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We present a new matrix-free method for the large-scale trust-region subproblem, assuming that the approx-
imate Hessian is updated by the L-BFGS formula with m = 1 or 2. We determine via simple formulas the
eigenvalues of these matrices and, at each iteration, we construct a positive definite matrix whose inverse
can be expressed analytically, without using factorization. Consequently, a direction of negative curvature
can be computed immediately by applying the inverse power method. The computation of the trial step is
obtained by performing a sequence of inner products and vector summations. Furthermore, it immediately
follows that the strong convergence properties of trust region methods are preserved. Numerical results are
also presented.
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1. Introduction

An important class of methods for solving both convex and nonconvex nonlinear optimization

problems is the trust-region algorithms [9,11,19,31]. They are popular due to their strong con-

vergence and robustness [9]. Under some mild conditions, it can be proved that the sequence

of points {xk} generated by a trust region algorithm converges to a point which satisfies

both the first- and the second-order necessary conditions [19,31]. At each iteration xk of a

trust-region algorithm, a trial step dk is usually obtained by solving the following quadratic

subproblem

min
d∈Rn

φk(d) = gT
k d +

1

2
dTBkd, s.t. ‖d‖ ≤ �k, (1)

where φk(d) is an approximation to the objective function f , gk = ∇f (xk), Bk ∈ R
n×n is a positive

definite or indefinite approximate Hessian of f at xk , ‖ · ‖ is the Euclidean norm, and �k > 0 is
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the so-called trust region radius. If the trial step dk results in a reduction of the objective function,

the new iterate is accepted and �k is enlarged. In the different case, the new iterate is rejected,

�k is reduced, and the subproblem (1) is resolved. The minimization of the quadratic subproblem

(1), called the trust-region subproblem (TRS), is the main computational step in a trust-region

algorithm, since it must be solved at least once in each iteration of a trust region algorithm.

Problems of the form (1) arise in many applications as regularization methods for ill-posed

problems [17], graph partitioning problems [14] and large-scale nonlinear multicommodity flow

problems [23,24] which are an important class of network optimization problems with applications

in telecommunications and transportation.

A well-known method for the solution of the TRS is the method proposed by Moré and

Sorensen [19]. A nearly exact solution d to the TRS must satisfy an equation of the form

(B + λI)d = −g, where I ∈ R
n×n is the identity matrix and λ ≥ 0 is the Lagrange multi-

plier. Moreover, B + λI must be positive semi-definite, and relation λ(‖d‖ − �) = 0 must hold

[11,19,31]. This method requires the Cholesky factorization of B + λI each time that the subprob-

lem is solved. Furthermore, a direction of negative curvature must be produced in the so-called

hard case. Therefore, a nearly exact solution can be very costly and even prohibitively expensive

when B is very large. This drawback has motivated the development of matrix-free methods that

rely on matrix–vector products [12,13,28,29,32].

The aim of this work is to avoid both the factorization and the storage of any matrix, as

well as matrix–vector products. To this end, the computation of the approximate Hessian B in

the quadratic model (1) is obtained using the L-BFGS formula [16,20], for m = 1 or 2. The

symbol m denotes the number of vector pairs {si, yi}, that are used for updating B, where

si = xi − xi−1 and yi = gi − gi−1. Studying the properties of B, we are able to obtain its char-

acteristic polynomial via simple formulas. Hence, the eigenvalues can be computed analytically,

while the inverse of (B + λI) can be expressed in a closed form. Therefore, the Cholesky fac-

torization for the solution of the linear system (B + λI)d = −g is avoided, and a direction of

negative curvature can be produced using the method of inverse power iteration [3,15]. Due

to the above reasons, the step d can be obtained by performing a sequence of inner products

and vector summations. Therefore, our approach can be applied for the solution of large scale

problems.

The paper is organized as follows. In Section 2 we discuss the TRS. In Section 3 we study the

properties of the updated matrix while in Section 4 we apply our results in the computation of

the step. In Section 5 we present an algorithm for the solution of the TRS that incorporates both

the standard and the hard case. We present some preliminary numerical results in Section 6 and

some conclusions in Section 7.

Notation. Throughout the paper ‖ · ‖ denotes the Euclidean norm and n the dimension of the

problem. The Moore–Penrose generalized inverse of a matrix A is denoted by A†. For a symmetric

A ∈ R
n×n, assume that λ1 ≤ · · · ≤ λn are its eigenvalues sorted into nondecreasing order. We

indicate that a matrix is positive semidefinite (positive definite) by A ≥ 0 (A > 0, respectively).

The L-BFGS matrix is denoted by B(m).

2. The subproblem

A global solution to the TRS (1) is characterized by the following well-known theorem [11,19,31]:

THEOREM 2.1 A feasible vector d∗ is a solution to Equation (1) with corresponding Lagrange mul-

tiplier λ∗ if and only if d∗, λ∗ satisfy (B + λ∗I )d∗ = −g, where B + λ∗I is positive semidefinite,

λ∗ ≥ 0, and λ∗(� − ‖d∗‖) = 0.
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The above result provides the theoretical basis for our step computing function d , and it can be

analysed in the following cases:

1. If λ1 > 0 and ‖B−1g‖ ≤ �, then λ∗ = 0 and d∗ = B−1g.

2. If λ1 > 0 and ‖B−1g‖ > �, then for the unique λ∗ > 0 such that ‖(B + λ∗I )−1g‖ = �,

d∗ = −(B + λ∗I )−1g.

3. (a) If λ1 ≤ 0 and there is a λ∗ > −λ1 such that ‖(B + λ∗I )−1g‖ = �, then d∗ = −(B +

λ∗I )−1g.

(b) Otherwise, λ∗ = −λ1 and d∗ = −(B − λ1I )†g + τu1, where τ ∈ R is such that ‖ − (B −

λ1I )†g + τu1‖ = � and u1 is an eigenvector that corresponds to λ1, such that ‖u1‖ = 1.

Moré and Sorensen [19] have shown that the choice of τ that ensures ‖d‖ = � is

τ =
�2 − ‖p‖2

pT u1 + sgn(pTu1)
√

(pTu1)2 + �2 − ‖p‖2
, (2)

where p = −(B − λ1I )†g. The case 3(b) occurs when B is indefinite and g is orthogonal to every

eigenvector corresponding to the most negative eigenvalue λ1 of the matrix. This case is known as

the hard case. In this case λ∗ = −λ1, (B − λ1I ) is singular, and a direction of negative curvature

must be produced in order to ensure that ‖d‖ = �. When λ∗ ∈ (−λ1, ∞) (the standard case) and

λ∗ 	= 0, the TRS (1) has a solution on the boundary of its constraint set, i.e. ‖d∗‖ = �, and the

given n-dimensional constrained optimization problem is reduced into a zero-finding problem in a

single scalar variable λ, namely, ‖d(λ)‖ − � = 0, where d(λ) is a solution of (B + λI)d = −g.

Moré and Sorensen [19] have proved that it is more convenient to solve the equivalent equation

(secular equation) ψ(λ) ≡ (1/�) − (1/‖d(λ)‖) = 0 that exploits the rational structure of ‖d(λ)‖2

when Newton’s method is applied. The resulting iteration is

λℓ+1 = λℓ +
‖d(λ)‖

‖d(λ)‖′

(

� − ‖d(λ)‖

�

)

, ℓ = 0, 1, 2, . . . , (3)

where the derivative of ‖d(λ)‖ is of the form

‖d(λ)‖′ = −
d(λ)T(B + λI)−1d(λ)

‖d(λ)‖
.

An important ingredient of Newton’s iteration (3) is the safeguarding required to ensure that a

solution is found. The safeguarding depends on the fact that ψ is convex and strictly decreasing in

(−λ1, ∞). It ensures that −λ1 ≤ λℓ, and therefore B + λℓI is always semipositive definite [19].

Initial bounds for λ have also been proposed by Nocedal and Yuan [22]. The following lemma

gives the bounds of λ, when the TRS (1) is solved exactly.

LEMMA 2.2 If vector d∗ is a solution of Equation (1), ‖d∗‖ = �, and λ∗ ≥ 0 satisfies

(B + λ∗I )d∗ = −g, with (B + λ∗I ) ≥ 0 then 0 ≤ λ∗ ≤ ‖g‖/� − λ1, where λ1 is the smallest

eigenvalue of B.

For an approximate solution to Equation (1), ‖B‖ + (1 + ǫ)‖g‖/� forms another upper bound

for λ, where ǫ > 0 is a small number that ensures that B + λI is positive definite [22]. Therefore,

λ can be bounded as

max(0, −λ1 + ǫ) ≤ λ ≤ ‖B‖ + (1 + ǫ)‖g‖/�. (4)
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3. The updated matrix

The computation of the matrix B ≈ ∇2f (x) in the quadratic model (1) is accomplished using the

L-BFGS philosophy [16,20] with m = 1 or 2. More analytically, Bk is updated by means of the

BFGS formula

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

, (5)

using information from the previous (m = 1) or the last two previous (m = 2) iterations. Also, it

is known that the inverse of Bk+1 is given by the expression

(Bk+1)
−1 ≡ Hk+1 = Hk −

Hkyks
T
k + sky

T
k Hk

sT
k yk

+
sks

T
k

sT
k yk

. (6)

We consider the diagonal matrix B
(0)
k = (1/θk)I , θk ∈ R, as the initial matrix B

(0)
k . Motivated by

the work of Barzilai and Borwein [4] and Birgin and Martínez [5], we use the spectral parameter

θk defined as [6,26,27]

θk =
sT
k−1sk−1

sT
k−1yk−1

.

