continue the search in previously unvisited arenas. We assume that the
reader is familiar with the basic principles of classical tabu search and RTS.

The remainder of the paper is organized as follows: Section 2 gives a brief review of the relevant
literature associated with the PDPTW. Section 3 presents our RTS-PDPTW algorithm and gives
computational results for our algorithm when applied to a newly constructed set of benchmark
problems and shows RTS-PDPTW to be e�ective and e�cient. Section 4 gives conclusions and
recommendations for future research.

2. Literature review

Psaraftis (1980, 1983) developed the ®rst exact dynamic programming algorithms to solve
single vehicle dial-a-ride problems (DARP). Those algorithms could solve only small problem
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instances involving 10 or fewer customers. Sexton and Bodin (1985a, b) minimized customer
inconvenience in single vehicle problems by applying Benders' decomposition procedure to a
mixed binary nonlinear formulation that solves the routing and scheduling components indi-
vidually. Sexton and Choi (1986) used a two-phase routing and scheduling procedure for single
vehicle problems to minimize a linear combination of total vehicle operating time and total
customer penalty due to missing any of the time windows. Their approaches were only capable of
solving problems with up to 18 customers.

Desrosiers et al. (1986) solved the single vehicle DARPTW using a forward dynamic pro-
gramming approach that increases algorithm e�ciency by eliminating states that are incompatible
with vehicle capacity, precedence and time window constraints. Dumas et al. (1991) employed a
column generation scheme with a constrained shortest path as a subproblem. Dumas et al. (1991)
approach worked well for single vehicle DARPTW problems with up to 55 customers in the
presence of restrictive vehicle capacity constraints.

Since the problem sizes that exact methods can solve are relatively small, researchers have
developed heuristic algorithms in an attempt to solve larger sized problems encountered in
practice. Such heuristic algorithms do not seek global optimal solutions, but rather seek to quickly
provide near-optimal solutions.

Van der Bruggen et al. (1993) employ a two-phase local search algorithm to determine near-
optimal solutions for the single vehicle PDPTW. The construction phase starts with a time
window infeasible solution and reduces infeasibility at each iteration by applying an objective
function that penalizes the violation of time windows. Precedence and capacity constraints are
never violated. The construction phase returns a feasible solution and the improvement phase
continues to minimize the objective of route duration. Both phases use a variable-depth exchange
procedure based on a lexicographic neighborhood search strategy and an embedded arc-exchange
algorithm using seven variants of arc-exchanges. Van der Bruggen et al. (1993) also developed an
alternative algorithm based on a penalized simulated annealing algorithm that provided the power
to escape local optima by accepting inferior solutions and traversing infeasible regions in the state
space to ®nd other local optima.

With the exception of Dumas et al. (1991), no mention is made of the development of methods
to solve the multiple vehicle version of the PDPTW. Although Dumas et al. (1991) describe an
extension of their approach for solving multivehicle problems was described, it was not imple-
mented.

3. A reactive tabu search approach to the PDPTW

In the construction of RTS-PDPTW, we have made extensive use of the ®ndings of Carlton
(1995) and Carlton and Barnes (1996).

3.1. The feasible initial solution

A simple predecessor±successor (ps) pair insertion algorithm was used to create the initial
solution. This routine ®rst attempts to insert a ps-pair onto the ®rst vehicle's route. If more than
one feasible ps-pair placement exists, the routine ®nds the feasible insert location for the ps-pair
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that adds the least amount to the partial solution's travel time. The routine then attempts to
feasibly place subsequent ps-pairs on that same route. If there is no feasible placement, a new
vehicle route is created. The routine continues until all n/2 ps-pairs are scheduled. This procedure
provided a feasible initial solution for all the test bed problems.

3.2. Move neighborhoods

The following three move neighborhoods are hierarchically employed after the initial solution
is constructed.

3.2.1. Single paired insertion (SPI)
The ®rst move neighborhood attempts to move a ps-pair from its current vehicle route to

another vehicle route in the solution (Fig. 1). SPI performs the following process for all n/2
predecessor nodes in the current solution. Once the predecessor node is identi®ed, the method
attempts to place it on all other vehicle routes. An admissible placement is one where the pre-
decessor node satis®es both time window and capacity constraints for incorporation on the al-
ternate route. If an admissible placement is found for the predecessor node, the associated
successor node is inserted after the predecessor node in all later locations remaining on the route.
Inserting the successor node subsequent to the predecessor node may violate load and/or time
window constraints. Penalties for violating these constraints is included in computing the change
to the objective function, or move value, for each of the subsequent location.

