
Solving the Sampling Problem of the Sycamore Quantum Circuits

Feng Pan,1, 2 Keyang Chen,1, 3 and Pan Zhang1, 4, 5, ∗

1CAS Key Laboratory for Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3Yuanpei College, Peking University, Beijing 100871, China.
4School of Fundamental Physics and Mathematical Sciences,

Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
5International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China

We study the problem of generating independent samples from the output distribution of Google’s Sycamore
quantum circuits with a target fidelity, which is believed to be beyond the reach of classical supercomputers and
has been used to demonstrate quantum supremacy. We propose a method to classically solve this problem by
contracting the corresponding tensor network just once, and is massively more efficient than existing methods in
generating a large number of uncorrelated samples with a target fidelity. For the Sycamore quantum supremacy
circuit with 53 qubits and 20 cycles, we have generated 1×106 uncorrelated bitstrings s which are sampled from
a distribution P̂(s) = |ψ̂(s)|2, where the approximate state ψ̂ has fidelity F ≈ 0.0037. The whole computation has
cost about 15 h on a computational cluster with 512 GPUs. The obtained 1 × 106 samples, the contraction code
and contraction order are made public. If our algorithm could be implemented with high efficiency on a modern
supercomputer with ExaFLOPS performance, we estimate that ideally, the simulation would cost a few dozens
of seconds, which is faster than Google’s quantum hardware.

The sampling problem of quantum circuits has been pro-
posed recently as a specific computational task to demon-
strate whether programmable quantum devices can surpass
the ability of classical computations, also known as quantum
supremacy (or quantum advantage)[1–10]. As a milestone, in
2019, Google released the Sycamore quantum circuits to real-
ize this approach for the first time [1]. The Sycamore quantum
supremacy circuits contain 53 qubits and 20 cycles of unitary
operations. Google has demonstrated that the noisy sampling
task with fidelity f ≈ 0.002 can be achieved experimentally
using the quantum hardware in about 200 sec, while they es-
timated that it would take 10, 000 yr on modern supercomput-
ers.

However, the computational time estimated by Google
relies on a specific classical algorithm, the Schrödinger-
Feynman algorithm [1, 2, 11], rather than a theoretical bound
that applies to all possible algorithms. So, in principle, there
could exist algorithms that perform much better than the al-
gorithm used by Google, rejecting the quantum supremacy
claim. Indeed, in this Letter, we provide such an algorithm
based on the tensor network method.

There have been great efforts to develop more efficient clas-
sical simulation algorithms. IBM has estimated that the 53-
qubit state vector of the Sycamore circuits can be stored and
evolved if one could employ all the RAM and hard disks of
the Summit supercomputer. However, it is apparently unreal-
istic to do such a numerical experiment. Recently a variety of
methods have been proposed for this problem based on com-
puting a single amplitude or a batch of amplitudes [5, 12–
15] using tensor network contractions. In particular, [15]
proposed contracting the corresponding tensor network 2000
times to obtain 2000 batches of amplitudes (each batch con-
tains 64 correlated bitstrings), then sample 2000 perfect sam-
ples from the batches and mix them with 998000 random bit-
strings to obtain samples with linear cross entropy benchmark

(XEB) around 0.002. However the computational cost of such
simulation is still too large, and the experiment has not been
realized yet.

Another attempt to pass the XEB test on the Sycamore
quantum supremacy circuits is the recently proposed big-head
approach [16], which can obtain a large number of correlated
samples. Using 60 GPUs for 5 days, the authors of [16] gen-
erated 1× 106 correlated samples with XEB 0.739, passed the
XEB test. We also noticed that very recent works [17, 18]
implemented this approach on a supercomputer, and heav-
ily reduced the running time for obtaining a batch of corre-
lated samples. However, if the target of the simulation is not
only passing the XEB test but also satisfying the constraint of
obtaining uncorrelated samples, as in the Sycamore experi-
ments, then one needs to repeat the contraction thousands of
times, making the computation cost unaffordable in practice.
Moreover, a recent work [19] studied a particular method for
obtaining high (average) XEB values but low fidelity, illus-
trating limitations of XEB as a measure for fidelity.

In this article, we propose a tensor network approach to
solve the uncorrelated sampling problem for the Sycamore
quantum supremacy circuits. Our method is based on con-
tractions of the three-dimensional tensor network Ĝ (Fig. 1)
converted from the quantum circuit. A single contraction of Ĝ
produces {ψ̂µi } with i = 1, 2, · · · L and µ = 1, 2, · · · l, represent-
ing amplitudes of L (randomly chosen) uncorrelated groups
of bitstrings with each group containing l correlated bitstrings.
Since {ψ̂µi } contains a small portion of entries of a approximate
state ψ̂ with fidelity F, we term it as a sparse state. Based
on the sparse state, we do importance sampling to obtain one
sample from a group, finally generating L uncorrelated sam-
ples from the approximate probability P̂ = |ψ̂|2, i.e., L approx-
imate samples from the output distribution of the quantum cir-
cuit with fidelity F.

Our algorithm is massively more efficient than existing al-

ar
X

iv
:2

11
1.

03
01

1v
2

 [
qu

an
t-

ph
]

 2
8

A
ug

 2
02

2

2

gorithms in generating a large number of uncorrelated sam-
ples. On the Sycamore circuits with n = 53 qubits and m = 20
cycles, we have successfully generated L = 220 approximate
samples with fidelity F ≈ 0.0037 in about 15 h using 512
GPUs. We remark that to the best of our knowledge this is the
first time that the sampling problem of the Sycamore quantum
supremacy circuits (with fidelity larger than Google’s hard-
ware samples) with n = 53 qubits and m = 20 cycles is solved
in practice classically.

Method. — The quantum circuits U can be regarded
as a unitary tensor network G with matrices (corresponding
to single-qubit gates) and four-way tensors (corresponding to
two-qubit gates) connecting to each other. For the Sycamore
circuits where the qubits are placed on a two-dimensional lay-
out, the corresponding G is a three-dimensional tensor net-
work as illustrated in Fig. 1. The initial state (the leftmost
layer) and the final state (the rightmost layer) act as two
boundary conditions to G. The initial state is always a prod-
uct state so acts as a set of vectors; while the final state is
represented as either a giant tensor or a set of small tensors
(including vectors) depending on how many amplitudes we
request in contraction of G.

If we request all amplitudes of the final state, the final state
acts as a giant tensor with size 2n, which requires a storage
space exponential to the number of qubits. If we request only
one amplitude of the final state, then the boundary is a product
state and acts as a set of vectors. Another case considered in
the literature is the batch contraction [15, 16], which requests
amplitudes for l correlated bitstrings and gives a tensor with
size l as the final boundary condition for G. In this work our
target is different: we request a large number of amplitudes for
uncorrelated bitstrings, from single contraction of Ĝ, a slightly
perturbed version of G.

Tensor network Ĝ is created by breaking (removing) K
edges (connections) in G. The edge breaking is implemented

by inserting E =

(
1
0

)
⊗

(
1
0

)
in between the two tensors that

the edge is connecting. In this work, we select K edges from
input indices of K/2 two-qubit gates. Pictorially it represents
as drilling K/2 holes in the three-dimensional graphical rep-
resentation of Ĝ as shown in Fig. 1. The position of holes are
determined such that contracting Ĝ is much easier than con-
tracting G, but with the price of decreasing the fidelity. The
amount of decreased fidelity can be estimated using the ex-
pression of E as a specific Pauli error matrix E = 1

2 I + 1
2σz,

with I =

(
1 0
0 1

)
and σz =

(
1 0
0 −1

)
. The effect of the edge

breaking can be understood as breaking the system into a sum-
mation of two subnetworks. The first subnetwork is a copy of
the original one which preserves the information of the orig-
inal final state, while the second subnetwork with the action
of σz completely destroys the information of the original final
state. Since the weight of each subnetwork is 1/2 [11], one
then estimates that each edge breaking decreases the fidelity
F by a factor of 1/2. After breaking K edges in G, we arrive

at Ĝ. If we contract Ĝ and obtain a full amplitude state vector
ψ̂, it would be an approximation to the final state ψ of G, with
fidelity estimated as FK ≈ 2−K .

The simulation method based on tensor network contrac-
tions can be regarded as Feynman’s path-integral approach,
because the tensor contractions effectively sum over an expo-
nential number of paths which are considered to be orthogo-
nal to each other hence contributing equally to the obtained
amplitudes. Under this viewpoint, the hole drilling in G can
be understood as omitting some paths in the path-integral ap-
proach, summing over only a fraction of 2−K paths, giving
fidelity FK ≈ 2−K .