The above parameter is actually the inverse of the Rayleigh quotient sTGs/sTs, which lies between

the largest and the smallest eigenvalues of the average Hessian G.

Observing the updating scheme, we can see that Bk is updated by the addition of two rank-one

matrices. The following lemma, due to Wilkinson [33, pp. 94–98], states that the eigenvalues of a

matrix which is updated by a rank-one matrix interlace with the eigenvalues of the original matrix.

LEMMA 3.1 If symmetric matrices A and A∗ differ by a matrix of rank-one, then their eigenvalues

λ and λ∗ interpolate each other in a weak sense. In particular, if A∗ = A + σvvT, where σ is

scalar, λn ≥ λn−1 ≥ · · · ≥ λ1 and λ∗
n ≥ λ∗

n−1 ≥ · · · ≥ λ∗
1, then

(1) if σ > 0, λ∗
n ≥ λn ≥ λ∗

n−1 ≥ λn−1 ≥ · · · ≥ λ∗
1 ≥ λ1

(2) if σ < 0, λn ≥ λ∗
n ≥ λn−1 ≥ λ∗

n−1 ≥ · · · ≥ λ1 ≥ λ∗
1.

Moreover, it is known that the trace and the determinant of the BFGS matrices are given by the

formulas [8,21]

tr(Bk+1) = tr(Bk) −
‖Bksk‖

2

sT
k Bksk

+
‖yk‖

2

sT
k yk

, det(Bk+1) = det(Bk)
sT
k yk

sT
k Bksk

, (7)

respectively. Based on both Lemma 3.1 and relations (7), we are able to analyse the eigenstructure

of the L-BFGS matrices for m = 1 and 2. For the remaining of the paper we assume that B is

invertible.

3.1 1BFGS update

We consider the case where the BFGS matrix is updated using information from the previous

iteration (m = 1). Relation (5) yields

B
(1)
k+1 =

1

θk+1

I −
sks

T
k

θk+1s
T
k sk

+
yky

T
k

sT
k yk

, (8)

where B
(0)
k+1 = (1/θk+1)I .
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LEMMA 3.2 Suppose that one update is applied to the symmetric matrix B(0) using the vector

pair {sk, yk} and the BFGS formula. The characteristic polynomial of the resulting matrix B
(1)
k+1

has the general form

p1(λ) =

(

λ −
1

θk+1

)n−2
(

λ2 −
ak

θk+1

λ +
1

θ2
k+1

)

, (9)

where ak = 1 + θk+1(y
T
k yk/s

T
k yk). Moreover, if ak > 2, then λ1 < 1/θk+1 < λn, where λ1 and λn

are the smallest and largest eigenvalues of B
(1)
k+1, respectively.

Proof First we show that B
(1)
k+1 has at most two distinct eigenvalues. To this end, we consider the

matrix B̄ = (1/θk+1)I − sks
T
k /(θk+1s

T
k sk) with rank (n − 1). Using Lemma 3.1, it is easy to see

that B̄, besides the zero eigenvalue, has one more eigenvalue equals to 1/θk+1 of multiplicity (n −

1). If B
(0)
k+1 is positive definite, then the addition of the term yky

T
k /sT

k yk on B̄ yields (cf. Lemma 3.1)

λB(1)

n ≥
1

θk+1

≥ λB(1)

n−1 ≥
1

θk+1

≥ · · · ≥ λB(1)

2 ≥
1

θk+1

≥ λB(1)

1 ≥ 0;

where λB(1)

i denotes the eigenvalues of B
(1)
k+1, otherwise,

0 ≥ λB(1)

n ≥
1

θk+1

≥ λB(1)

n−1 ≥
1

θk+1

≥ · · · ≥ λB(1)

2 ≥
1

θk+1

≥ λB(1)

1 .

In both cases, it is obvious that λB(1)

2 = · · · = λB(1)

n−1 = 1/θk+1, and

λB(1)

1 ≤
1

θk+1

≤ λB(1)

n . (10)

Relation (10) implies that B
(1)
k+1 has at most two distinct eigenvalues and one eigenvalue equal

to 1/θk+1 of multiplicity at least (n − 2). Denoting by λ1 and λ2 the two unknown distinct

eigenvalues, the characteristic polynomial of B
(1)
k+1 has the form p1(λ) = (λ − 1/θk+1)

n−2[λ2 −

(λ1 + λ2)λ + λ1λ2]. Since tr(B
(1)
k+1) = λ1 + λ2 + (n − 2)/θk+1, and det(B

(1)
k+1) = λ1λ2/θ

n−2
k+1 ,

from Equation (7) we obtainλ1 + λ2 = ak + 2/θk+1, whileλ1λ2 = 1/θ2
k+1. Consequently, relation

(9) follows immediately.

Note that the parameter ak is bounded from below by two, since

ak = 1 + θk+1

yT
k yk

sT
k yk

= 1 +
‖sk‖

2‖yk‖
2

(sT
k yk)2

= 1 +
1

cos2 φ
≥ 2, (11)

where φ is the angle between sk and yk . If ak = 2, then the characteristic polynomial is reduced

to p1(λ) = (λ − 1/θk+1)
n; thus B

(1)
k+1 = (1/θk+1)I = B

(0)
k+1. In the different case (when ak > 2),

the characteristic polynomial becomes p1(λ) = (λ − 1/θk+1)
n−2(λ − λ1)(λ − λ2), where the

eigenvalues λ1,2 = (ak ±
√

a2
k − 4)/(2θk+1) are distinct. From inequalities (10) follows that

min(λ1, λ2) < (1/θk+1) < max(λ1, λ2). �

LEMMA 3.3 Let � be the set of eigenvalues of B
(1)
k+1 with opposite signs. Then, for any λ ∈ R \ �,

the matrix (B
(1)
k+1 + λI) is invertible and its inverse can be expressed by the following closed-form

(B
(1)
k+1 + λI)−1 =

1

γ (λ)

2
∑

i=0

(−1)iγi(λ)(B
(1)
k+1)

i, (12)

where the quantities γ = (1/θk+1 + λ)(λ2 + akλ/θk+1 + 1/θ2
k+1), γ2 = 1, γ1 = λ +

(ak + 1)/θk+1, and γ0 = λ2 + (ak + 1)λ/θk+1 + (ak + 1)/θ2
k+1 are functions of λ.
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Proof Let λi, i = 1, . . . , n be the eigenvalues of B
(1)
k+1 and λ ∈ R. If λ ∈ �, obviously the matrix

B
(1)
k+1 + λI = B

(1)
k+1 − λiI is singular. Hence, for B

(1)
k+1 + λI being invertible, relation λ ∈ R \ �

must hold. Without loss of generality, we assume that B
(1)
k+1 has two distinct eigenvalues λ1

and λ2. Consequently, (B
(1)
k+1 + λI) has also two distinct eigenvalues, λ1 + λ and λ2 + λ. Using

Lemma 3.2, after some algebraic calculations, we obtain the characteristic polynomial of (B
(1)
k+1 +

λI), which is

q(x) = (x − c)n−2(x2 − c1x + c0),

where c = 1/θk+1 + λ, c1 = ak/θk+1 + 2λ, and c0 = λ2 + akλ/θk+1 + 1/θ2
k+1. Therefore, its

minimal polynomial is qm(x) = (x − c)(x2 − c1x + c0). From the Caley–Hamilton theorem, we

have that

qm(B
(1)
k+1 + λI) = 0.

Multiplying both sides of the above equation with (B
(1)
k+1 + λI)−1, after some calculations, we

obtain relation (12). �

It is easy to see that in the special case where ak = 2, Equation (12) is reduced to (B
(1)
k+1 +

λI)−1 = (1/θk+1 + λ)−1I .

3.2 2BFGS update

When m = 2, the matrix B
(2)
k+1 = B

(1)
k − (B

(1)
k sks

T
k B

(1)
k /sT

k B
(1)
k sk) + (yky

T
k /sT

k yk), contains

curvature information from the two previous iterations.

LEMMA 3.4 Suppose that two updates are applied to the symmetric matrix B(0) using the vector

pairs {si, yi}
k
i=k−1 and the BFGS formula. The characteristic polynomial of the resulting matrix

B
(2)
k+1 has the general form

p2(λ) =

(

λ −
1

θk

)n−4

(λ4 − β3λ
3 + β2β0λ

2 − β1β0λ + β0), (13)

where the coefficients βi, i = 0, . . . , 3 are

β0 =
1

θ4
k

sT
k yk

sT
k B

(1)
k sk

, β1 = (ak−1 + 2)θk − 2
sT
k wk

sT
k yk

+ bkθk+1,

β2 = θk(β1 − ak−1θk)(ak−1 + 2) − 2θ2
k +

(

sT
k wk

sT
k yk

)2

− θk+1

wT
k wk

sT
k yk

+ 2
sT
k Hkwk

sT
k yk

− bk

sT
k Hksk

sT
k yk

,

β3 =
ak−1 + 2

θk

−
‖B

(1)
k sk‖

2

sT
k B

(1)
k sk

+
‖yk‖

2

sT
k yk

, (14)

with Hk = (B
(1)
k )−1, wk = Hkyk , and bk = 1 + yT

k wk/s
T
k yk .