Of the three move neighborhoods, SPI has the greatest potential for improvement in the ob-
jective function and is the only move that can reduce the number of routes, i.e., the number of
vehicles required.

While the selected SPI move can yield an infeasible solution, eliminating routes is permitted
only if the new solution is feasible. SPI is an O(n3) search neighborhood and is the most expensive
search mechanism used by the algorithm.

3.2.2. Swapping pairs between routes (SBR)
The second move neighborhood swaps (exchanges) ps-pairs between two di�erent routes

(Fig. 2). During the search process, the SPI move strategy can reach a barrier where no admissible
SPI moves exist. This situation is extremely common when time windows are tight. SBR moves
overcome this barrier and alter the search trajectory to ®nd new areas of the feasible solution
space.

Fig. 1. The SPI neighborhood search.
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In using SBR moves, no attempt is made to ®nd the best place to insert the successors after the
predecessors are swapped. This type of polishing is entrusted to the WRI neighborhood discussed
next.

The SBR move often selects a new solution that is infeasible. This is allowable because the
purpose of this search is to alter the makeup of the routes and the search is not constrained to
feasible solutions. Time window infeasible and/or capacity infeasible neighbor solutions are
critical to the search. If the new solution is infeasible, the WRI neighborhood can often make
modi®cations within a route to lessen or remove constraint violations.

3.2.3. Within route insertion (WRI)
The third move neighborhood is used to polish routes by moving individual predecessor or

successor nodes forward or backward in their respective routes (Fig. 3). The WRI move neigh-
borhood will attempt to reorder the customers to lessen or remove existing infeasibilities or to
improve the objective function for feasible solutions.

This search neighborhood is especially helpful when large time windows are prevalent. Nu-
merous feasible solutions are available when large time windows are present. Altering the cus-
tomer arrangement within the routes will explore other possible orderings to determine the best
possible order for the routes. The WRI search is further restricted by the precedence relations for
all ps-pairs and the inclusion of strong time window infeasibility considerations, i.e., when one
customer can never be feasibly serviced before (or after) another customer on the same vehicle
route (Barnes and Carlton, 1995).

Fig. 3. The WRI neighborhood search.

Fig. 2. The Swap pairs neighborhood search.
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3.3. An overview of RTS-PDPTW

As in Carlton and Barnes (1996), we blended:

1. a ®ne gauge screening to allow di�erentiation at the individual solution level and
2. a broader gauge screening by means of tabu attributes to allow di�erentiation between sets of

solutions that do not share a selected ``feature''.

The ®ne gauge di�erentiation was achieved by means of the two-level hashing scheme imple-
mented by Carlton (1995) which was a straightforward extension of the scheme described in
Carlton and Barnes (1996). The broad gauge di�erentiation was accomplished using the tabu
criteria and data structures detailed below.

RTS di�ers from classical tabu search in that RTS monitors the previously visited solutions and
dynamically adjusts the algorithm's search parameters based on its assessment of the quality of
that exploration. In this context, high quality search paths seldom revisit solutions previously
encountered. If a solution is revisited within a speci®ed number of iterations, RTS increases the
short-term memory length by a speci®ed multiplicative factor to discourage short-term cycles that
would lead to further repetitions. If no solutions are repeated during a speci®ed period, the short-
term memory length is decreased by a speci®ed multiplicative factor to encourage intensi®cation of
the search in the current locale. If too many solutions are repeated too often, this is an indication
that increasing the short-term memory length is insu�cient; something other than a simple cycling
behavior is present. Battiti and Tecchiolli (1994) assume that such behavior is caused by a chaotic
attractor basin and suggest that an ``escape'' procedure be invoked to move to a previously un-
visited portion of the solution space. The escape procedure we employed is described below.