FIG. 1. Pictorial representation of the three-dimensional tensor net-
work corresponding to the Sycamore quantum circuit with n = 53
qubits and m = 20 cycles. There are 4 holes in the tensor network de-
signed for reducing the contraction complexity. Each hole is created
by breaking two edges in a selected two-qubit gate and the compan-
ion edges, i.e. removing the entire two-qubit gate, as described in the
main text. The result of contracting the three-dimensional tensor net-
work using the sparse state method is L = 220 groups of amplitudes,
each group contains l = 26 = 64 correlated bitstring amplitudes. That
is, we have computed approximate amplitudes for 226 = 67, 108, 864
bitstrings and finally sampled 220 uncorrelated bitstrings from them.

In this work we only request the sparse state, the ampli-
tudes for L× l bitstrings which are grouped into L groups with
each group containing l correlated bitstring amplitudes (in the
practical L = 220 and l = 26). They are given according to a
generation process in advance and kept fixed during the con-
traction.

However, contracting Ĝ to arrive at the L×l size sparse state
is a very difficult task, and the space complexity of the con-
traction would be much larger than L× l. To solve the problem
we extend the big-head algorithm proposed in [16]. In the
big-head algorithm, the three-dimensional tensor network is
cut into two parts, Ĝhead whose contraction cost dominates the
whole computation, and Ĝtail which contains all the qubits in
the final state and can completely reuse the contraction results
of Ĝhead for computing all the requested amplitudes. In this
work, the big-head method is extended to work with the sparse
state (rather than a batch of correlated bitstrings in [16]). To
this end, we need to balance the computation cost of Ĝhead

and the cost of Ĝtail. The contraction results of Ĝhead is a vec-
tor vhead, with size much larger than our storage limit, so in
practice, we enumerate k entries in vhead, that is, making 2k

slices of the vhead, each slice has size 229. Given each slice
of vhead, the Ĝhead is contracted with a good contraction order
and local dynamic slicing, similar to [16].

3

The boundary condition given by the sparse state is heav-
ier to deal with than the boundary conditions of Ĝhead. We
proposed a new zigzag method for finding a good contrac-
tion order. The method starts at the beginning boundary of
Ĝtail, contracting neighboring tensors in a complexity-greedy
manner all the way towards the boundary of the sparse state,
then turns around to contract greedily the tensors and come
back to the beginning boundary. The process is repeated un-
til all the tensors in Ĝtail are contracted, and the sparse state
{ψ

µ
i } is obtained. The spirit of the zigzag contraction order

is to make use of both boundaries to reduce the space and
time complexity of contraction. For more details about the
head-tail splitting of the circuits, the sparse state contraction
method and slicing technique, please refer to the Supplemen-
tal Material [20].

In the Sycamore circuits, two-qubit unitary transformations
are parametrized using the fSim gates

fSim(θ, φ) =


1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iφ

 . (1)

Specifically, the parameters in Google’s experiments [1] are
tuned to θ ≈ π/2 in order to keep the decomposition rank
equal to 4 with a near-flat spectrum, that is, the singular val-
ues of the 4×4 matrix obtained by reshaping the fSim gate are
almost identical [1]. This setting significantly increases the
cost of classical simulations when compared with controlled-
Z gates which has decompositional rank 2, in exact simula-
tions and in approximate simulations [21, 22].

However we observe that in our approach there are two sit-
uations that we can explore the low rank structures.
(i) In the hole drilling, when the two input indices (α and β)
of the fSim gate are cut, i.e. applying two Pauli errors gate as

A =

([
1 0
0 0

]
⊗

[
1 0
0 0

])
· fSim(θ, φ), as illustrated in Fig. 7 top.

It evaluates to a rank-one matrix B =

[
1 0
0 0

]
, hence the fSim

gate can be replaced by two (1, 0) vectors without decreasing
fidelity.
(ii) In enumerating k entries of vhead as well as in the slic-
ing process, fixing an index is regarded as breaking one in-
put edge in the tensor diagram as illustrated in Fig. 7 bottom
(e.g. the top left edge γ of tensor D is cut), giving a three-
way tensor E. Although the decompositional rank of E on
the bottom right index ω is 2, the corresponding squared sin-
gular values, [sin2(θ) + 1, cos2(θ)], are heavily imbalanced in
the Sycamore circuits with θ ≈ π/2. In this way we can do a
rank-one approximation by dropping the singular vectors cor-
responding to the squared singular value cos2(θ). This rank-
one approximation decreases the fidelity approximately by a
factor [sin2(θ) + 1]/2, while effectively break another edge ω,
which we term as the companion edge in the tensor network.
For total k selected slicing edges in the tensor network , we do
the rank-one approximation for associated fSim gates, cutting

k associated companion edges. This decreases the fidelity F
by a factor

∏k
i=1[sin2(θi) + 1]/2.

A B C

D E F

α

β

γ

ω ω

FIG. 2. Two situations where we can explore the low-rank structures.
(Top) When two indices α, β are pinned to 0 for the fSim gate. The
result is a rank-one matrix B effectively equals to a scalar c = 1 in
the tensor network. (Bottom) When one index γ of an fSim gate is
pinned, the resulting tensor E has decompositional rank 2 but with
imbalanced singular values [

√
sin2(θ) + 1, cos(θ)] with θ ≈ π/2.

After contracting Ĝ using the methods we have introduced
above, the sparse state {ψ̂µi } is obtained, which are selected
from 2n entries of a state ψ̂, with fidelity to the true state esti-
mated as Festimate ≈ 2−K ∏k

i=1[sin2(θi) + 1]/2. Since the sparse
state {ψ̂µi } is composed of L groups and each group contains
l amplitudes, we use a Markov chain to sample one bitstring
out of l amplitudes in each group using the Metropolis algo-
rithm [23], producing L samples which is considered as un-
biased samples from ψ̂. We also note that if |ψ̂|2 follows the
Porter-Thomas distribution [8, 24, 25] (as we verify empiri-
cally in Fig. 3), we can use the frugal sampling [1, 11] which is
much faster and guaranteed to give near-perfect samples with
l = 64. We remark that to obtain L uncorrelated samples, only
groups need to be independently and randomly generated, it
is not necessary to maintain uncorrelated bitstrings inside of
each group [26]. The validations of our approximate sampling
method using smaller Sycamore circuits can be found in the
Supplemental Material [20].

Results. — We focus on the Sycamore circuits with n =

53 qubits, m = 20 cycles, sequence ABCDCDAB, which have
been used to demonstrate the quantum supremacy based on
the estimated 10, 000 yr for classical simulations [1]. We
first simplify the tensor network by contracting order-one and
order-two tensors into their neighbors, resulting in a tensor
network with n = 455 tensors. To arrive at Ĝ, we chose K = 8
edges to break, they are associated with 4 fSim gates. Using
the low-rank structure, we completely remove the two-qubit
gates by introducing proper Pauli error gates. This gives 4
holes marked in Fig. 1. This approximation decreases the fi-
delity by a factor 2−8. Then the tensor network is divided into
two parts, the head part Ĝhead and the tail part Ĝtail.

We introduce 6 slicing edges in contracting Ĝhead. The
space and time complexity are 230 and 2.3816 × 1013 respec-
tively. Contracting the Ĝhead results in a tensor vhead of size
245, which we cannot store, so we enumerate 16 entries of

4

the vhead, creating 216 subtasks of tensor network contraction,
each of which corresponds to a configuration of 16 binary
variables.

In each subtask, vhead is sliced to a tensor with size 229,
which works as a boundary for Ĝtail. For the Sycamore cir-
cuits with n = 53 qubits and m = 20 cycles, we set L = 220

and l = 26, i.e. organizing the requested bitstrings to 220 inde-
pendent groups, each of which contains 26 bitstrings. It acts as
another boundary of Ĝtail. In contracting Ĝtail, we introduces
7 local slicing edges, and the space and time complexity in
our sparse state contraction scheme are 230 and 2.9425 × 1013

respectively. The overall time complexity of the entire com-
putation (for finishing 216 subtasks) is 3.489 × 1018, which
is slightly lower than the previous work [16] in computing
a large batch of correlated bitstring amplitudes, and [15] in
computing a small batch of correlated bitstrings.

