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Abstract

This paper presents a new evolutionary method for
solving the satisfiability problem. It is based on a par-
allel cellular genetic algorithm which performs global
search on a random initial population of individuals
and local selective generation of new strings accord-
ing to new defined genetic operators. The algorithm
adopts a diffusion model of information among chro-
mosomes by realizing a two-dimensional cellular au-
tomaton. Global search is then specialized in local
search by changing the assignment of a variable that
leads to the greatest decrease in the total number of
unsatisfied clauses. A parallel implementation of the
algorithm has been realized on a CS-2 parallel machine.

1. Introduction

The satisfiability problem (SAT) is a fundamental
problem in Artificial Intelligence applications, auto-
mated reasoning, mathematical logic and related fields.
Many practical problems, including block-world plan-
ning problems [9], Boolean circuit synthesis problems
[8], circuit diagnosis [10], can be formulated as SAT
problems. In automated reasoning satisfiability prob-
lem plays a key role because of its correspondence with
deductive inferencing [2]. In computing theory SAT
is the core problem of the family of computationally
intractable NP-complete problems [4]. Many of such
problems have been identified as central in computing
theory and engineering and may be efficiently trans-
formed to SAT .

Formally the satisfiability problem can be formu-
lated as follows. Let U = {u1, . . . , un} be a set of n
boolean variables. A truth assignment for U is a func-

tion t : U → {true, false}. Corresponding to each
variable u are two literals u and ¬u. A literal u (resp.
¬u ) is true under t iff t(u) = true (resp. t(¬u) = false
). A set C of literals is called a clause and represents
the disjunction (or logical connective) of these literals.
A set of clauses is called a formula. A formula f is
interpreted as a formula of the propositional calculus
in conjunctive normal form (CNF ), so that a truth
assignment t satisfies a clause C iff at least one literal
u ∈ C is true under t and t satisfies f iff it satisfies
every clause in f . For example, let U = {u1, u2} and
f = {{u1,¬u2}, {u1, u2}}, then t(u1) = t(u2) = true
satisfies f . The SAT problem consists of a set of n vari-
ables {u1, . . . , un}, and a set of m clauses C1, . . . , Cm.
The goal of the satisfiability problem is to determine
whether there exists an assignment t of truth values to
variables that makes the formula f = C1 ∧ . . . ∧Cm in
conjunctive normal form satisfiable.

Because of its importance, there has been a lot of
interest in developing efficient methods to solve SAT
problems. A raw classification of these methods sub-
divides them into complete and incomplete ones. A
method is complete if it is always able to determine
whether a formula is satisfiable or unsatisfiable. A
method is incomplete if it does not find a solution to
SAT even if it exists. In this case the algorithm stops
without having found a satisfiable assignment but it
is not known if such an assignment does exist. The
main drawback of complete methods is that they are
computationally heavy when the input size increases.
For example, the Davis-Putnam algorithm, one of the
fastest developed, performs very poorly with more than
400 variables.

More recently, local search algorithms [5, 15, 16]
have received a lot of attention because they have been
successfully applied to certain hard classes of large sat-
isfiability problems and they have been shown to out-



perform the best known complete methods. Although
SAT is intractable in the worst case, many instances of
the problem are easily solved in practice [3]. Thus the
class of random k-SAT problems has been defined by
generating instances with respect to three parameters:
the number n of variables, the number m of clauses and
the length k of each clause. Mitchel et al. [12] have
shown that with k = 3 these problems are very hard
when the generated instances are equally likely to be
either satisfiable or unsatisfiable, i.e. they are neither
underconstrained nor overconstrained. The crossover
point occurs when m/n is equal to about 4.23.

Local search is a very efficient technique devised to
solve NP -hard combinatorial optimization problems.
Given an initial point, a local minimum is found by
searching for a local neighborhood which improves the
value of the object function. The SAT problem can be
formulated as an optimization problem in which the
goal is to minimize the number of unsatisfied clauses.
Thus the optimum is obtained when the value of the ob-
ject function equals zero, which means that all clauses
are satisfied.