3.3.1. The tabu attributes, tabu length and data structures
Short-term memory functions are used to determine whether a solution with a characteristic

attribute has been visited before. If the algorithm discerns that a candidate solution possesses
attributes of a recently visited solution within a speci®ed number of iterations, the ``tabu_length'',
the move is disallowed and the next candidate move is entertained. The selection of the tabu
attribute, the associated data structure and the tabu length are vital design features which con-
tribute to the e�ciency and success of the search. Whenever a move yields an objective function
value lower than previously discovered, the aspiration criteria is invoked and the tabu status of
such a move is overridden.

The algorithm uses an (N + 1) by (N + 1) array, L, to record and enforce the tabu status. The
``row'' index identi®es the customer, si. The ``column'' index depicts the solution position. The list
elements store the iteration number after which the current si can return to position i in subse-
quent iterations. Customer si can be moved directly or si might move indirectly due to direct
moves of other customers. Failure to account for both possibilities may cause ``indirect cycling''
among two or more customers. Thus, when the search determines si is to move to position j, the
value iter + tabu_length, where iter is the current iteration count, is stored in two locations.
Setting L si; j� � � L si; i� � � iter + tabu_length prohibits subsequent moves of node si to position j
and position i, respectively, for tabu_length iterations. A modi®cation is made for the WRI search
neighborhood when the move is to an adjacent later location. Since a return move is based on
node index si�1, L si�1; i� 1� � is set equal to the value iter + tabu_length.
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With these settings, if the current iteration number is less than or equal to L si; j� �, then a
proposed move of si to position j is tabu unless it leads to a globally superior objective function
value.

The SPI and SBR neighborhoods move ps-pairs between routes. It is only necessary to update
the L �i; j� array for the predecessor nodes in the ps-pairs. Possible insertion positions of the
successor node using SPI are based solely on ®nding a feasible insertion point for the predecessor.
Similarly, SBR ®nds predecessor nodes on di�ering routes and evaluates the possibility of
swapping the pairs between the routes. Setting L si; j� � � L si; i� � �L sj; i

� ��L sj; j
� �� iter

+ tabu_length, where i and j are the positions of the predecessor nodes, imposes the appropriate
tabu restrictions for the SBR neighborhood.

Based on experience with the vehicle routing problem with time windows, the initial tabu length
was set to

tabuÿlength � max�30; number of ps-pairs�: �11�

3.3.2. The hierarchy of neighborhood selection
As stated above, the RTS-PDPTW algorithm ®rst generates a feasible starting solution. Next,

all SPI moves are examined and the most favorable non-tabu move is selected. A hierarchical
multineighborhood search strategy, based on average time window length (atwl), is then used to
direct the search. The atwl

atwl �
Pn

i�1 li ÿ ei

n
�12�

is directly related to how ``tight'' the time window constraints are, i.e., the number of time window
feasible solutions available.

When atwl is greater than 25% of the average route duration length, numerous feasible solu-
tions exist and we have observed that more adjustments within routes are required to polish the
search. In this case, after performing an SPI move, the algorithm is directed to perform n/10
successive WRI moves.

If atwl is less than 25% of the average route duration length, more strong time windows in-
feasibilities will exist which will limit the number of candidate moves for within route insertions.
In this case, after performing one SPI move, perform n/25 successive WRI moves.

The tighter the time windows, the more likely there will be no admissible moves. We address
this eventuality with the following hierarchy of neighborhood selection. If WRI has no admissible
moves, the algorithm switches to SPI moves. If SPI has no admissible moves, the algorithm
switches to SBR moves. If SBR has no admissible moves, the algorithm simply ``escapes'' to the
best move available.

3.3.3. Detecting and escaping from a chaotic attractor basin
Pure local search methods become trapped by local minima. This type of barrier is easily de-

feated with simple tabu search short-term memory structures. Simple cycles, i.e., an endless
repetition of a ®nite sequence of solutions can also be overcome by a su�ciently large tabu_
length. Unfortunately, a search can be con®ned to a limited portion of the solution space char-
acterized as a chaotic attractor basin (Battiti, 1995). Such con®nements exhibit complex trajec-
tories with no clear periodicity.
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If 10 unique solutions are visited twice, the RTS-PDPTW algorithm concludes that the search is
trapped in a chaotic attractor basin and the algorithm escapes from the basin by performing
successive SBR moves to drastically alter the makeup of the solution and move the search into a
di�erent region of the solution space. Empirical studies indicated that the number of SBR moves
had to be based on the size of the problem and the number of routes in the solution. Too few SBR
moves did not su�ciently alter the makeup of the route to escape the basin; too many SBR moves
generates too much infeasibility. The number of successive swap pairs iterations performed is

min�number of vehicles used; n=10�: �13�
If the search is con®ned in another attractor basin, the algorithm reinitializes the search and
restarts from the best solution found to that point.