Proof We first show that B
(2)
k+1 has at most four distinct eigenvalues. Without loss of generality,

we assume that B
(1)
k and B

(2)
k+1 are positive definite matrices (in the different case, the proof
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follows by similar arguments). Let λB(1)

i and λB̄
i be the eigenvalues of B

(1)
k and B̄ = B

(1)
k −

(B
(1)
k sks

T
k B

(1)
k /sT

k B
(1)
k sk), respectively. Since λB(1)

2 = · · · = λB(1)

n−1 = 1/θk , by Lemma 3.1 we have

that

λB(1)

n ≥ λB̄
n ≥

1

θk

≥ λB̄
n−1 ≥

1

θk

≥ · · · ≥
1

θk

≥ λB̄
2 ≥ λB(1)

1 ≥ λB̄
1 .

The addition of the term yky
T
k /sT

k yk to the matrix B̄ yields

λB(2)

n ≥ λB̄
n ≥ λB(2)

n−1 ≥
1

θk

≥ · · · ≥
1

θk

≥ λB(2)

2 ≥ λB̄
2 ≥ λB(2)

1 ≥ λB̄
1 ,

where λB(2)

i are the eigenvalues of B
(2)
k+1. The above inequalities imply that

λB(2)

n ≥ λB(2)

n−1 ≥
1

θk

≥ λB(2)

2 ≥ λB(2)

1 , (15)

and thus, the matrix B
(2)
k+1 has at most four distinct eigenvalues. If we denote by λ1, λ2, λ3, and λ4

the four unknown eigenvalues, the characteristic polynomial of B
(2)
k+1 takes the form

p2(λ) =

(

λ −
1

θk

)n−4

(λ4 − c3λ
3 + c2λ

2 − c1λ + c0),

where

c3 =

4
∑

i=1

λi, c2 =
∑

i,j

i<j

λiλj , c1 =
∑

i,j,ℓ

i<j<ℓ

λiλjλℓ, and c0 =

4
∏

i=1

λi .

Moreover,
∏4

i=1 λi = det(B
(2)
k+1)θ

n−4
k and

∑4
i=1 λi = tr(B

(2)
k+1) − ((n − 4)/θk). Utilizing

Equation (7), after some algebraic manipulations, we yield the expression in Equation (13) with

the parameters in Equation (14). �

In case where B
(2)
k+1 has four distinct eigenvalues, these can be computed analytically by solv-

ing the quartic equation λ4 − β3λ
3 + β2β0λ

2 − β1β0λ + β0 = 0, using standard methods [7,10].

However, the exact number of the distinct eigenvalues is strongly depends on the way the vector

pairs {si, yi}
k
i=k−1 are related. Their relation can be specified by the values of ai . If ai = 2 the

vectors si, yi are collinear, else if ai > 2 the vectors si, yi are linearly independent. The follow-

ing proposition establishes sufficient conditions for the exact number of the distinct eigenvalues

of B
(2)
k+1.

PROPOSITION 3.5 Let the symmetric matrix B
(2)
k+1 ∈ R

n×n. Then,

(1) If ak−1 = 2, B
(2)
k+1 has at most two distinct eigenvalues. Moreover,

(a) if ak > 2, then two distinct eigenvalues exist,

(b) if ak = 2 and θk 	= θk+1, then only one distinct eigenvalue exists, and

(c) if ak = 2 and θk = θk+1, then all the eigenvalues are equal to 1/θk .

(2) If ak−1 > 2, B
(2)
k+1 has at least three distinct eigenvalues. Moreover,

(a) if ak = 2, then only three distinct eigenvalues exist, and

(b) if ak > 2, then only four distinct eigenvalues exist.
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Proof Assume that ak−1 = 2. From Lemma 3.2 we have that B
(1)
k = (1/θk)I and consequently

B
(2)
k+1 = (1/θk)I − (1/θk)(sks

T
k /sT

k sk) + (yky
T
k /sT

k yk). In this case the characteristic polynomial

of B
(2)
k+1 becomes

p2(λ) =

(

λ −
1

θk

)n−2 [

λ2 −

(

ak − 1

θk+1

+
1

θk

)

λ +
1

θkθk+1

]

. (16)

In view of Equation (16), it follows immediately that B
(2)
k+1 has at most two distinct eigenvalues.

Consider now the quadratic equation

λ2 −

(

ak − 1

θk+1

+
1

θk

)

λ +
1

θkθk+1

= 0,

which has the following two solutions

λ1,2 =
θk+1 + θk(ak − 1) ±

√

(θk − θk+1)2 + θk(ak − 2)(akθk + 2θk+1)

2θkθk+1

.

Let ak > 2 and suppose that either λ1 or λ2 equals to 1/θk . Solving the equations λi − 1/θk = 0

with respect to ak , we obtain ak = 2, which is a contradiction. Thus, when ak > 2 the matrix has

exactly two distinct eigenvalues. When ak = 2, the characteristic polynomial becomes p2(λ) =

(λ − 1/θk)
n−1(λ − 1/θk+1). Therefore, in the case where θk 	= θk+1, the only distinct eigenvalue

is 1/θk+1; otherwise B
(2)
k+1 does not have distinct eigenvalues.

Assume now that ak−1 > 2. In Lemma 3.2 we have proved that in this case, B
(1)
k has two distinct

eigenvalues. Thus, the matrix B̄ = B
(1)
k − (B

(1)
k sks

T
k B

(1)
k /sT

k B
(1)
k sk), besides the zero eigenvalue,

has two more distinct eigenvalues. Consequently, B
(2)
k+1 has at least three distinct eigenvalues. If

ak = 2, then sk = θk+1yk and B
(2)
k+1 becomes

B
(2)
k+1 = B

(1)
k −

B
(1)
k yky

T
k B

(1)
k

yT
k B

(1)
k yk

+
yky

T
k

θk+1y
T
k yk

.

Hence, B̄ = B
(1)
k − (B

(1)
k yky

T
k B

(1)
k )/(yT

k B
(1)
k yk), and therefore, the addition of yky

T
k /(θk+1y

T
k yk)

changes the zero eigenvalue of B̄ to 1/θk+1 and leaves the others unchanged. Thus, B
(2)
k+1 has as

many distinct eigenvalues as B̄, i.e. three. Since one of them is 1/θk+1, utilizing Lemma 3.4, the

characteristic polynomial of B
(2)
k+1 becomes

p2(λ) =

(

λ −
1

θk

)n−3 (

λ −
1

θk+1

)

(λ2 − c1λ + c2),

where c1 = ak−1/θk − ‖B
(1)
k yk‖

2/yT
k B

(1)
k yk and c2 = yT

k yk/(θ
2
k θk+1y

T
k B

(1)
k yk). By solving the

quadratic equation λ2 − c1λ + c2 = 0, we obtain the other two distinct eigenvalues. Finally, if

ak > 2, then yk is not an eigenvector of B̄ = B
(1)
k − (B

(1)
k sks

T
k B

(1)
k /sT

k B
(1)
k sk). Hence, the addition

of the term yky
T
k /sT

k yk results one more distinct eigenvalue for B
(2)
k+1. �

LEMMA 3.6 If B
(2)
k+1 has at least two distinct eigenvalues, then

λ1 < 1/θk < λn, (17)

where λ1 and λn are the smallest and largest eigenvalues of B
(2)
k+1, respectively.
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Proof When B
(2)
k+1 has at least three distinct eigenvalues, from relation (15) it is evident that

Equation (17) holds. Now, if B
(2)
k+1 has two distinct eigenvalues, then one pair of the vector set

{(sk−1, yk−1), (sk, yk)} must be collinear. Due to Proposition 3.5, these two vectors are sk−1 and

yk−1, which implies that B
(1)
k has no distinct eigenvalues. Under these circumstances, Lemma 3.1

implies relation (17), which completes the proof. �

LEMMA 3.7 Let � be the set of eigenvalues of B
(2)
k+1 with opposite signs. For any λ ∈ R \ �, the

matrix (B
(2)
k+1 + λI) is invertible, and its inverse can be expressed by the following closed-form

(B
(2)
k+1 + λI)−1 =

1

ν(λ)

4
∑

i=0

(−1)iνi(λ)(B
(2)
k+1)

i, (18)

where ν4 = 1, ν3 = λ + β3 + 1/θk, ν2 = λν3 + β2β0 + β3/θk, ν1 = λν2 + β1β0 + β2β0/θk, ν0 =

λν1 + β0 + β0β1/θk , and ν = λν0 + β0/θk are functions of λ, while the parameters β0, β1, β2

and β3 are defined as in Lemma 3.4.