In contracting Ĝtail, there are 5 slicing edges associated
with a companion edge. Together with the 16 companion
edges in enumerating vhead, there are totally k = 21 com-
panion edges. We do further low-rank approximations on the
k = 21 associated fSim gates, decreasing the fidelity by a fac-
tor

∏21
i=1[sin2(θi) + 1]/2 ≈ 0.9565, where θi in the equation

denotes the parameters of involved fSim gates. Together with
the fidelity decreasing introduced in hole drilling, the final fi-
delity is estimated as

Festimate = 2−8 × 0.9565 ≈ 0.0037. (2)

To increase the GPU efficiency, the branch merge strategy
[16, 27] was adopted during the contraction. After branch
merging, the GPU efficiency is 31.76% for Ĝhead and 14.27%
for Ĝtail, the overall efficiency is 18.85%. We use the Com-
plex64 as data type in contraction. The contraction time of
Ĝhead for one subtask is around 112 sec and that of Ĝtail is
around 315 sec, summing to 427 sec for completing a single
subtask. The entire simulation with 216 subtasks is finished
in about 15 h using a computational cluster with 512 GPUs.
Detailed data about the complexity, estimated fidelity, GPU
efficiency are listed in the Supplemental Material [20].

By summing over 216 paths, Ĝ is contracted. The results
are 226 bitstrings amplitudes grouped into 220 uncorrelated
groups corresponding to partial bitstrings x ∈ {1, 0}47 that
are uniformly and randomly selected. Each group is com-
posed of 26 = 64 correlated bitstrings corresponding to 6
open qubits. As a sanity check, we compute the squared norm
N =

∑220

i=1
∑64
µ=1 |ψ̂

µ
i |

2 of the sparse state by summing only a
fraction of total paths, and compare to the expected fidelity
with partial summation (i.e. the fraction of the paths). The
result are shown in Fig. 3 right, where we can see that they
coincide to each other. Using the norm of the sparse state we
can estimate the normalization factor of the approximate dis-
tribution as 227N , and compute the approximate probability
of bitstrings. The histogram of the probability is plotted in
Fig. 3 left, where we can see that it fits very well to the Porter-
Thomas distribution.

Finally we generate 220 uncorrelated bitstrings from the dis-
tribution of the sparse state using the MCMC importance sam-
pling. The other method that we have tried is the frugal sam-
pling which is guaranteed to work well [1, 11] as the distribu-
tion fits to the Porter-Thomas distribution.

0 2 4 6 8 10
Np

10 4

10 3

10 2

10 1

100

Pr
(N

p)

2 112 10 2 9 2 8

Estimated fidelity

2 11

2 10

2 9

2 8

Sq
ua

re
d

no
rm

FIG. 3. (Left:) Histogram of approximate bitstring probabilities
p(s) = |ψ̂(s)|2/Ns for 226 bitstrings obtained from the Sycamore cir-
cuits with n = 53 qubits and m = 20 cycles. Ns is the norm factor
and N = 2n. The estimated fidelity ψ̂(s) to the true final state ψ(s)
is F ≈ 0.0037. The red line denotes the Porter Thomas distribu-
tion. (Right:) Comparison between the estimated fidelity (blue lines)
and the norm factor of ψ̂L(s) obtained by summing over a fraction of
paths.

Discussions. — We have presented a tensor network
method for solving the approximate (uncorrelated) sampling
problem of the Sycamore quantum circuits which was thought
to be impossible for classical computations. Using our algo-
rithm the simulation for the Sycamore circuits with n = 53
qubits and m = 20 cycles is completed in about 15 hours us-
ing 512 V100 GPUs. There are several places that the pro-
posed algorithms can be further speed up. First, our con-
traction algorithm is straightforwardly implemented using Py-
torch. We expect that using a library that is more suitable for
tensor contractions, such as the cuQuantum [28], the compu-
tational efficiency can be greatly increased. Second, in recent
days a modern supercomputer could achieve a performance
of ExaFLOPS (1018 floating-point operations per second). If
our simulation of the quantum supremacy circuits (with about
2.79 × 1019 floating-point operations without branch merg-
ing) can be implemented in a modern supercomputer with
high efficiency, in principle, the overall simulation time can
be reduced to a few dozens of seconds, which is faster than
Google’s hardware experiments.

The Sycamore circuit files are retrieved from [29], and the
circuits are loaded with Cirq [30] script contained in the data
repository and converted to the tensor network G. Our con-
traction code is implemented using Pytorch (version 1.7.2)
with cudatoolkit (version 10.1). The samples and the con-
traction code together with the contraction orders and slicing
indices for reproducing our results are available at [31]. The
computation was carried out at the Cloud Brain I Computing
Facility at the Peng Cheng Laboratory and HPC cluster of ITP,
CAS. We acknowledge Pengxiang Xu for help in performing
computations on the Cloud Brain computers. We also thank
Xun Gao, Ying Li, Lei Wang, Song Cheng, and Xiao Yuan for

5

helpful discussions. P.Z. was supported by Chinese Academy
of Sciences Grant No. QYZDB-SSW-SYS032, and Projects
No. 11747601 and No. 11975294 of National Natural Science
Foundation of China.

∗ panzhang@itp.ac.cn
[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,

Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,
Fernando GSL Brandao, David A Buell, et al., “Quantum
supremacy using a programmable superconducting processor,”
Nature 574, 505–510 (2019).

[2] Scott Aaronson and Lijie Chen, “Complexity-theoretic foun-
dations of quantum supremacy experiments,” arXiv preprint
arXiv:1612.05903 (2016).

[3] Adam Bouland, Bill Fefferman, Chinmay Nirkhe, and Umesh
Vazirani, “On the complexity and verification of quantum ran-
dom circuit sampling,” Nature Physics 15, 159–163 (2019).

[4] Ramis Movassagh, “Quantum supremacy and random circuits,”
arXiv preprint arXiv:1909.06210 (2019).

[5] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and
Hartmut Neven, “Simulation of low-depth quantum circuits
as complex undirected graphical models,” arXiv preprint
arXiv:1712.05384 (2017).

[6] Scott Aaronson and Sam Gunn, “On the classical hardness of
spoofing linear cross-entropy benchmarking,” arXiv preprint
arXiv:1910.12085 (2019).

[7] Alexander Zlokapa, Sergio Boixo, and Daniel Lidar, “Bound-
aries of quantum supremacy via random circuit sampling,”
arXiv preprint arXiv:2005.02464 (2020).

[8] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan
Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M
Martinis, and Hartmut Neven, “Characterizing quantum
supremacy in near-term devices,” Nature Physics 14, 595
(2018).

[9] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng
Chen, Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du,
Daojin Fan, et al., “Strong quantum computational advantage
using a superconducting quantum processor,” Physical Review
Letters 127, 180501 (2021).

[10] Qingling Zhu, Sirui Cao, Fusheng Chen, Ming-Cheng Chen,
Xiawei Chen, Tung-Hsun Chung, Hui Deng, Yajie Du, Daojin
Fan, Ming Gong, et al., “Quantum computational advantage via
60-qubit 24-cycle random circuit sampling,” Science Bulletin
(2022).

[11] Igor L Markov, Aneeqa Fatima, Sergei V Isakov, and Sergio
Boixo, “Quantum supremacy is both closer and farther than it
appears,” arXiv preprint arXiv:1807.10749 (2018).

[12] Jianxin Chen, Fang Zhang, Mingcheng Chen, Cupjin Huang,
Michael Newman, and Yaoyun Shi, “Classical simula-
tion of intermediate-size quantum circuits,” arXiv preprint
arXiv:1805.01450 (2018).

[13] Chu Guo, Yong Liu, Min Xiong, Shichuan Xue, Xiang Fu,
Anqi Huang, Xiaogang Qiang, Ping Xu, Junhua Liu, Shenggen
Zheng, He-Liang Huang, Mingtang Deng, Dario Poletti, Wan-
Su Bao, and Junjie Wu, “General-purpose quantum circuit
simulator with Projected Entangled-Pair States and the quan-
tum supremacy frontier,” Physical Review Letters 123, 190501
(2019).

[14] Johnnie Gray and Stefanos Kourtis, “Hyper-optimized tensor
network contraction,” Quantum 5, 410 (2021).

[15] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai, Xun
Gao, Zhengxiong Tian, Junyin Wu, Haihong Xu, Huanjun Yu,
Bo Yuan, et al., “Classical simulation of quantum supremacy
circuits,” arXiv preprint arXiv:2005.06787 (2020).

[16] Feng Pan and Pan Zhang, “Simulation of Quantum Circuits Us-
ing the Big-Batch Tensor Network Method,” Physical Review
Letters 128, 030501 (2022).

[17] Haohuan Fu, Yuling Yang, Jiawei Song, Pengpeng Zhao, Zhen
Wang, Dajia Peng, Huarong Chen, Chu Guo, Heliang Huang,
Wenzhao Wu, et al., “Closing the” quantum supremacy”
gap: achieving real-time simulation of a random quantum
circuit using a new sunway supercomputer,” arXiv preprint
arXiv:2110.14502 (2021).