The RTS-PDPTW algorithm also uses the above restart mechanism when few, if any, repeat
solutions have been identi®ed during the ®rst half of the search. Empirical results indicate that, in
general, the best solutions are often found early in the search process. The results also reveal that
if the optimal solution was missed by the initial search trajectory, soon after restarting the search
at the best solution, the optimal solution was found.

3.4. Computational results

This section presents the RTS-PDPTW computational results for the new benchmark problems
when compared to the optimal VRPTW approaches of Desrochers et al. (1992) and Kohl (1995)
and to the VRPTW reactive tabu search approach of Carlton (1995).

3.4.1. The benchmark data sets
The Solomon (1987) problems have long existed as a benchmark data set for the vehicle routing

problem with time windows (VRPTW). Unfortunately, there are no clearly de®ned benchmark
problems available to test algorithms for PDPTW. For this reason, the Solomon problems, with
appropriate modi®cations, were used as the test bed for our method. The data sets are available by
anonymous ftp at www.me.utexas.edu in directory/pub/barnes.

Carlton's (1995) RTS heuristic was run on Solomon's VRPTW benchmark problems to gen-
erate the optimal solution schedules used for the PDPTW problem instances. The exact VRPTW
solutions of Desrosiers et al. (1986) and Kohl (1995) were used to validate the results from
Carlton's RTS heuristic. Given the optimal solution schedules, customers were randomly paired
within each solution while assuring that feasibility was maintained. If an odd number of cus-
tomers was present on a vehicle route, the customer without a successor was paired with a dummy
node modeled after itself. The service time for the predecessor (pickup) node is set to zero and the
dummy successor (delivery) node gains the service time.

3.4.2. Selected parameter settings for RTS-PDPTW
The RTS-PDPTW algorithm is coded in C and the runs were performed on an IBM RISC 6000

workstation. The code was compiled with the standard C compiler using the -O3 optimization
¯ag. The algorithm was run using the following parameter settings. These settings were chosen
based on the values used so successfully by Barnes and Carlton (1995), Carlton (1995) and
Carlton and Barnes (1996) on the related TSPTW and VRPTW problems:
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1. PENTW� 1.0 is the factor used to weight the total amount of infeasibility with respect to time
windows.

2. PENld� 100.0 is the factor used to weight the total amount of infeasibility with respect to load
capacity violations.

3. tabu_length�max(30, number of ps-pairs).
4. The tabu_length increase factor, set to 1.2, is the factor by which the tabu_length is increased if

a solution is revisited within the designated cycle length.
5. The tabu_length decrease factor, set to 0.9, is the factor by which the tabu_length is decreased,

when no solution has been repeated for a stated period.
6. Cycle length� 50. If a solution is revisited within 50 iterations, the tabu_length is increased by

the multiplicative factor of 1.2.

The exact algorithm by Desrochers et al. (1992) was coded in FORTRAN and executed on a
SUN SPARC 1 workstation. Kohl used a HP 9000-735 computer and coded the algorithm in
PASCAL. The VRPTW RTS (Carlton, 1995) is coded in C and executed on an IBM RISC 6000
workstation.

Despite the di�erences in computing platforms and codes, the tables in this section demonstrate
the signi®cant decrease in computation e�ort the RTS-PDPTW algorithm achieves over the
others. This decrease occurs despite the added data structure required for the modi®ed PDPTW
data sets and the additional information that must be processed resulting from this added
structure.