Proof Obviously, as in the proof of Lemma 3.3, for B
(2)
k+1 + λI being invertible, relation λ ∈

R \ � must hold. From Proposition 3.5, we know that B
(2)
k+1 has at most four distinct eigenvalues,

λi, i = 1, . . . , 4. Thus, (B
(2)
k+1 + λI) has also at most four distinct eigenvalues, λi + λ. Utilizing

Lemma 3.4, the characteristic polynomial of (B
(2)
k+1 + λI) takes the form

q(x) = (x − c)n−4(x4 − c3x
3 + c2x

2 − c1x + c0),

where c = θ−1
k + λ, c3 = 4λ + β3, c2 = 6λ2 + 3β3λ + β2β0, c1 = 4λ3 + 3β3λ

2 + 2β2β0λ + β1

β0, and c0 = λ4 + β3λ
3 + β2β0λ

2 + β1β0λ + β0, where the constants βi are defined in

Lemma 3.4. In the general case, its minimal polynomial is

qm(x) = (x − c)(x4 − c3x
3 + c2x

2 − c1x + c0).

Using the Caley–Hamilton theorem, we have that

qm(B
(2)
k+1 + λI) = 0.

Multiplying both sides of the above equation with B
(2)
k+1 + λI , after some calculations, we obtain

Equation (18). �

4. The step computing function

In Section 2 we have seen that when the Lagrange multiplier λ ∈ (−λ1, ∞) (standard case), then

d(λ) = −(B + λI)−1g. In the hard case, a negative curvature direction must be computed in order

to ensure that ‖d‖ = �. In the case where λ1 is a multiple eigenvalue, due to the structure of B,

this computation is achieved by simple algebraic computation. In the different case, we are able

to find an analytical expression for the desirable eigenvector using the inverse power iteration

method [3, pp. 611].

Given a nonzero starting vector u(0), inverse iteration generates a sequence of vectors u(i),

generated recursively by the formula

u(i) = (B − λ̂I )−1 u(i−1)

‖u(i−1)‖
,

i ≥ 1, where λ̂ = λ + ǫ, λ is a distinct eigenvalue, and ǫ → 0. The sequence of iterates u(i)

converges to an eigenvector associated with an eigenvalue closest to λ̂. Usually, the starting vector
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u(0) is chosen to be the normalized vector (1, 1, . . . , 1)T. Moreover, if λ is an exact eigenvalue of

B, this method converges in a single iteration [15], providing a closed form for the corresponding

eigenvector.

4.1 Computation of the step using the 1BFGS update

4.1.1 The standard case

First we consider the standard case, where λ ∈ (−λ1, ∞). When ak > 2, the trial step is computed

using Equation (12), which yields dk+1(λ) = − 1
γ (λ)

∑2
i=0(−1)iγi(λ)(B

(1)
k+1)

igk+1. The vectors

B
(1)
k+1gk+1 and (B

(1)
k+1)

2gk+1 are computed by the iterative scheme

vi+1 ≡ B
(1)
k+1vi =

1

θk+1

vi −
sT
k vi

θk+1s
T
k sk

sk +
yT

k vi

sT
k yk

yk, i = 0, 1, (19)

with v0 = gk+1. After some calculations, we obtain the general form of the trial step:

dk+1(λ) = −γg(λ)gk+1 + γs(λ)sk − γy(λ)yk, (20)

where

γg(λ) =
1 − γ1(λ)θk+1 + γ0(λ)θ2

k+1

γ (λ)θ2
k+1

,

γs(λ) =
[1 − γ1(λ)θk+1]s

T
k gk+1 + θk+1y

T
k gk+1

γ (λ)θ2
k+1s

T
k sk

, and

γy(λ) =
[1 − γ1(λ)θk+1 + ak]θk+1y

T
k gk+1 − sT

k gk+1

γ (λ)θ2
k+1s

T
k yk

.

Moreover, for λ = 0, we yield γg(0) = θk+1, γs(0) = (θk+1y
T
k gk+1 − aks

T
k gk+1)/s

T
k yk , and

γy(0) = −θk+1s
T
k gk+1/s

T
k yk . Therefore,

dk+1(0) ≡ −(B
(1)
k+1)

−1gk+1 = −γg(0) gk+1 + γs(0)sk − γy(0)yk. (21)

When ak = 2, from Lemma 3.2 we have that B
(1)
k+1 = (1/θk+1)I . Hence

dk+1(λ) = −

(

1

θk+1

+ λ

)−1

gk+1. (22)

For the computation of the Lagrange multiplier λ we can follow the ideas described in Moré

and Sorensen [19] by applying Newton’s method as given in Equation (3). It can be easily verified

that the resulting iteration is

λℓ+1 = λℓ +
‖dk+1(λ)‖2

d(λ)T(B
(2)
k+1 + λI)−1d(λ)

(

‖dk+1(λ)‖ − �

�

)

, (23)

for ℓ = 0, 1, 2, . . .. Denoting by � = d(λ)T(B
(2)
k+1 + λI)−1d(λ) the denominator in (23), using

Equation (12) we yield

� = −
γ1(λ)

γ (λ)
dk+1(λ)TB

(1)
k+1dk+1(λ) +

γ0(λ)

γ (λ)
‖dk+1(λ)‖2 +

‖B
(1)
k+1dk+1(λ)‖2

γ (λ)
.
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Since B
(1)
k+1dk+1(λ) = −[λdk+1(λ) + gk+1] holds, the above relation can be written as

� =

2
∑

i=0

γi(λ)λi

γ (λ)
‖dk+1(λ)‖2 +

2
∑

i=1

iγi(λ)λi−1

γ (λ)
dk+1(λ)Tgk+1 +

‖gk+1‖
2

γ (λ)
. (24)

In the special case where ak = 2, utilizing Equation (22), relation (24) is reduced to

� =

(

1

θk+1

+ λ

)−3

‖gk+1‖
2. (25)

4.1.2 The hard case

We recall that in the hard case, g is perpendicular to all eigenvectors corresponding to λ1,

λ∗ = −λ1, and a direction of negative curvature must be produced. When ak > 2, from Lemma 3.2

we know that λ1 is a distinct eigenvalue. In this case, using the inverse iteration along with

Equation (12) we have that

û1 =

2
∑

i=0

(−1)iγi(λ̂)(B
(1)
k+1)

i u

γ (λ̂)
= −γu(λ̂)u + γus(λ̂)sk − γuy(λ̂)yk, (26)

where λ̂ = −λ1 + ǫ, u = u(0)/‖u(0)‖,

γu(λ̂) =
1 − γ1(λ̂)θk+1 + γ0(λ̂)θ2

k+1

γ (λ̂)θ2
k+1

,

γus(λ̂) =
[1 − γ1(λ̂) θk+1]s

T
k u + θk+1y

T
k u

γ (λ̂) θ2
k+1s

T
k sk

, and

γuy(λ̂) =
[1 − γ1(λ̂) θk+1 + ak]θk+1y

T
k u − sT

k u

γ (λ̂) θ2
k+1s

T
k yk

.

Therefore, u1 = û1/‖û1‖ and the trial step is computed by the formula

dk+1 = −γg(λ̂)gk+1 + γs(λ̂)sk − γy(λ̂)yk + τu1,

where τ is obtained by Equation (2). In case where ak = 2, using the eigendecomposition of B(1)

we have that B(1) = U�UT, where U = I and � = diag(λ1, λ1, . . . , λ1). Easily can be verified

that an eigenvector corresponding to λ1 is u1 = e1 = (1, 0, . . . , 0)T.

4.2 Computation of the step using the 2BFGS update

4.2.1 The standard case

When λ ∈ (λ1, ∞) and the 2BFGS update is performed, the trial step d(λ) = −(B + λI)−1g can

be computed from Equation (18), using the following procedure:

PROCEDURE 4.1 Compute d .

d(4) = g;

for j = 4, . . . , 1 do
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v ← B(2)d(j);

d(j−1) ← v + (−1)j−1νj−1(λ)g;

end for

return −d(0)/ν(λ);

The vector v ∈ R
n is computed by the formula

v ≡ B
(2)
k+1d

(j) = B
(1)
k d(j) −

sT
k B

(1)
k d(j)

sT
k B

(1)
k sk

B
(1)
k sk +

yT
k d(j)

sT
k yk

yk,

while the vectors B
(1)
k d(j) and B

(1)
k sk are computed by means of (19), substituting vi with d(j) and

sk , respectively. In case where λ = 0, then

dk+1(0) ≡ −Hk+1gk+1 = −Hkgk+1 +
wT

k gk+1 − bks
T
k gk+1

sT
k yk

sk +
sT
k gk+1

sT
k yk

wk, (27)

where Hk+1 = (B
(2)
k+1)

−1 and Hk = (B
(1)
k )−1. If ak−1 = ak = 2, then B

(2)
k+1 takes the form

B
(2)
k+1 =

1

θk

I +

(

1

θk+1

−
1

θk

)

yky
T
k

yT
k yk

, (28)

and the trial step is obtained by the following equation:

dk+1(λ) = −

[(

λ +
1

θk

+
1

θk+1

)

I − B
(2)
k+1

]

gk+1

(λ + 1/θk) (λ + 1/θk+1)
.