[18] Xin Liu, Chu Guo, Yong Liu, Yuling Yang, Jiawei Song, Jie
Gao, Zhen Wang, Wenzhao Wu, Dajia Peng, Pengpeng Zhao,
Fang Li, He-Liang Huang, Haohuan Fu, and Dexun Chen, “Re-
defining the quantum supremacy baseline with a new genera-
tion sunway supercomputer,” arXiv preprint arXiv:2111.01066
(2021).

[19] Xun Gao, Marcin Kalinowski, Chi-Ning Chou, Mikhail D
Lukin, Boaz Barak, and Soonwon Choi, “Limitations of lin-
ear cross-entropy as a measure for quantum advantage,” arXiv
preprint arXiv:2112.01657 (2021).

[20] See Supplemental Material for details about the explicit head-
tail splitting of the circuits, the sparse-state contraction method,
slicing technique, validations of the approximate sampling
method and detailed data about the complexity, estimated fi-
delity, GPU efficiency.

[21] Yiqing Zhou, E Miles Stoudenmire, and Xavier Waintal, “What
limits the simulation of quantum computers?” Physical Review
X 10, 041038 (2020).

[22] Feng Pan, Pengfei Zhou, Sujie Li, and Pan Zhang, “Contract-
ing arbitrary tensor networks: general approximate algorithm
and applications in graphical models and quantum circuit sim-
ulations,” Physical Review Letters 125, 060503 (2020).

[23] Mark EJ Newman and Gerard T Barkema, Monte Carlo meth-
ods in statistical physics chapter 1-4 (Clarendon Press, 1999).

[24] Charles E Porter and Robert G Thomas, “Fluctuations of nu-
clear reaction widths,” Physical Review 104, 483 (1956).

[25] Tómas A Brody, Jorge Flores, J Bruce French, PA Mello,
A Pandey, and Samuel SM Wong, “Random-matrix physics:
spectrum and strength fluctuations,” Reviews of Modern
Physics 53, 385 (1981).

[26] Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christo-
pher Henze, Eleanor Rieffel, Rupak Biswas, and Salvatore
Mandrà, “A flexible high-performance simulator for verifying
and benchmarking quantum circuits implemented on real hard-
ware,” npj Quantum Information 5, 1–16 (2019).

[27] Cupjin Huang, Fang Zhang, Michael Newman, Xiaotong Ni,
Dawei Ding, Junjie Cai, Xun Gao, Tenghui Wang, Feng Wu,
Gengyan Zhang, Hsiang-Sheng Ku, Zhengxiong Tian, Jun-
yin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy,
Yaoyun Shi, Hui-Hai Zhao, Chunqing Deng, and Jianxin Chen,
“Efficient parallelization of tensor network contraction for sim-
ulating quantum computation,” Nature Computational Science
1, 578–587 (2021).

[28] https://developer.nvidia.com/cuquantum-sdk.
[29] Martinis, John M. et al. (2021), Quantum supremacy using

a programmable superconducting processor, Dryad, Dataset,
https://doi.org/10.5061/dryad.k6t1rj8.

[30] Cirq Developers, “Cirq,” (2021),
See full list of authors on Github:
https://github.com/quantumlib/Cirq/graphs/contributors.

[31] https://github.com/Fanerst/solve_sycamore.

mailto:panzhang@itp.ac.cn
https://www.nature.com/articles/s41586%20019%201666%205
https://arxiv.org/abs/1612.05903
https://arxiv.org/abs/1612.05903
https://www.nature.com/articles/s41567-018-0318-2
https://arxiv.org/abs/1909.06210
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1712.05384
https://arxiv.org/abs/1910.12085
https://arxiv.org/abs/1910.12085
https://arxiv.org/abs/2005.02464
https://www.nature.com/articles/s41567-018-0124-x
https://www.nature.com/articles/s41567-018-0124-x
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.180501
https://doi.org/10.1016/j.scib.2021.10.017
https://doi.org/10.1016/j.scib.2021.10.017
https://arxiv.org/abs/1807.10749
https://arxiv.org/abs/1805.01450
https://arxiv.org/abs/1805.01450
http://dx.doi.org/10.1103/PhysRevLett.123.190501
http://dx.doi.org/10.1103/PhysRevLett.123.190501
https://quantum-journal.org/papers/q-2021-03-15-410/
https://arxiv.org/abs/2005.06787
http://dx.doi.org/ 10.1103/PhysRevLett.128.030501
http://dx.doi.org/ 10.1103/PhysRevLett.128.030501
http://arxiv.org/abs/2110.14502
http://arxiv.org/abs/2110.14502
http://arxiv.org/abs/2111.01066
http://arxiv.org/abs/2111.01066
http://arxiv.org/abs/2112.01657
http://arxiv.org/abs/2112.01657
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041038
https://journals.aps.org/prx/abstract/10.1103/PhysRevX.10.041038
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.060503
https://journals.aps.org/pr/abstract/10.1103/PhysRev.104.483
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.53.385
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.53.385
https://www.nature.com/articles/s41534-019-0196-1
http://dx.doi.org/10.1038/s43588-021-00119-7
http://dx.doi.org/10.1038/s43588-021-00119-7
https://developer.nvidia.com/cuquantum-sdk
https://doi.org/10.5061/dryad.k6t1rj8
http://dx.doi.org/10.5281/zenodo.5182845
https://github.com/Fanerst/solve_sycamore

6

[32] Igor L Markov and Yaoyun Shi, “Simulating quantum compu-
tation by contracting tensor networks,” SIAM Journal on Com-
puting 38, 963–981 (2008).

[33] Johnnie Gray and Stefanos Kourtis, “Hyper-optimized tensor
network contraction,” arXiv preprint arXiv:2002.01935 (2020).

[34] Gleb Kalachev, Pavel Panteleev, PengFei Zhou, and Man-
Hong Yung, “Classical Sampling of Random Quantum Circuits
with Bounded Fidelity,” arXiv:2112.15083 [quant-ph] (2021),
arXiv:2112.15083 [quant-ph].

[35] Gleb Kalachev, Pavel Panteleev, and Man-Hong Yung, “Recur-
sive multi-tensor contraction for XEB verification of quantum
circuits,” arXiv preprint arXiv:2108.05665 .

The sparse-state method

In the main text, we have introduced the sparse-state tensor contraction method to calculate amplitudes of 220 uncorrelated
bitstrings in just one tensor network contraction. Here we give a detailed description of how this method works.

First we introduce the details of generating L independent samples using L × l bitstrings. We draw L groups uniformly and
randomly from 2n/l entries. In the simulation of the Sycamore circuit with n = 53 qubits, we specifically set l = 26, meaning
that 6 qubits are chosen as totally open (all the configurations belonging to the subspace appear in the samples). We chose 26

bitstrings for each group because when the final states follows the Porter-Thomas distribution in a random circuit distribution,
sampling methods e.g. the frugal sampling [1, 11] guarantees to give near-perfect samples with l = 64.

Let us denote a sample using a bitstring s ∈ {0, 1}53, and write the bitstring as a concatenation of two sub-bitstrings s = {s1; s2},
with s1 ∈ {0, 1}47 and s2 ∈ {0, 1}6. In detail, we generate L sub-bitstrings {s1} uniformly and randomly out of 247 possible ones
by choosing each of its binary entry by flipping a coin. Then, each s1 is concatenated to all 26 s2 sub-bitstrings to create a group
of size 64, and finally, we arrive at L × l samples.

Fig. 4 illustrates different types of quantum circuit simulation strategies by contracting the corresponding tensor network.
Intuitively, the full amplitude simulation (type (a)) results to all amplitudes of the Hilbert space U |0〉. However, contracting such
a tensor network requires 2n space complexity which is beyond the reach of current computational devices when qubit number
n larger than 50. In order to alleviate the exponentially large storage requirement, the Schrodinger-Feynman algorithm [1, 11]
was introduced. Unfortunately, this method dramatically increases the computational cost.

To mimic the actual measurement procedure in the quantum experiment, the single amplitude simulation (type (b)) was
considered [32, 33], which projects all qubits onto a basis vector in the computational basis |x〉 after execution of the quantum
gates. The contraction result of the tensor network is 〈x|U |0〉, i.e. a single amplitude. In order to calculate all the amplitudes
of m bitstrings sampled from the quantum experiments, the contraction has to be repeated m times. The contraction cost of the
single amplitude simulation will be relatively small since the corresponding tensor network is closed. But if the repetition time
m is large, the overall cost would be unacceptable.