3.4.3. 25-customer problems
Table 1 records the results for the clustered (c1), radially dispersed (r1) and mixed (rc1) 25-

customer problem instances from Solomon. Column one identi®es the problem instance where,
for example, nc101 is the modi®cation to Solomon clustered problem c101. Columns two and
three display the minimum travel time and the number of vehicles required to achieve the travel
time. Columns four and ®ve re¯ect the number of iterations and the seconds of computation time
required to locate the RTS solution, respectively. Column six shows the deviation of the RTS
travel time from the optimum expressed as percentage. Columns seven through nine show the
optimal results obtained by Carlton's (1995) VRPTW code. 750 iterations were used for the runs
except where noted.

On average, 48 iterations were required to ®nd the best solution in a time of 0.68 s for the RTS-
PDPTW algorithm. This is an average savings of 89.7% for number of iterations and 82.7% in
time to ®nd the best solution when compared to the optimal VRPTW solutions of Carlton (1995).
The overall di�erence in solution quality from the optima was 0.0%. All 29 optimal solutions were
found.

3.4.4. 50-customer problems
Table 2 records the overall results for problems r1, c1 and rc1 for the 50-customer problem

instances for the RTS-PDPTW algorithm. Desrochers et al. (1992) claimed they were able to solve
14 of the 29 problems to optimality. Carlton (1995) used their results for comparison with his RTS
heuristic solutions. Kohl (1995) claimed that he was able to solve 27 of the 29 problems to op-
timality. However, the detailed schedules for the optimal solutions are not available. For com-
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parison purposes, where possible, the VRPTW code of Carlton (1995) was used to identify the
detailed schedules for the optimal solutions. Those schedules were used to create the PDPTW
benchmark problem sets. Table 3 displays the results for the 50-customer problems and follows
the same format used for the 25-customer problems except where noted. 750 iterations were used
for the runs.

On average, 104 iterations were required to ®nd the best solution in a time of 7.31 s for the
RTS-PDPTW algorithm. The overall di�erence in solution quality from the optima was 0.02%. 14
of 15 optimal solutions were found.

3.4.5. 100-customers
The table indicates the nine problems investigated. Desrochers et al. (1992) claim to have solved

seven problems to optimality. Carlton (1995) used their results for comparison with his RTS

Table 1

RTS-PDPTW results, 25-customers

Problem

instance

Zt(T) Vehs

used

Iter to

best

Time to

best (s)

% dev Optim

Zt(T)

Iter to

best

Comp

time (s)