Using the 2BFGS update, the expression � = d(λ)T(B + λI)−1d(λ) of the denominator in

Newton’s iteration (23) becomes

� =
1

ν(λ)

{

4
∑

i=0

[λiνi(λ)]‖dk+1(λ)‖2 +

4
∑

i=1

[iλi−1νi(λ)]dk+1(λ)Tgk+1

+

4
∑

i=2

[(i − 1)λi−2νi(λ)]‖gk+1‖
2 −

4
∑

i=3

[(i − 2)λi−3νi(λ)]gT
k+1B

(2)
k+1gk+1

+‖B
(2)
k+1gk+1‖

2

}

.

When ak−1 = ak = 2, the above equation yields

� =
[2λ + (1/θk) + (1/θk+1)]‖dk+1(λ)‖2 + dk+1(λ)Tgk+1

[λ + (1/θk))(λ + (1/θk+1)]
.

4.2.2 The hard case

Proposition 3.5 along with Lemma 3.6 reveals that if λ1 is a distinct eigenvalue of B(2), then either

B(2) has at least two distinct eigenvalues or it has exactly one equals to λ1 = 1/θk+1. In the first
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case (at least two distinct eigenvalues), we can find the eigenvector corresponds to λ1 by applying

the inverse iteration. The resulting eigenvector is u1 = û1/‖û1‖, where

û1 =

[

4
∑

i=0

(−1)iνi(λ̂)(B
(2)
k+1)

i

]

u

ν(λ̂)
, (29)

λ̂ = −λ1 + ǫ and u = (1, . . . , 1)T/‖u‖. The computation of û1 can be obtained using Proce-

dure 4.1. In the latter case (one distinct eigenvalue), from Equation (28) it is straightforward to

see that u1 = yk/‖yk‖.

When λ1 is a multiple eigenvalue, then ak−1 = ak = 2 and λ1 = 1/θk . If θk 	= θk+1, from

Equation (28) easily can be verified that the resulting eigenvector is of the form u1 = û1/‖û1‖,

where

û1 =

(

−
y

(n)
k

y
(1)
k

, 0, . . . , 0, 1

)T

, (30)

and y
(i)
k denotes the ith component of yk . In contrast, if θk = θk+1, then u1 = e1 = (1, 0, . . . , 0)T.

5. The trial step algorithm

In the previous section we have discussed how Newton’s method can be applied for solving

the TRS (1), when the approximate Hessian is computed by the L-BFGS formula for m = 1

or 2. The following algorithm is a unified algorithm that incorporates both the standard and

the hard case and computes an approximate solution of the subproblem (1). The safeguarding

scheme required for Newton’s iteration (23) uses the parameters λL and λU such that [λL, λU]

is an interval of uncertainty which contains the optimal λ∗. From Equation (4) we have that

λL = max(0, −λ1 + ǫ), and λU = max1≤i≤n |λi | + (1 + ǫ)‖g‖/�. Clearly, the lower bound λL

is greater than −λ1, which ensures that B(m) + λI is always positive definite.

ALGORITHM 1 Computation of the trial step.

Step 1 : Given m ∈ {1, 2}, compute the eigenvalues λi of B(m); given ǫ → 0+, set λL :=

max(0, −λ1 + ǫ) and λU := max |λi | + (1 + ǫ)‖g‖/�.

Step 2 : If λ1 > 0, then initialize λ by setting λ := 0 and compute d(λ); if ‖d‖ ≤ � stop; else

go to Step 4.

Step 3 : Initialize λ by setting λ := −λ1 + ǫ such that B + λI is positive-definite and compute

d(λ):

(a) if ‖d‖ > � go to Step 4;

(b) if ‖d‖ = � stop;

(c) if ‖d‖ < � compute τ and u1 such that ‖ − (B(m) + λ̂I )g + τu1‖ = �; set d :=

d + τu1 and stop.

Step 4 : Use Newton’s method to find λ ∈ [λL, λU] and compute d(λ).

Step 5 : If ‖d‖ ≤ � stop; else update λL and λU such that λL ≤ λ ≤ λU and go to Step 4.

When m = 1, the eigenvalues in Step 1 of Algorithm 1 can be computed by Equation (9). In

Step 2, the trial step is obtained by Equation (21), while in Steps 3 and 4, by means of Equation (20).

In Step 3(c) the computation of τ is obtained from Equation (2), while if ak > 2, u1 is obtained

using Equation (26), otherwise we set u1 = e1.

When m = 2, the eigenvalues can be computed by means of Equation (13). The computation

of d in Step 2 is done using Equation (27), while in Steps 3 and 4 by means of Procedure 4.1.
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In Step 3(c), τ is obtained from Equation (2). Moreover, if ak−1 > 2 or ak > 2, then u1 is computed

using Equation (29), along with Procedure 4.1. In the different case, i.e. if ak−1 = ak = 2, then:

(1) u1 = yk/‖yk‖, if λ1 is distinct eigenvalue,

(2) u1 = û1/‖û1‖, where û1 is defined in Equation (30), if λ1 has multiplicity n − 1,

(3) u1 = e1, if λ1 has multiplicity n.

As we can see, the computation of the step does not require the Cholesky factorization of B(m) +

λ(ℓ)I . Thus, Algorithm 1 can solve inexpensively the subproblem, and therefore it can be iterate

until convergence to the optimal λ is obtained with high accuracy. Moreover, the knowledge of the

extreme eigenvalues, along with Lemma 2.2, results in a straightforward safeguarding procedure

for λ.

The following lemma is established by Powell [25] and gives a lower bound for the maximum

reduction φ(0) − φ(d∗) of the quadratic model within the trust region ‖d‖ ≤ �.

LEMMA 5.1 If d∗ is a solution of the subproblem (1), then

φ(0) − φ(d∗) ≥
1

2
‖g‖ min{�, ‖g‖/‖B‖}.

Global convergence theory of trust region algorithms requires that the trial step dk must satisfy

the inequality

φk(0) − φ(dk) ≥ c‖gk‖ min{�k, ‖gk‖/‖Bk‖} (31)

for all k, where c is a positive constant (see [9,21]). The following theorem shows that relation

(31) is satisfied if the trial step is computed by Algorithm 1.

THEOREM 5.2 Assume that‖B
(m)
k ‖ ≤ M < ∞, m = 1, 2, for all k, whereM is a positive constant.

If the trial step dk is computed approximately by Algorithm 1, then

φk(0) − φk(dk(λ)) ≥
1

8
‖gk‖ min{�k, ‖gk‖/‖B

(m)
k ‖}. (32)

Proof We recall that at each iteration k, the quadratic model is of the form

φk(dk) = dT
k gk +

1

2
dT

k B
(m)
k dk. (33)

We consider the following two cases:

(i) If B
(m)
k > 0, then from Step 2, we have that if λ = 0 and ‖dk‖ ≤ �k , the algorithm stops. In

this case,

gT
k dk = −gk(B

(m)
k )−1gk ≤

−‖gk‖
2

‖B
(m)
k ‖

. (34)

Then, from (33) and (34) we have that

φk(0) − φk(dk(λ)) = −dT
k (λ)gk −

1

2
dT

k (λ)B
(m)
k dk(λ)

= −dT
k (λ)gk −

1

2
dT

k (λ)(B
(m)
k + λI)dk(λ) +

1

2
λ‖dk(λ)‖2

= −
1

2
dT

k (λ)gk +
1

2
λ‖dk(λ)‖2

≥
1

2

‖gk‖
2

‖B
(m)
k ‖

. (35)
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If λ = 0 and ‖dk‖ > �k , Steps 4 and 5 of Algorithm 1 yield λ and d such that

0 < λ ≤ λU and ‖dk(λ)‖ ≤ �k,

respectively. Since B
(m)
k is positive definite, we have that ‖B

(m)
k + λI‖ = λn + λ = ‖B

(m)
k ‖ + λ,

where λn is the largest eigenvalue of B
(m)
k . Therefore, taking into account that λ ≤ ‖B

(m)
k ‖+ (1+ǫ)

‖gk‖/�k and

‖B
(m)
k + λI‖ = ‖B

(m)
k ‖ + λ ≤ 2‖B

(m)
k ‖ +

(1 + ǫ)‖gk‖

�k

≤ 2

(

‖B
(m)
k ‖ +

‖gk‖

�k

)

,

we have that

gT
k dk(λ) ≤ −

‖gk‖
2

‖(B
(m)
k + λI)−1‖

≤ −
1

2

‖gk‖
2

‖B
(m)
k ‖ + ‖gk‖/�k

≤ −
1

4
‖gk‖ min(�k, ‖gk‖/‖B

(m)
k ‖). (36)

Thus, the reduction of the model yields

φk(0) − φk(dk(λ)) = −
1

2
dT

k (λ)gk +
1

2
λ‖dk(λ)‖2

≥
1

8
‖gk‖ min(�k, ‖gk‖/‖B

(m)
k ‖). (37)