To get a bunch of bitstring amplitudes in one contraction (type (c)), the so-called batch simulation was introduced. The spirit
of the batch simulation is only projecting some of the qubits into a computational basis other than all of them. The result of
the batch simulation is the amplitudes of all bitstrings in a Hilbert subspace on non-projected qubits, the entries of the projected
qubits will be fixed according to the computational basis used. The batch simulation can be used for sampling [15, 26], spoofing
the XEB test [16] and full amplitude simulation [16]. However, to obtain uncorrelated samples one still needs to repeat the batch
contraction a large number of times, making the overall computation not affordable for large circuits.

For the sampling problem of the quantum circuits studied in this paper, a more efficient way is to project the quantum state
onto the set of basis vectors corresponding to the bitstring being sampled, we term it as the sparse-state of the entire Hilbert
space, as illustrated in Fig 4 (d). In this example, there are overall 25 = 32 bitstrings in the Hilbert space (represented by the
checkerboard), but only 10 bitstrings are sampled, corresponding to the brown entries. The sparse-state at the end of the quantum
circuit will guide the contraction of the corresponding tensor network. So amplitudes of the sparse-state can be computed by
contracting the tensor network for just once.

In order to achieve such a goal, the sparse-state contraction scheme is introduced in the main text. Here we use a small example
to illustrate how it works. Suppose we would like to simulate a quantum circuit with three qubits and obtain the amplitudes of
{111, 010, 000}, as shown in Fig. 5(a) (here the front part of the circuit has been contracted into a big tensor lying at the left hand,
and the brown part in the above checkerboard represents bitstrings we want to obtain). Initially, all the qubits at the final state
will be ”open”. After contracting the tensors, within the red dashed line in (a), we will get the tensor network in (b). During the
contraction, qubit 2 and qubit 3 are merged together. If we check the target bitstrings, we find that they have only three unique
configurations at the qubit 2 and qubit 3 locations: {11, 10, 00}. Thus when qubit 2 and 3 merge, only three out of four entries
need to be calculated, as illustrated by the checkerboard in Fig. 5(b). After that, the whole tensor network will be contracted
together and all the three qubits will be merged together into a vector in the Fig. 5(c). When qubit 1 is merged with qubit 2 and
3, the target bitstrings having length 2 and length 3 merged into a length-3 vector, and the blank entries shown in Fig. 5(c) will
not be calculated. After all the contractions, we obtain the final contraction result which is a vector whose entries represent the

https://doi.org/10.1137/050644756
https://doi.org/10.1137/050644756
https://arxiv.org/abs/2002.01935
http://arxiv.org/abs/2112.15083
http://arxiv.org/abs/2112.15083
http://arxiv.org/abs/2108.05665

7

(a)

(c)

(b)

(d)

FIG. 4. Four different types of quantum circuit simulation strategies by contracting the corresponding tensor network. (a) Full amplitude
simulation. (b) Single amplitude simulation. (c) Batch simulation. (d) Sparse-state simulation.

amplitudes of 3 target bitstrings.

(a)

1

2

3

1

2 3

1 2 3

(b) (c)

000010111

01

01

01

01

001011

000010111

FIG. 5. An example to illustrate the sparse-state simulation.

From the above descriptions, we summarize that the key spirit of the sparse-state contraction is that when contracting two
tensors involving qubits at the final state, one should always refer to the target bitstrings and find out which entries of the merged
dimension are required to be calculated. And this is essentially the underlying information about the sparse-state boundary
condition we put at the end of the tensor network associated with the quantum circuit. Since the sparse-state simulation method
avoids all the unnecessary calculation of bitstrings except for the requested ones, it hugely reduces the overall complexity
(especially the space complexity) of tensor network contraction corresponding to the random circuit sampling task, which makes
the classical simulation of quantum supremacy circuits possible.

Details about the numerical simulations

The task of the simulation is to generate 220 independent samples with XEB greater than Google’s value 0.002. The sparse-
state contraction scheme, which can incorporate all bitstring amplitudes calculations into one tensor network contraction, has
been introduced in the main text and the previous section. The method can decrease the overall contraction complexity of
obtaining amplitudes of multiple uncorrelated bitstrings. To solve the practical sampling problem there are still many problems
left, such as the choice of bitstrings to be calculated and the exact computational cost to pass the quantum supremacy. In this
section, we will discuss these problems in detail.

8

Bitstrings choice and sampling details

To pass the XEB test with XEB greater than 0.002, at least one million bitstring samples should be obtained. Even though
we have no information about the final state of the quantum circuit, we can compute a large number of bitstring amplitudes and
probabilities and perform importance sampling from the probability distribution over the bitstrings. Suppose the distribution of
bitstrings is p(x) and L bitstring samples are required, we can calculate l × L bitstring amplitudes and sample L bitstrings. It has
been shown in [11] that if l = 10, the sampled distribution p̂(x) will be pretty close to the true distribution when the underlying
distribution follows the Porter-Thomas distribution. The requirement is all l × L should be distinct and drawn uniformly at
random. We notice that recently, a new sampling technique has been introduced to further decrease the sampling overhead M to
2 [34].

For simulating quantum circuits by tensor network contraction method, the more friendly way to do sampling is the subspace
sampling, which is introduced in [26] and also used by [15]. The subspace sampling method does not require l × L distinct and
uniformly random bitstrings, but L groups of bitstrings, each group contains l bitstrings coming from the same subspace. In this
work we set l = 26 = 64, for the sparse-state contraction of the Sycamore quantum circuit with n = 53 qubits, which means that
we choose 6 qubits to be totally open (all the configurations of that subspace will be in the samples), and project other 47 qubits
into L uniformly random bitstrings at 247 Hilbert subspace. The computational overhead compare to projecting all qubits into
L uniformly random bitstrings can be negligible if the number of open qubits is not that large and their locations are carefully
chosen.

In the practice of simulating Sycamore circuit instance with 53 qubits 20 cycles and sequence ABCDCDAB (There are
several types of circuits considered in Google’s experiments. The supremacy circuits used in the experiments are denoted as
ABCDCDAB, and the simplified version used as verification of the experiments are denoted as EFGH), we choose l = 26 and
L = 220, which leads to overall 226 bitstring amplitudes obtained in one sparse-state contraction. The qubit ids of these 6 open
qubits are [11, 19, 28, 29, 37, 44] corresponding to the qubits layout in [16]. All L bitstrings entries at the remaining 47 qubits
subspace are generated uniformly at random.

Slicing and contraction order

If we adopt the above sampling scheme, the L bitstrings which follow the Porter-Thomas distribution will be obtained, and
their XEB fidelity will be 1, however, the computation requires huge computational resources. Since the samples obtained by
Goggle has XEB around 0.002, there is sill some space left to reduce the computational time by trading off the fidelity. There
are basically two methods to achieve the trade-off.

The first method [11, 15, 26] is to decrease the number of obtained bitstrings L. Intuitively, in general the noisy state of the
quantum circuits can be expressed by

ρ = f |ψ〉〈ψ| + (1 − f)
1
2n (3)

where |ψ〉 = U |ψ0〉 is the ideal state under no noise, f is the fidelity. Then naturally, to obtain one million bitstrings with 0.002
fidelity, one can generate L = 2000 bitstrings with XEB 1 then mix them to 998000 uniformly and randomly generated bitstrings
with 0 fidelity.

The second way is to simplify the tensor network corresponding to the quantum circuit contraction. It has been shown that
if we perform k slicing to the tensor network to make K copies of tensor network contractions, each slicing copy (or path in
the picture of the Feynmann path integral) contributes 1/K to the final fidelity [11]. So summing over f fraction of the overall
slicing copies gives us L bitstrings with fidelity f .

In the simulation of this work, we choose the second way to trade fidelity for the contraction complexity. Here we will firstly
give a brief introduction to the slicing method in tensor network contractions, then discuss how we use the slicing method to
decrease the overall contraction complexity of the simulation of the Sycamore circuits with 53 qubits.

When the space complexity of a tensor network contraction is too large for the computational devices (i.e. GPU in this work),
one needs to select some indices of the tensor network and fix them to some specific values in order to decrease the overall space
complexity and fit the contraction into devices. Each choice of values of indices will lead to a sliced copy of the original tensor
network, and contraction of the sliced copy is called a contraction sub-task. The summation of all sub-tasks results will return
the contraction output of the original tensor network, as shown in Fig. 6.

There are several advantages of slicing in the tensor network corresponding to the random quantum circuits, especially ones
use fSim gates as the two-qubit gates. The first one is that the sliced copies of the tensor network are all orthogonal to each
other, leading to equal contributions to the fidelity. This allows us to sum only a fraction of all sub-tasks and allows an accurate
estimate of the fidelity. The second advantage is that if we treat fSim gates as four-way tensors, slicing one index will make

9

A B

C D

i

j k l

m

A B

C D

i

j l

m

k
=∑

FIG. 6. Illustration of the slicing. The index k is sliced and the contraction of the original tensor network becomes summation of sub-tasks
given different k values.

the slicing of companion index only cost a low fidelity decrease of overall contraction, due to the special low-rank structure of
the fSim gate. A detailed explanation has been given in the main text about how to use fSim slicing to decrease the contraction
complexity and how this kind of slicing will affect the final fidelity.