nc101 2441.30 3 0 0.01 0 2441.30 2 0.07

nc102 2440.30 3 4 0.12 0 2440.30 82 0.67

nc103 2440.30 3 192 4.38 0 2440.30 671 5.93

nc104 2436.90 3 21 0.69 0 2436.90 1038 9.92

nc105 2441.30 3 0 0.01 0 2441.30 3 0.07

nc106 2441.30 3 0 0.01 0 2441.30 2 0.06

nc107 2441.30 3 0 0.02 0 2441.30 3 0.07

nc108 2441.30 3 0 0.06 0 2441.30 5 0.09

nc109 2441.30 3 0 0.10 0 2441.30 6 0.10

nr101 867.10 8 5 0.16 0 867.10 54 0.40

nr102 797.10 7 374 4.43 0 797.10 1039 8.23

nr103 704.60 5 21 0.37 0 704.60 963 8.20

nr104 666.90 4 10 0.33 0 666.90 195 1.81

nr105 780.50 6 23 0.36 0 780.50 56 0.43

nr106 715.40 5 8 0.14 0 715.40 962 7.51

nr107 674.30 4 0 0.03 0 674.30 194 1.69

nr108 647.30 4 56 1.44 0 647.30 67 0.66

nr109 691.30 5 236 2.28 0 691.30 722 5.88

nr110 694.10 5 21 0.31 0 694.10 919 8.27

nr111 678.80 4 18 0.28 0 678.80 181 1.59

nr112 643 4 110 2.86 0 643 63 0.73

nrc101 711.10 4 252 0.43 0 711.10 1077 7.26

nrc102 601.80 3 0 0.02 0 601.80 1994 16.53

nrc103 582.80 3 4 0.10 0 582.80 890 7.38

nrc104 556.60 3 0 0.05 0 556.60 659 5.55

nrc105 661.30 4 7 0.10 0 661.30 180 1.31

nrc106 595.50 3 17 0.14 0 595.50 39 0.31

nrc107 548.30 3 10 0.10 0 548.30 1412 12.37

nrc108 544.50 3 16 0.30 0 544.50 63 0.67

Avg 48 0.68 0.0 466 3.92
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heuristic solutions. Kohl (1995) reported to solve all twelve of the investigated problems to op-
timality and 14 of the 29 Solomon benchmark problems to optimality. However, the optimal
schedules for these solutions were not provided except that Kohl (1995) indicated that c105 has
the same optimal solution as ®ve of the other clustered problems; c101, c102, c106, c107 and c108.
Carlton's code was used to identify the detailed schedules for the optimal solutions for those six
clustered problems. These schedules were used to create the PDPTW benchmark problems. Ta-
ble 3 uses the same format as described previously for the 50-customer problems. 500 iterations

Table 2

RTS-PDPTW results, 50-customers

Problem

instance

Zt(T) Vehs

used(#)

Iter to

best

Time to

best (s)

% dev Results from Kohl (1995)

Zt(T) Iter to best Comp time (s)

nc101 4862.40 5 0 0.04 0 4862.40 24 2.07

nc102 4861.40 5 11 1.02 0 4861.40 38 14.89

nc103 4861.40 5 7 1.61 0 4861.40 34 26.45

nc104 4855.60 5 50 11.87 0 4855.60 53 153.56

nc105 4862.40 5 0 0.07 0 4862.40 17 1.50

nc106 4862.40 5 0 0.06 0 4862.40 19 1.34

nc107 4862.40 5 0 0.10 0 4862.40 26 5.43

nc108 4862.40 5 0 0.23 0 4862.40 23 3.53

nc109 4862.40 5 8 2.71 0 4862.40 18 3.29

nr102 1409 11 63 25.04 0 1409 15 3.50

nr106 1296.30 8 93 3.37 0.26 1293 30 14.90

nr107 1211.10 7 138 10.86 0 1211.10 255 324.50

nr110 1197 7 392 31.79 0 1197 38 27.13

nrc105 1355.30 8 538 15.97 0 1355.30 90 70.23

nrc108 1098.10 6 62 4.86 0 1098.10 82 598.90

Avg 104 7.31 0.02 50 83.41

Table 3

RTS-PDPTW results, 100-customers

Problem

instance

Zt(T) Vehs

used(#)

Iter to

best

Time to

best (s)

% dev Zt(T) by

Kohl

Iter to

best

Comp

time (s)

nc101 9827.30 10 0 0.25 0 9827.30 26 6.40

nc102 9827.30 10 0 1.91 0 9827.30 66 98.43

nc103 9829.90 10 25 16.50 0 9826.30 70 339.72

nc104 9834.70 10 300 328.87 0.12 9822.90 57 1150.80

nc105 9827.30 10 0 0.51 0 9827.30 24 6.68

nc106 9827.30 10 0 0.54 0 9827.30 33 12.37

nc107 9826.10 10 75 9.36 0 9826.10 35 12.40

nc108 9826.10 10 83 31.49 0 9826.10 39 26.77

nc109 9827.30 10 291 184.76 0 9827.30 35 32.95

Avg 86 63.80 0.001 42.78 187.39
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were run for the algorithm. On average, 86 iterations were required to ®nd the best solution in a
time of 63.8 s for the RTS-PDPTW algorithm. The overall di�erence in solution quality from the
optima was 0.0013%. 8 of 9 optimal solutions were found.

4. Conclusions

The results presented above mark the ®rst application of RTS to the PDPTW. Indeed, this is
the ®rst fully implemented method to be e�ectively applied to a set of practical sized multiple
vehicle instances of the PDPTW.

Limiting the search to precedence viable solutions makes practical the use of an expensive SPI
neighborhood search scheme. The dominance of the precedence and coupling constraints is
critical to developing appropriate search strategies and is a major factor in the marked e�ciency
exhibited by the RTS-PDPTW algorithm. The RTS-PDPTW algorithm is compared to the cur-
rent best known optimal and heuristic approaches to the VRPTW. The RTS-PDPTW algorithm
consistently returns solutions within one percent, on average, in a fraction of the computational
e�ort required by the other algorithms.

Optimal or near-optimal solutions are obtained for the modi®ed problem with relatively small
computational e�ort despite the addition of increased information to transform the VRPTW data
sets into PDPTW data sets.
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