(ii) If B
(m)
k ≤ 0, then dT

k (λ)B
(m)
k dk(λ) ≤ 0. From Step 3(a) along with Steps 4 and 5 we have

that λ̂ ≤ λ ≤ λU, and ‖dk(λ)‖ ≤ �k , where λ̂ = −λ1 + ǫ. Therefore, using relation (36), for the

reduction of the model we obtain

φk(0) − φk(dk(λ)) = −dT
k (λ)gk −

1

2
dT

k (λ)B
(m)
k dk(λ)

≥ −dT
k (λ)gk ≥

1

4
‖gk‖ min(�k, ‖gk‖/‖B

(m)
k ‖). (38)

Finally, in Step 3(c), taking into account that λ = λ̂, uT
1 gk = 0 and ‖B

(m)
k + λ̂I‖ ≤ λn + λ̂ ≤

2‖B
(m)
k ‖, where λn is the largest eigenvalue of Bk , we obtain

gT
k dk(λ̂) = −gk(B

(m)
k + λ̂I )−1gk ≤ −

‖gk‖
2

‖B
(m)
k + λ̂‖

≤ −
‖gk‖

2

2‖B
(m)
k ‖

. (39)

Therefore, using relation (39) we have that

φk(0) − φk(dk(λ̂)) = −dT
k (λ̂)gk −

1

2
dT

k (λ̂)B
(m)
k dk(λ̂)

≥ −dT
k (λ̂)gk ≥

1

2

‖gk‖
2

‖B
(m)
k ‖

. (40)

Combining relations (35), (37), (38) and (40), relation (32) follows immediately. �



666 M.S. Apostolopoulou et al.

6. Numerical results

In the first part of this section, we use randomly generated instances of TRS to show both the

efficacy and accuracy of our method on problems that have dimensions from 100 up to 100,000

variables. Then, we employ numerical examples to demonstrate the feasibility of the proposed

method within a trust-region framework for unconstrained optimization.

For the numerical testing we implemented two versions of Algorithm 1, the first for m = 1

(1BFGS), and the second for m = 2 (2BFGS). The algorithms were coded in MATLAB 7.3, and

all numerical experiments were performed on a Pentium 1.86 GHz personal computer with 2 GB

of RAM running Linux operating system. Double precision IEEE floating point arithmetic with

machine precision approximately 2.2 × 10−16 was employed.

We compared our method with the GQTPAR [1] and LSTRS algorithm [30]. The GQTPAR

algorithm is a MATLAB version of the subroutine GQTPAR.f from the MINPACK package,

based on the ideas described in Moré and Sorensen [19], which uses the Cholesky factorization

for the solution of the TRS. The LSTRS algorithm proposed by Rojas et al. [29], remodels the TRS

as a parameterized eigenvalue problem, and relies on matrix–vector products, since it computes

the smallest eigenvalue and the corresponding eigenvector using a block Lanczos routine.

Note that for large dimensions (n ≥ 1000) results are reported only for the 1BFGS, 2BFGS

and LSTRS algorithm, since the GQTPAR algorithm requires the factorization of B(m).

6.1 Random instances of TRS

In this subsection, we present a summary of our random instances. For each dimension n, 100

random instances of TRS were generated as follows. The coordinates of the vectors g, sm, and

ym(m = 1, 2) were chosen independently from uniform distributions in the interval (−105, +105).

As a total, we have 3200 different instances, divided into two groups of medium-size (with

n = 100, 200, 300, 400, 500) and larger-size (n = 103, 104, 105) problems. In addition, half of

the instances illustrate the behaviour of the proposed method in the standard case, and the rest

of them in the hard case. Note that the same set of random instances was used throughout for

each algorithm. We consider a TRS instance successfully solved, if a solution satisfying |(‖d‖ −

�)/�| ≤ tol was computed for both the standard and the hard case. In all algorithms, the tolerance

tol was set to 10−8. The maximum number of Newton’s iterations allowed was 200 and the trust

region radius was fixed as � = 10.

In order to create instances for the hard case, when n ≤ 500, MATLAB’s eigs routine was

used to compute the smallest eigenvalue λ1 and the corresponding eigenvector u of the recon-

structed matrix B(m) from the vector pairs. For the 1BFGS, 2BFGS and GQTPAR algorithms we

initialized the trust-region radius by � = 10.0�hc, where �hc = ‖(B − λ1I )†g‖, while the vector

of the gradient was computed as g = (−u(n)/u(1), 0, . . . , 0, 1)T. For the LSTRS algorithm, we

set � = 2.0�hc and g = g − u(gTu). When n ≥ 1000, we set �hc = ‖(B + λ̂I )−1g‖, where

λ̂ = −λ1 + tol and (B + λ̂I )−1g were computed using the analytical formulas presented in

Section 3.

The numerical results are summarized in Tables 1–6. Each row of these tables shows the

dimension of the problem (n), the average number of Newton’s iterations (it), the average relative

accuracy (acc) of the trust-region solution |(‖d‖ − �)/�|, and the average CPU time (cpu)

in seconds. In the case where λ = 0 and ‖d‖ < �, we used the absolute value of the product

λ(‖d‖ − �) instead of the relative accuracy |(‖d‖ − �)/�|. Tables 1–4 summarize the results of

the medium-size problems, while Tables 5 and 6 summarize the results of the larger-size problems.

We recall that in the last two tables no results are reported for the GQTPAR algorithm, since it

requires too much storage.
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Table 1. Comparison results for the standard case (m = 1), 100 instances per dimension.

1BFGS GQTPAR LSTRS

n it acc cpu it acc cpu it acc cpu

100 1.0 4.1e−15 6.8e−04 0.07 5.8e−07 1.1e−02 2.1 4.2e−10 1.4e−02

200 1.0 5.9e−12 7.2e−04 0.05 3.7e−08 5.1e−02 2.0 4.6e−10 1.4e−02

300 1.0 1.7e−16 6.7e−04 0.06 6.2e−13 1.5e−01 2.0 1.2e−10 1.4e−02

400 1.0 2.1e−16 7.8e−04 0.07 1.9e−12 3.4e−01 2.0 7.9e−11 1.4e−02

500 1.0 2.0e−16 6.9e−04 0.03 2.7e−13 6.2e−01 2.0 3.0e−12 1.4e−02

Table 2. Comparison results for the hard case (m = 1), 100 instances per dimension.

1BFGS GQTPAR LSTRS

n it acc cpu it acc cpu it acc cpu

100 0.0 1.1e−16 2.4e−04 10.6 8.4e−03 7.9e−02 15.1 4.9e−11 6.5e−02

200 0.0 1.3e−16 6.2e−04 10.0 2.8e−02 4.2e−01 16.5 2.0e−02 6.9e−02

300 0.0 1.4e−16 4.8e−04 7.7 5.2e−02 9.9e−01 17.1 5.7e−11 8.0e−02

400 0.0 1.4e−16 6.0e−04 5.8 1.7e−03 2.0e+00 17.4 1.0e−10 7.4e−02

500 0.0 1.6e−16 5.9e−04 6.7 4.3e−01 4.0e+00 17.9 1.1e−02 7.8e−02

Table 3. Comparison results for the standard case (m = 2), 100 instances per dimension.

2BFGS GQTPAR LSTRS

n it acc cpu it acc cpu it acc cpu

100 1.0 1.8e−16 1.6e−03 0.14 1.2e−11 1.0e−02 2.0 6.5e−10 1.4e−02

200 1.0 2.9e−16 1.7e−03 0.09 3.3e−12 5.1e−02 2.0 3.6e−10 1.5e−02

300 1.0 3.5e−16 2.0e−03 0.08 1.0e−12 1.5e−01 2.0 2.6e−10 1.5e−02

400 1.0 5.6e−16 2.0e−03 0.09 5.5e−11 3.8e−01 2.0 2.8e−10 1.5e−02

500 1.0 3.1e−12 2.1e−03 0.06 6.1e−09 6.4e−01 2.0 1.3e−10 1.5e−02

Table 4. Comparison results for the hard case (m = 2), 100 instances per dimension

2BFGS GQTPAR LSTRS

n it acc cpu it acc cpu it acc cpu

100 0.0 1.1e−16 1.3e−03 9.0 1.7e−02 6.7e−02 15.9 1.0e−02 7.3e−02

200 0.0 1.2e−16 1.4e−03 6.1 2.3e−02 2.5e−01 15.9 7.6e−02 7.3e−02

300 0.0 1.3e−16 1.6e−03 7.3 2.4e−01 1.0e+00 17.3 4.5e−12 8.3e−02

400 0.0 1.4e−16 1.7e−03 7.4 7.0e−02 1.7e+00 16.7 2.2e−16 8.3e−02

500 0.0 1.6e−16 1.8e−03 6.6 5.3e−01 3.7e+00 18.5 3.0e−02 1.0e−01

Table 5. Comparison results for large scale TRS (m = 1), 100 instances per dimension.