To obtain bitstring samples with XEB fidelity greater than 0.002, we choose to sum 1/28 of the overall sub-tasks, which leads
to 8 breaking edges in the main text. Using the property of the fSim gates, we are able to remove 4 two-qubit gates out of the
original circuit. We can also do rank one approximations to companion edges of some slicing indices’, this will give us a Fa

factor of the overall fidelity. Thus the final estimate of the bitstring sample fidelity will be Festimate = Fa/28.

The choice of slicing indices depends on the contraction order, a detailed explanation of how contraction order is determined
has been given in the main text, in the following text we will explain how we choose the two-qubit gates to remove and how to
remove the associated companion edges in the tensor network.

The tensor network corresponding to the Sycamore quantum circuit will be divided into the head and tail parts in order to
determine the contraction order, as Fig. 12 shows. Since the tail part involves all the final qubits, there will be at least 53 tensor
indices at the interface between the head and tail part. In order to make the intermediate result of head contraction fit into a
GPU with 32 GB of memory, 24 indices in the interface need to be sliced. The slicing edges in the interface are “global slicing
edges” compared to ”local slicing edges” which located within the head and tail parts. Each sub-task of a specific slicing-edge
configuration gives 1/2k of the overall contraction cost (k is the number of slicing edges in the interface) while the local slicing
edges do not affect the contraction cost of the counterpart. For the Sycamore circuits with 53 qubits, we set all 8 breaking
edges on the interface, which leads to 4 removed two-qubit gates. This increases the number of sub-tasks to 216. After this,
we also perform the rank one approximation to companion edges associated with 16 slicing edges on the interface, which also
significantly decreases the overall contraction cost.

We also need to put slicing inside the head tensor network and the tail tensor network, which is termed as “local slicing edges”
because both the head and tail tensor network contraction require space complexity greater than 230. The number of slicing edges
of the head tensor network is set to 6 in the Sycamore circuits with 53 qubits, and we do not perform rank one approximation to
companion edges of the slicing edges. The number of slicing edges in the tail tensor network is set to 7, and we perform rank
one approximation to companion edges of 5 slicing edges which are detected to decrease the contraction cost of the tail part.

Computational cost

In Tab. I we list the detailed data in the contractions of the Sycamore circuits with n = 53 qubits and m = 20 cycles.

10

Data Original Branch merge
Tc head one sub-task 2.3816 × 1013 6.967 × 1013

Tc tail one sub-task 2.9425 × 1013 8.796 × 1013

Overall Tc (216 sub-tasks) 3.489 × 1018 1.033 × 1019

Space complexity 230

of slicing edges in Ĝhead 6
of slicing edges in Ĝtail 7

of slicing edges in the interface 16
of companion edges in Ĝhead 0
of companion edges in Ĝtail 5

of companion edges in the interface 16
Fidelity of rank one approximation 0.9564714760983217

GPU efficiency head - 31.76%
GPU efficiency tail - 14.27%
Overall efficiency - 18.85%

TABLE I. Detailed data in the contractions of the Sycamore circuits with n = 53 qubits and m = 20 cycles. Tc represents the time complexity.
The companion edges in the fSim slicing can be used to decrease the contraction complexity. In the simulation, we include no companion
edges in the head, 5 out of 7 in the tail, and all 16 in the interface. Some companion edges are excluded because they do not contribute much
to the overall complexity and including them will result in a drop in fidelity. The calculated fidelity comes from 21 companion edges, each
of them contributes a factor (sin2 θ + 1)/2 to the fidelity (θ is the parameter of the associated fSim gate). The GPU efficiencies are calculated
by 8 · Tc/(P · t) where P is the single-precision performance of GPU, t is the computation time and 8 is the factor of matrix multiplication for
complex number (8 · Tc denotes the overall floating-point operations of the contraction).

The singular values of the sliced fSim gate

Here we give a detailed calculation of the singular values of the sliced fSim gate. The matrix form of the fSim gate is

fSim(θ, φ) =


1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iφ

 . (4)

with θ ≈ π
2 . In the above matrix, the first dimension corresponds to the dimension of two input qubits and the first dimension

corresponds to the dimension of two output qubits of the fSim gate. We consider two kinds of slicing to the fSim gate. The first
slicing is to pin two input indices α and β. I.e., two input edges of the fSim gate are cut, as shown in the top panel of Fig. 7. This

is equivalent to applying two Pauli errors gate as A =

1 0
0 0

 ⊗ 1 0
0 0

 · fSim(θ, φ),. The resulting matrix is B =

1 0
0 0

, with the

input dimension and output dimension corresponding to the first and second output qubits. Notice that B can be evaluated as

B =

1
0

 ⊗ 1
0

, which also pins the output qubits. So in the picture of tensor network diagram, the entire fSim gate is compltely

replaced by two (1, 0) vectors, which reduces the computational complexity heavily. Notice that the rank-one structure is exact
so the replacing step does not decrease fidelity.

The second slicing situation we consider is pinning (i.e. fixing the index of) one input edge of the fSim gate, as shown in
as illustrated in Fig. 7 bottom (e.g. the top left edge γ of tensor D is cut). This gives a three-way tensor F. Although the
decompositional rank of F on the bottom right index ω is 2, the corresponding singular values might be are heavily imbalanced
for the Sycamore circuits with θ ≈ π/2 so that we can perform accurate low-rank approximations. Now let us compute explicitly
the eigenvalues of the resulting matrix by reshaping E for all 4 possible configurations of slicing: pinning the first input qubit to
0; pinning the first input qubit to 1; pinning the second input qubit to 0; and pinning the second input qubit to 1.

1. Pinning the first input qubit to 0. The fSim gate becomes

F0∗∗∗ =

1 0 0 0
0 cos θ −i sin θ 0



11

where F0∗∗∗ has 4 indices, corresponding to the first input qubit, the second input qubit, the first output qubit, and the
second output qubit respectively. 0 means that the index is pinned to the first value, and ∗ means that the index can take 2
values and hence is not sliced. Reshaping the above matrix by grouping the first three dimensions of the gate, we have

F(0∗∗)∗ =


1 0
0 0
0 cos θ

−i sin θ 0


and we can see that the squared singular values are given by

F†(0∗∗)∗F(0∗∗)∗ =

1 + sin2 θ 0
0 cos2 θ


2. Pinning the second input qubit to 0. The fSim gate becomes

F∗0∗∗ =

1 0 0 0
0 −i sin θ cos θ 0


By swapping the third and the fourth dimension, we have

F∗0∗∗ =

1 0 0 0
0 cos θ −i sin θ 0


Reshaping the above matrix by grouping the first three dimensions of the gate, we have

F(∗0∗)∗ =


1 0
0 0
0 cos θ

−i sin θ 0


and we can see that the squared singular values are given by

F†(∗0∗)∗F(∗0∗)∗ =

1 + sin2 θ 0
0 cos2 θ


3. Pinning the second input qubit to 0. The fSim gate becomes

F1∗∗∗ =

0 −i sin θ cos θ 0
0 0 0 e−iφ


Reshaping the above matrix by grouping the first three dimensions of the gate, we have

F(1∗∗)∗ =


0 −i sin θ

cos θ 0
0 0
0 e−iφ


and we can see that the squared singular values are given by

F†(1∗∗)∗F(1∗∗)∗ =

cos2 θ 0
0 1 + sin2 θ


4. Pinning the second input qubit to 1. The fSim gate becomes

F∗1∗∗ =

0 cos θ −i sin θ 0
0 0 0 e−iφ



12

By swapping the third and the fourth dimension, we have

F∗1∗∗ =

0 −i sin θ cos θ 0
0 0 0 e−iφ


Reshaping the above matrix by grouping the first three dimensions of the gate, we have

F(∗1∗)∗ =


0 −i sin θ

cos θ 0
0 0
0 e−iφ


and we can see that the squared singular values are given by

F†(∗1∗)∗F(∗1∗)∗ =

cos2 θ 0
0 1 + sin2 θ


Here we can see that although the decompositional rank of F on the bottom right index ω is 2, the corresponding squared sin-
gular values,

(
sin2(θ) + 1, cos2(θ)

)
, are heavily imbalanced in the Sycamore circuits with θ ≈ π/2. So we can do a rank-one

approximation by dropping the singular vectors corresponding to the squared singular value cos2(θ). This rank-one approxima-
tion decreases the fidelity approximately by a factor (sin2(θ) + 1)/2, while effectively break another edge ω, which we term as
the companion edge in the tensor network.

A B C

D E F

α

β

γ

ω ω

FIG. 7. Two situations that we can explore the low-rank structures. (Top:) When two indices α, β are pinned to 0 for the fSim gate. The
result is a rank-one matrix B, effectively equals to a scalar c = 1 in tensor network. (Bottom:) When one index γ of a fSim gate is pinned, the
resulting tensor E has decompositional rank 2 but with imbalanced singular values

(√
sin2(θ) + 1, cos(θ)

)
with θ ≈ π/2.

Validation of our method using smaller Sycamore circuits

The estimated fidelity Festimate ≈ 0.0037 of one million samples generated using our method does not require defining a proxy
of fidelity, such as the XEB [1]. But one can use XEB to verify the fidelity value that we claim, e.g. by utilizing the verification
method reported in [35]. However verifying one million samples for n = 53 qubits, m = 20 cycles cost a huge amount of
computational resources that we can not afford. So in this section, we show validation of our approximate sampling method

13

using smaller Sycamore circuits where we can compute the exact amplitudes of the original circuit, and easily verify the fidelity
of ψ̂ and XEB of generated samples.

We choose a Sycamore circuit with n = 30 qubits, m = 14 cycles, and sequence EFGH, compute and store the exact final state
ψ. Then we remove K edges associated with fSim gates together with K companion edges in the middle of the circuit, mimicking
what we did for the circuits with n = 53 qubits and m = 20 cycles. Then we compute the corresponding ψK exactly by evaluating
the state vector and compute the fidelity F. In Fig. 8, we compare the true fidelity F and the estimated fidelity Festimate (using the
method described in the main text), we can see from the figure that they coincide very well. From the probability distribution
associated with the approximate state vector P̂ = |ψ̂|2, we can obtain a set of independent samples using the reject sampling
method described in the main text. Analogous to the sampling procedure we performed for the circuits with n = 53 qubits and
m = 20 cycles. On the circuit with n = 30 qubits and m = 14 cycles we also computed approximate probabilities {P̂(si)} for 226

bitstrings {si} which are grouped into 220 groups. Then we sample one bitstring from each group using the rejection sampling
with Markov chains and finally produce 220 uncorrelated bitstrings {si|i = 1, 2, · · · 220}. Since we have stored the exact state
vector, we can compute exact probabilities P(si) for each sample and evaluate the XEB for the samples using

FXEB =
230

220

220∑
i=1

P(si) − 1.

The sampling and XEB calculation are repeated for 15 times and the average XEB values are shown in Fig. 8 and compared with
the estimated fidelity Festimate as well as the true fidelity F, which we can see all of them agree to each other. The right panel of
Fig. 8 shows more clearly that the error bars are small and the XEB values are significantly greater than Google’s value of 0.002.

In Fig. 9, we show comparisons between the estimated fidelity and the computed XEB for circuits with K = 8 cuts, different
number of qubits, and errorbars obtained over different sets of samples. We can see that the fidelity of the sparse state and the
XEB of obtained samples are stably consistent with an increasing the number of qubits.

In Fig. 10, we compare the entropy estimated using 220 samples and the entropy of the distribution corresponding to the sparse
state for Sycamore circuits with n = 30 qubits. We can see that the entropy estimated using the samples coincides very well with
the entropy of the distribution that the samples came from. This indicates that the sampling algorithm indeed satisfies similar
properties of the underline distribution.

In Fig. 11 we evaluated the XEB of samples as a function of group size l (see main text), and compare the XEB values to the
exact fidelity of the approximate state ψ̂K=8(s), with K = 8 cuts for the Sycamore circuits with n = 30 qubits, m = 14 cycles, and
EFGH sequence. From the figure, we can see that l = 64 is sufficient for the sampling tas.

1 2 3 4 5 6 7 8
K

0.0

0.1

0.2

0.3

0.4

0.5

Fid
el

ity

fidelity
estimated fidelity
logXEB
XEB

6 7 8
K

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Fid
el

ity

fidelity
estimated fidelity
logXEB
XEB

FIG. 8. Left: Comparison between the exact fidelity of approximate state ψ̂K(s), estimated fidelity (computed using the method described in the
main text), the logarithmic XEB [1] and the XEB value of 220 bitstrings sampled from P̂(s) = |ψ̂K(s)|2. The approximate state ψ̂K is obtained
by breaking K edges in the tensor network, for the Sycamore circuits with n = 30 qubits, m = 14 cycles, and EFGH sequence. Each data point
is averaged over 15 independent sets of samples of size 220. The errorbar is much smaller than the symbol size. Right: The enlarged figure of
the left panel focusing on K = 6, 7, and 8.

Contraction order

Here we list the contraction order that has been used in our simulation of the Sycamore circuit with n = 53 qubits, m = 20
cycles, containing the Zig-Zag ordering for the tail part of the tensor network contraction.

14

30 38 45
number of qubits

0.000

0.002

0.004

0.006

0.008

0.010
estimated fidelity
fildeity
XEB fidelity

FIG. 9. Left: Comparison between the XEB of 220 samples, estimated fidelity (computed using the method described in the main text), and
the exact fidelity of approximate state ψ̂K(s), for the Sycamore quantum circuits with n = 30, 38, and 45 qubits, m = 14 cycles, and EFGH
sequence. Each data point is averaged over 30 independent sets of 220 bitstring samples.

1 2 3 4 5 6 7 8
K

20.370

20.371

20.372

20.372

20.373

exact entropy
estimated entropy

FIG. 10. The exact entropy of the approximate state distribution of |ψ̂K(s)|2 compared with the entropy estimated using 220 uncorrelated samples
generated using the sampling method proposed in the main text, for K cuts in the Sycamore circuits with n = 30 qubits, m = 14 cycles, and
EFGH sequence. Each data point is averaged over 15 independent sets of samples of size 220.

After contracting two tensors at location i and j, the resulting new tensor will be put back to location i. In the following order,
the contractions from (47, 70) to (192, 234) belong to the head part, and the rest belong to the tail part. The head-tail spliting and
the IDs of tensors are explicitly illustrated in Fig. 12 and Fig. 13. In the figure, contractions involving the C11 to D20 belong
to the tail part, where the contraction order is the zig-zag order manually designed by us. The zig-zag order starts from the left
boundary (which separates the head and the tail networks) to the right boundary (the sparse state), then back to the left boundary.
In the figure, the contraction sequence is illustrated using the white and blue lines over the gates, white for the first zig and blue
for the first zag. The following order can be easily repeated accordingly.

[(47, 70), (27, 47), (117, 136), (27, 117), (35, 55), (78, 35), (9, 78), (27, 9), (5, 13), (31, 74), (51, 31), (94, 51), (75, 94), (32,
52), (75, 32), (79, 98), (95, 118), (175, 193), (156, 175), (132, 156), (183, 132), (121, 164), (140, 121), (183, 140), (113, 183),
(137, 152), (110, 137), (180, 202), (161, 180), (110, 161), (44, 66), (23, 44), (67, 87), (23, 67), (38, 81), (58, 38), (24, 45), (186,

15

0 10 20 30 40 50 60
l

0.000

0.001

0.002

0.003

0.004

XE
B

fidelity

FIG. 11. The XEB computed using 220 uncorrelated samples as a function of a number of group size l for the Sycamore circuits with n = 30
qubits, m = 14 cycles, and EFGH sequence, and with K = 8 cuts. Each data point is averaged over 15 independent sets of samples of size 220

The horizontal dashed line is the exact fidelity of the approximate state ψ̂K=8(s).

FIG. 12. The 3-dimensional tensor network Ĝ (corresponding to the Sycamore circuit of n = 53 qubits, m = 20 cycles) is split into two parts,
Ĝhead (left) and Ĝtail (right).