1BFGS LSTRS

n it acc cpu it acc cpu

Standard case 103 1.0 1.2e−13 1.8e−03 2.0 1.6e−10 2.4e−02

104 1.0 6.1e−16 2.0e−03 2.0 6.3e−12 3.2e−02

105 1.0 3.1e−10 1.8e−02 2.0 1.1e−12 4.2e−01

Hard case 103 0.0 2.0e−16 8.9e−04 18.6 7.2e+00 1.0e−01

104 0.0 5.7e−16 2.4e−03 20.5 3.9e−01 2.8e−01

105 0.0 2.0e−15 1.6e−02 22.8 2.1e+00 5.2e+00
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Table 6. Comparison results for large scale TRS (m = 2), 100 instances per dimension.

2BFGS LSTRS

n it acc cpu it acc cpu

Standard case 103 1.0 2.3e−16 5.4e−03 2.0 8.6e−11 1.7e−02

104 0.9 1.6e−11 1.4e−02 2.0 7.0e−12 5.4e−02

105 0.9 2.3e−10 2.0e−01 2.0 1.0e−11 9.6e−01

Hard case 103 0.0 2.4e−16 2.9e−03 19.9 3.2e+00 1.3e−01

104 0.0 6.2e−16 1.1e−02 22.6 6.9e−01 6.0e−01

105 0.0 1.9e−15 1.5e−01 24.7 4.8e−01 1.2e+01

Table 7. Comparison results for medium-size problems.

n = 100 n = 500

m = 1 m = 2 m = 1 m = 2

1BFGS GQTPAR LSTRS 2BFGS GQTPAR LSTRS 1BFGS GQTPAR LSTRS 2BFGS GQTPAR LSTRS

74 220 71 73 – 61 75 282 78 63 – 49

81 – 1868 56 – 826 78 – – 45 – 831

72 – – 63 – – 58 – – 62 – –

50 – 42 19 – 41 52 – 114 23 1981 42

38 40 42 36 – 28 57 52 57 46 – 46

28 420 23 18 – 15 23 – 10 34 – –

19 31 19 14 62 12 22 24 23 14 69 14

21 26 22 12 48 16 23 25 23 15 180 14

44 47 38 17 56 16 39 36 35 28 430 19

47 258 53 21 1193 25 26 66 24 19 1921 15

23 41 23 24 39 22 30 36 30 24 40 24

64 62 64 42 77 40 43 436 42 38 160 57

12 12 12 10 35 12 16 24 16 14 190 13

47 87 47 39 262 40 50 110 55 39 214 49

2 2 2 2 2 2 7 7 7 7 17 7

42 1457 89 12 1195 7 42 1435 52 10 1350 14

2 2 2 2 2 2 7 7 7 7 17 7

11 11 10 12 95 11 10 10 10 10 84 10

8 8 8 8 11 8 7 7 7 7 8 7

4 4 4 4 4 4 5 5 5 5 5 5

16 20 16 14 544 12 25 26 25 14 744 14

45 61 44 33 126 35 98 279 103 93 221 77

48 1659 295 29 – 79 52 – – 30 – 435

280 – 301 98 27 114 199 – 263 100 30 96

8 9 8 9 234 9 11 11 11 10 342 10

9 9 9 10 401 9 11 11 11 12 1964 11

11 11 11 11 813 11 12 12 12 13 1999 12

28 38 28 24 39 27 43 59 42 27 193 28

58 264 49 31 1834 51 66 1243 93 30 – 54

21 14 20 27 120 16 13 17 13 20 66 13

10 12 10 10 15 10 14 16 14 12 29 10

19 25 19 24 270 18 23 26 23 24 951 19

The results in Tables 1 and 3 (standard case) show that GQTPAR algorithm outperforms1BFGS,

2BFGS and LSTRS algorithms only in terms of average iterations. However, both 1BFGS and

2BFGS exhibit the best performance among the GQTPAR and LSTRS algorithms, with respect

to the relative accuracy and the CPU time. On the other hand, when referring to the hard case

(Tables 2 and 4),1BFGS and2BFGS algorithms significantly outperform the other two algorithms,
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especially on the aspect of iterations and solution quality (order of 10−16). Similar observations

can be made from Tables 5 and 6, where the dimension of the TRS instances is very large.

The results of all tables show that the performance of our approach is promising. It can handle

both the standard and the hard case relatively fast, providing solutions with high accuracy and small

number of iterations. All of the TRS instances considered in our experiments were successfully

solved by the1BFGS and2BFGS algorithm. In contrast, the other two algorithms in some instances

did not achieve the prescribed tolerance, especially in the hard case. In general, one may observe

that in the standard case all algorithms behaved similarly, while in the hard case the performance

of our approach is very encouraging, showing a great deal of promise for its practical applications.

6.2 Solving unconstrained optimization problems

All algorithms were embedded in a trust-region framework for solving large scale unconstrained

optimization problems, where the core problem is to solve the TRS (at least once) at each iteration

of a trust region algorithm. We used the same main trust region algorithm, where the L-BFGS

formula with m = 1 and 2 was used to update B
(m)
k . Since B

(m)
k is allowed to be indefinite, the

condition sT
k yk > 0 does not always hold. Hence, for being B

(m)
k well defined, we skipped the

Table 8. Comparison results for n = 1000.

m = 1 m = 2

1BFGS LSTRS 2BFGS LSTRS

it cpu it cpu it cpu it cpu

72 8.7e−02 23 3.6e−01 82 2.9e−01 – –

80 4.4e−02 – – 64 1.2e−01 780 1.7e+01

93 9.7e−02 – – 112 9.5e−01 – –

48 3.4e−02 136 2.2e+00 27 4.6e−02 57 1.5e+00

58 2.4e−02 64 1.2e+00 48 5.6e−02 47 1.1e+00

37 4.2e−02 – – 23 3.4e−02 – –

15 1.2e−02 16 2.4e−01 12 1.7e−02 15 2.9e−01

18 6.5e−03 30 4.4e−01 16 1.4e−01 14 3.1e−01

31 1.4e−02 41 7.3e−01 24 1.6e−01 18 3.7e−01

43 3.2e−02 29 4.3e−01 23 3.5e−02 22 4.0e−01

31 2.5e−02 28 4.1e−01 25 3.7e−02 27 5.4e−01

62 8.4e−02 54 1.1e+00 41 7.6e−02 44 9.2e−01

21 8.4e−03 13 1.7e−01 13 1.3e−02 19 3.9e−01

39 1.5e−02 42 7.3e−01 36 4.1e−02 45 9.5e−01

8 4.3e−03 8 1.1e−01 8 1.4e−02 8 1.7e−01

51 2.9e−02 50 7.3e−01 7 5.7e−03 7 1.1e−01

8 7.9e−03 8 1.1e−01 8 1.4e−02 8 1.6e−01

12 7.3e−03 11 1.3e−01 14 1.3e−01 12 2.1e−01

10 6.9e−03 5 5.9e−02 10 1.4e−02 10 1.7e−01

5 3.4e−03 6 5.7e−02 5 5.0e−03 5 5.9e−02

18 1.0e−02 21 3.1e−01 12 1.7e−02 12 2.0e−01

71 4.7e−02 115 2.1e+00 41 4.5e−02 43 8.9e−01

58 9.4e−02 – – 130 2.5e+00 823 4.3e+01

265 1.5e−02 253 4.6e+00 144 3.3e−01 136 3.1e+00

9 2.0e−02 11 1.6e−01 9 2.7e−02 9 1.7e−01

9 2.1e−02 11 1.7e−01 9 2.4e−02 9 1.6e−01

10 2.5e−02 13 2.0e−01 10 3.0e−02 10 1.7e−01

28 3.5e−02 37 6.1e−01 29 5.2e−02 27 5.4e−01

77 4.7e−02 67 1.4e+00 43 7.5e−02 54 1.2e+00

53 3.5e−02 16 2.3e−01 53 8.0e−02 29 7.3e−01

15 5.0e−03 15 2.2e−01 12 1.2e−02 14 2.3e−01

29 1.4e−02 27 4.2e−01 25 1.8e−01 23 4.8e−01
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storage of the vector pair {sk, yk} if |sT
k yk| ≤ 10−12‖sk‖‖yk‖. The iterations were terminated when

‖gk‖ ≤ tol, where tol = 10−5. For the solution of the TRS, all the previous mentioned algorithms

were used for comparison reasons. For the 1BFGS and 2BFGS algorithms the termination crite-

rion for Newton’s iterations in the TRS was |(‖d‖ − �)/�| ≤ 10−5 or |ψ(λ)| ≤ 10−5. For the

GQTPAR algorithm the tolerances were set rtol = 10−5 and atol = 10−20, while for the LSTRS

algorithm we set epsilon. Delta = epsilon.HC = 10−5.

We selected 32 large-scale unconstrained optimization test problems in extended or gen-

eralized form [2,18]: Extended Trigonometric, Rosenbrock, White & Holst, Beale, Penalty,

Tridiagonal 1, Three Expo Terms, Himmelblau, Block-Diagonal BD1, Block-Diagonal BD2.

Generalized Tridiagonal 1, Tridiagonal 2 Quartic GQ1, Quartic GQ2. Raydan 2, Diagonal 4,

Diagonal 6, Diagonal 7, Diagonal 8, Full Hessian, Sincos, Broyden tridiagonal, Nondia, Dqdrtic,

Dixmaana, Dixmaanb, Dixmaanc, Edensch, Liarwhd, Cosine, Extended Denschnb, Extended

Denschnf.

For each test function, five numerical experiments were conducted with number of variables

n = 100, 500 (medium-size problems), 103, 104 and 105 (larger-size problems), respectively. The

initial trust region radius �0 was set �0 = 10, for n = 100 and 500, and �0 = 100 for the larger-

size problems. For n = 103, 104 and 105, we compared our method only with LSTRS, due to the

Table 9. Comparison results for n = 10,000.

m = 1 m = 2

1BFGS LSTRS 2BFGS LSTRS

it cpu it cpu it cpu it cpu

87 5.6e−01 83 3.9e+00 61 5.4e−01 79 7.3e+00

86 1.8e−01 – – 53 6.4e−01 845 9.0e+01

86 5.4e−01 – – 82 5.7e+00 – –

62 2.4e−01 142 8.0e+00 19 1.7e−01 72 7.6e+00

65 1.2e−01 78 3.7e+00 69 3.6e−01 – –

28 2.0e−01 – – 18 1.6e−01 – –

21 9.8e−02 18 8.5e−01 17 1.2e−01 14 1.2e+00

23 3.9e−02 27 1.1e+00 13 5.3e−02 18 1.5e+00

48 1.0e−01 35 1.6e+00 20 9.5e−02 20 1.5e+00

49 2.5e−01 33 1.4e+00 20 2.1e−01 47 3.7e+00

41 1.7e−01 33 1.6e+00 27 1.8e−01 22 2.1e+00

92 8.8e−01 104 6.1e+00 85 1.3e+00 44 4.7e+00

12 2.7e−02 18 7.5e−01 11 4.9e−02 12 7.6e−01

45 6.4e−02 43 1.9e+00 34 1.4e−01 36 3.6e+00

2 4.6e−03 9 3.4e−01 2 5.0e−03 2 4.4e−02

54 7.7e−02 67 3.2e+00 12 4.3e−02 7 4.9e−01

2 4.6e−03 9 3.4e−01 2 5.0e−03 2 4.6e−02

11 3.9e−02 11 3.3e−01 9 9.0e−01 11 1.1e+00

8 3.6e−02 7 2.2e−01 8 5.4e−02 8 5.0e−01

4 2.7e−02 7 2.0e−01 4 2.0e−02 4 1.5e−01

18 5.9e−02 19 8.3e−01 14 7.4e−02 13 1.1e+00

146 3.9e−01 55 2.9e+00 84 9.1e−01 39 4.1e+00

46 8.6e−02 – – 30 2.7e+00 – –

325 5.9e−01 247 1.2e+01 76 8.0e−01 74 7.9e+00

9 1.4e−01 13 7.5e−01 9 1.6e−01 9 7.3e−01

10 1.6e−01 18 1.1e+00 10 1.8e−01 10 8.4e−01

12 1.9e−01 21 1.4e+00 12 2.1e−01 11 9.4e−01

41 3.4e−01 30 1.9e+00 28 3.0e−01 24 2.1e+00

82 2.0e−01 128 9.8e+00 55 4.7e+00 111 2.1e+01

17 6.5e−02 54 2.4e+00 339 1.2e+01 17 1.3e+00

11 2.1e−02 17 7.4e−01 11 4.6e−02 10 8.0e−01

20 4.9e−02 22 9.7e−01 26 1.2e−01 20 1.6e+00
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computational cost of the trust-region algorithm that uses the GQTPAR algorithm for the solution

of the TRS.

The numerical results are summarized in Tables 7–10. The reported parameters are: the number

of iterations (it) of the trust-region algorithm, which equals the number of function and gradient

evaluations per iteration, and the CPU time (cpu) in seconds. In all tables, the symbol ‘–’ is used to

indicate that a problem failed to converge with the prescribed accuracy, i.e. ‖gk‖ ≤ 10−5, within a

maximum number of iterations (maxiter = 2000). Table 7 summarizes the results for n = 100,500.

In this table we report, for each method, only the number of iterations. Tables 8–10 summarize

the results for the rest of the dimensions. Figure 1 illustrates the results of Table 7, and shows

the mean iterations of each method. The numerical results of Tables 8–10 can be summarized in

Figures 2 and 3, which show the mean iterations and sum CPU time, respectively, for the 1BFGS,

2BFGS and LSTRS algorithms. For calculating both the average iterations and sum CPU time,

we considered in all algorithms only the problems that solved with the prescribed accuracy within

the iteration limit.

From Table 7 and Figure 1, one can notice that the proposed algorithm solved 100% of

the medium-size test problems. Moreover, it has the best performance among the other two

Table 10. Comparison results for n = 100,000.

m = 1 m = 2

1BFGS LSTRS 2BFGS LSTRS

it cpu it cpu it cpu it cpu

39 2.8e+00 78 5.3e+01 77 7.6e+00 39 5.9e+01

102 3.9e+00 – – 59 3.6e+01 734 1.1e+03

96 7.7e+00 – – 68 1.0e+02 – –

58 2.9e+00 65 5.9e+01 21 1.7e+00 58 8.2e+01

94 1.9e+00 – – 77 4.7e+00 79 1.3e+02

28 2.2e+00 – – 40 6.7e+01 – –

25 1.2e+00 46 5.2e+01 73 3.4e+02 16 2.1e+01

36 6.9e−01 32 2.2e+01 20 1.4e+00 17 2.0e+01

40 1.1e+00 42 2.9e+01 20 1.7e+01 20 2.6e+01

39 2.2e+00 46 3.5e+01 25 2.2e+00 22 2.9e+01

32 1.6e+00 32 2.5e+01 26 2.1e+00 23 2.8e+01

101 1.2e+01 154 1.8e+02 75 1.6e+01 96 1.6e+02

14 3.0e−01 20 1.2e+01 15 7.4e−01 13 1.4e+01

49 9.6e−01 51 4.0e+01 38 2.0e+00 52 6.1e+01

8 2.1e−01 70 2.2e+02 8 3.9e−01 8 7.2e+00

61 1.6e+00 56 4.5e+01 10 5.5e−01 8 7.5e+00

8 2.1e−01 11 5.6e+00 8 3.9e−01 8 7.2e+00

12 4.2e−01 13 6.6e+00 10 1.6e+01 12 9.1e+00

6 2.5e−01 9 4.0e+00 6 3.5e−01 6 4.4e+00

5 2.2e−01 8 3.4e+00 5 2.7e−01 5 3.1e+00

27 9.1e−01 – – 81 4.2e+02 16 1.9e+01

97 3.5e+00 44 2.9e+01 83 1.5e+01 83 1.2e+02

264 8.5e+01 – – 33 8.4e+01 – –

247 8.9e+00 294 2.5e+02 127 3.5e+01 81 1.3e+02

12 1.9e+00 14 1.2e+01 11 2.1e+00 12 1.5e+01

12 2.0e+00 42 3.2e+01 12 2.3e+00 12 1.4e+01

13 2.1e+00 46 3.2e+01 14 2.6e+00 14 1.7e+01

38 3.5e+00 36 2.8e+01 30 3.7e+00 48 4.6e+01

85 3.3e+00 160 2.6e+02 90 1.8e+02 114 4.3e+02

25 1.1e+00 33 2.9e+01 – – – –

16 3.0e−01 22 1.6e+01 12 5.4e−01 12 1.2e+01

33 8.5e−01 22 1.4e+01 19 1.0e+00 22 2.4e+01
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Figure 1. Average iterations for medium-size problems.

Figure 2. Average iterations for larger-size problems.

approaches, since it exhibits the lowest average by means of iterations, for both m = 1 and 2.

The results in Tables 8–10 along with Figure 2 show that for m = 1, the trust-region algorithms

that use 1BFGS and LSTRS algorithms for solving the TRS, behaved similarly in terms of itera-

tions. However, 1BFGS solved all test problems in all three dimensions, while LSTRS presented

some failures. For m = 2, the 2BFGS algorithm has the lowest mean iteration, although it pre-

sented one failure. Finally, according to Figure 3, we can see that our approach needs the smallest

amount of CPU time for solving large-size problems. Based on the above comparisons, we can

observe that our method presented less failures, number of iterations and CPU time for solving the

test problems, in all dimensions, than the other approaches. As a consequence, we can conclude

that the proposed method is promising for solving large-scale unconstrained problems, within a

trust-region framework.
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Figure 3. Total CPU time for larger-size problems.

7. Conclusions

We have shown how the 1BFGS and 2BFGS methods can be applied for solving the TRS. Our

results have been based on the properties of the L-BFGS matrices for m = 1 or 2. The eigen-

values can immediately be computed with high accuracy, while the inverse of B(m) + λI can be

expressed in a closed form. Hence, the linear system which has to be solved for the computation

of the trial step does not require the use of factorization. Finally, the negative curvature direction

can be computed either by applying one step of the power inverse method or by making some

simple algebraic computations. Thus, the proposed method can completely avoid the Cholesky

factorization and handle easily both the standard and the hard case. It turns out that the main

advantages of the proposed method are higher solution accuracy compared to other approaches,

small running time, and the efficiency for solving large instances of the TRS since the amount of

memory needed is negligible.
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