208), (124, 143), (167, 124), (60, 83), (103, 60), (40, 103), (145, 169), (126, 145), (57, 100), (80, 57), (77, 97), (54, 77), (253,
273), (230, 253), (210, 230), (125, 144), (168, 125), (210, 168), (73, 93), (50, 73), (116, 50), (26, 69), (46, 26), (209, 228), (142,
166), (123, 142), (229, 252), (184, 206), (207, 226), (22, 43), (65, 22), (21, 65), (42, 64), (85, 42), (21, 85), (86, 21), (1, 86), (0,
61), (41, 62), (19, 41), (128, 171), (149, 128), (176, 198), (199, 218), (147, 170), (127, 147), (131, 148), (106, 131), (222, 246),
(203, 222), (223, 203), (120, 163), (139, 120), (182, 139), (154, 182), (214, 237), (194, 214), (215, 194), (189, 211), (232, 189),
(212, 255), (234, 212), (191, 213), (234, 191), (159, 178), (27, 5), (27, 75), (27, 79), (27, 95), (76, 27), (113, 110), (90, 113),
(76, 90), (71, 76), (71, 23), (28, 10), (28, 58), (28, 71), (56, 16), (56, 36), (56, 28), (14, 24), (14, 6), (14, 56), (101, 186), (101,
167), (101, 14), (18, 82), (18, 40), (101, 18), (33, 53), (33, 39), (101, 33), (17, 48), (17, 37), (101, 17), (11, 59), (11, 29), (101,
11), (15, 25), (15, 7), (101, 15), (34, 126), (34, 122), (101, 34), (80, 12), (80, 99), (101, 80), (4, 102), (4, 54), (101, 4), (96, 210),
(96, 119), (101, 96), (188, 141), (188, 165), (101, 188), (114, 72), (114, 91), (101, 114), (49, 30), (49, 3), (101, 49), (8, 116),
(8, 46), (101, 8), (68, 155), (68, 88), (101, 68), (111, 138), (111, 92), (101, 111), (187, 162), (187, 209), (101, 187), (115, 123),
(115, 229), (101, 115), (184, 157), (184, 89), (101, 184), (133, 107), (133, 207), (101, 133), (185, 158), (185, 134), (101, 185),
(108, 1), (101, 108), (109, 135), (109, 2), (101, 109), (0, 19), (0, 20), (101, 0), (63, 149), (101, 63), (84, 105), (84, 176), (101,
84), (104, 129), (104, 130), (101, 104), (150, 177), (150, 153), (101, 150), (181, 199), (181, 223), (101, 181), (127, 112), (101,
127), (106, 173), (101, 106), (146, 172), (146, 151), (101, 146), (190, 232), (190, 204), (101, 190), (174, 195), (192, 174), (192,
154), (192, 101), (159, 215), (192, 159), (192, 234), (359, 402), (359, 403), (360, 404), (382, 405), (382, 406), (361, 407), (383,
408), (383, 409), (384, 410), (384, 411), (363, 412), (385, 414), (385, 415), (386, 416), (386, 417), (387, 418), (387, 419), (367,
420), (388, 422), (388, 423), (389, 424), (389, 425), (390, 426), (390, 427), (391, 428), (391, 429), (392, 432), (393, 433), (393,
434), (394, 435), (394, 436), (395, 437), (395, 438), (396, 440), (396, 441), (397, 442), (397, 443), (398, 444), (398, 445), (399,

16

447), (399, 448), (400, 449), (400, 450), (381, 451), (401, 452), (401, 453), (339, 454), (179, 160), (197, 179), (217, 197), (241,
217), (261, 241), (225, 205), (249, 225), (269, 249), (245, 221), (265, 245), (284, 265), (271, 251), (292, 271), (257, 236), (277,
257), (196, 216), (196, 200), (192, 196), (227, 250), (227, 224), (192, 227), (219, 220), (219, 242), (192, 219), (231, 233), (231,
254), (192, 231), (235, 238), (235, 256), (192, 235), (239, 243), (239, 259), (192, 239), (247, 258), (247, 266), (192, 247), (262,
282), (262, 263), (192, 262), (267, 270), (267, 286), (192, 267), (272, 274), (272, 293), (192, 272), (275, 276), (275, 297), (192,
275), (278, 279), (278, 299), (192, 278), (285, 290), (285, 304), (192, 285), (301, 305), (301, 318), (192, 301), (309, 312), (309,
324), (192, 309), (320, 321), (320, 361), (192, 320), (316, 325), (316, 342), (192, 316), (328, 329), (328, 347), (192, 328), (333,
336), (333, 352), (192, 333), (344, 348), (344, 355), (192, 344), (366, 363), (367, 366), (192, 367), (375, 371), (387, 375), (192,
387), (261, 281), (261, 300), (261, 317), (261, 391), (192, 261), (269, 289), (269, 308), (269, 323), (269, 395), (192, 269), (340,
343), (340, 362), (340, 359), (192, 340), (295, 314), (295, 332), (295, 351), (295, 384), (192, 295), (338, 357), (338, 370), (338,
390), (192, 338), (378, 398), (382, 360), (378, 382), (378, 383), (192, 378), (386, 389), (386, 394), (386, 397), (386, 365), (192,
386), (400, 401), (400, 380), (400, 374), (192, 400), (385, 393), (385, 399), (341, 298), (341, 277), (341, 319), (341, 346), (385,
341), (192, 385), (369, 388), (303, 327), (303, 354), (369, 303), (192, 369), (377, 396), (284, 311), (284, 335), (284, 377), (192,
284), (381, 339), (381, 358), (381, 315), (381, 292), (381, 296), (381, 294), (381, 337), (381, 356), (381, 379), (192, 381), (313,
331), (313, 350), (313, 373), (313, 288), (313, 307), (313, 322), (313, 280), (313, 364), (313, 260), (313, 268), (313, 240), (192,
313), (248, 291), (248, 334), (248, 310), (248, 353), (248, 283), (192, 248), (326, 302), (326, 345), (326, 264), (326, 287), (326,
306), (192, 326), (392, 372), (392, 244), (392, 201), (392, 349), (392, 330), (392, 368), (392, 376), (192, 392)].

17

160 156 152 149 147 146

164 161 157 153 150 148

167 165 162 158 154 151

169 168 166 163 159 155

188 187 185 182 178

186 184 181 177 174

183 180 176 173 172

179 175 171 170 201 197 193 189

205 202 198 194 191 190

208 206 203 199 195 192

210 209 207 204 200 196

230 229 227 224 220

228 226 223 219 216

225 222 218 215 213

221 217 214 212 211

244 240 236 232 231

248 245 241 237 234 233

251 249 246 242 238 235

253 252 250 247 243 239

273 272 270 267 263

271 269 266 262 259

268 265 261 258 256

264 260 257 255 254 287 283 280 277 275 274

291 288 284 281 278 276

294 292 289 285 282 279

296 295 293 290 286

315 314 312 309 305

313 311 308 304 301

310 307 303 300 299

306 302 298 297

330 326 322 319 317 316

334 331 327 323 320 318

337 335 332 328 324 321

339 338 336 333 329 325

358 357 355 352 348

356 354 351 347 344

353 350 346 343 342

349 345 341 340 372 368 364 360 359

376 373 369 365 362 361

379 377 374 370 366 363

381 380 378 375 371 367

401 400 398 395 391

399 397 394 390 387

396 393 389 386 384

392 388 385 383 382

A 9

A 15 B 16

B 10

A 17

C 11 D 12

B 18

C 13

C 19

D 14

D 20

18 17 15 12 8

16 14 11 7 4

13 10 6 3 2

9 5 1 0 31 27 23 19

35 32 28 24 21 20

38 36 33 29 25 22

40 39 37 34 30 26

60 59 57 54 50

58 56 53 49 46

55 52 48 45 43

51 47 44 42 41

74 70 66 62 61

78 75 71 67 64 63

81 79 76 72 68 65

83 82 80 77 73 69

103 102 100 97 93

101 99 96 92 89

98 95 91 88 86

94 90 87 85 84 117 113 110 107 105 104

121 118 114 111 108 106

124 122 119 115 112 109

126 125 123 120 116

145 144 142 139 135

143 141 138 134 131

140 137 133 130 129

136 132 128 127

A 1

A 7 B 8

B 2 C 3 D 4

C 5 D 6

FIG. 13. The head-tail splitting and details about the contraction scheme in the view of two-dimensional qubit layout. The two-qubit gates of
all 20 cycles with IDs in our actual contraction code and their sequence patterns in the Sycamore circuit are listed. Note that some gates are
contracted out during the simplification stage and thus have no corresponding IDs. The gates wrapped by purple lines belong to Ĝtail while
others belong to Ĝhead. The red crosses over gates represent the slicing indices that connect the former layer to gates in the current layer. Notice
that the four gates with two slicing crosses are the miss blocks. The white and blue lines over the gates denote the zig-zag contraction order of
the tail part, white for the first zig and blue for the first zag. The following order can be easily repeated accordingly.

	Solving the Sampling Problem of the Sycamore Quantum Circuits
	Abstract
	 Acknowledgments
	 References
	 The sparse-state method
	 Details about the numerical simulations
	 Bitstrings choice and sampling details
	 Slicing and contraction order
	 Computational cost

	 The singular values of the sliced fSim gate
	 Validation of our method using smaller Sycamore circuits
	 Contraction order