One of the most popular method for solving SAT
is GSAT [15]. This algorithm starts with a randomly
generated truth assignment. It then changes (flips)
the assignment of the variable that leads to the largest
decrease in the total number of unsatisfied clauses.
Such flips are repeated until either a satisfying as-
signment is found or a preset of maximum number of
flips is reached. This process is repeated as needed up
to a maximum of Max-Tries times. The main prob-
lem in applying local search methods to combinatorial
problems is that the search space presents a lot of lo-
cal optima and, consequently, the algorithm can get
trapped at local minima. In order to overcome this
problem some heuristics (including simulated anneal-
ing, random noise [16]) have been implemented. They
are based on allowing to move to a new neighborhood
point of the local search space even if the value of the
object function decreases.

In this paper a new evolutionary method for the sat-
isfiability problem based on a parallel cellular genetic
algorithm (PCGA) is presented. Global search on a
random initial population of individuals is performed
by selective generation of strings according to new suit-
ably defined genetic operators. The algorithm adopts
a diffusion model of information among chromosomes
by realizing a two-dimensional cellular automaton. The
neighborhood relation considered, that is the set of cells
that neighbor a given cell (i, j), is Moore neighborhood
(8-neighbour). Such a model allows for the formation
of subpopulations of strings having common charac-
teristics inside the niches and relatively noncompeti-

tive among them. Subpopulations diffuse information
slowly thus avoiding to get trapped into local minima
too early. Global search is then specialized in local
search by adopting the same greedy strategy of GSAT,
that is by changing the assignment of a variable that
leads to the greatest decrease in the total number of
unsatisfied clauses. Because of the underlying cellular
framework, a parallel implementation of the algorithm
has been realized on a CS-2 parallel machine. It is
worth notice that a classical genetic algorithm (GA)
has been used by [7] to solve SAT problems. However,
because of the poor results, the use of parallelism to
speed up the execution time and improve convergence
is suggested.

The paper is organized as follows. Section 2 contains
a brief description of standard Genetic Algorithm (GA)
and a presentation of the cellular automata model to
enable a fine-grained parallel implementation of GA
through the diffusion model. Section 3 describes the
parallel cellular genetic algorithm and its genetic oper-
ators. Section 4, finally, reports on initial SAT experi-
ments.

2. Cellular genetic algorithms

GA are a class of adaptive general-purpose search
techniques inspired by natural evolution. They have
been applied to many problems in diverse research and
application areas such as hard function and combinato-
rial optimization, neural nets evolution, planning and
scheduling, machine learning and pattern recognition.
A standard GA works on a population of elements
(chromosomes), generally encoded as bit strings, rep-
resenting a randomly chosen sample of candidate solu-
tions to a given problem. A GA is an iterative proce-
dure that maintains a constant-size population of in-
dividuals. Each member of the population is evalu-
ated with respect to a fitness function. At each step
a new population is generated by selecting the mem-
bers that have the best fitness. In order to explore
all the search space, the algorithm alters the selected
elements by means of genetic operators to form new
elements to be evaluated. The most common genetic
operators are crossover and mutation. Crossover com-
bines two strings to produce new strings with bits from
both, thereby producing new search points. Through
crossover the search is biased towards promising re-
gions of the search space. Mutation flips string bits
at random if a probability test is passed; this ensures
that, theoretically, every portion of the search space is
explored. GA are stochastic iterative algorithms with-
out converge guarantee. Termination may be triggered
by reaching a maximum number of generations or by



finding an acceptable solution. GA are often applied in
situations where almost no domain knowledge is avail-
able, although domain knowledge can be incorporated
in the GA by either modifying the genetic operators,
choosing a particular initial population, or modifying
the quality function.

A drawback of the GA is represented by the num-
ber of evaluations required to obtain the solution of a
problem. In general, larger populations allow to find
the solution in fewer generations because of the larger
diversity of configurations of individuals in the popu-
lation. However, the evaluation of larger populations
may require a huge amount of time. A common ap-
proach to reducing this execution time is to resort to
parallel GA. Parallel implementation of GA involves
two main approaches: the island model [11] and the
diffusion model [13]. The island model divides the
population in subgroups, and a sequential GA works
on each partition. Infrequently, solutions migrate ran-
domly between subgroups, exchanging genetic informa-
tion. In the diffusion model each chromosome has a
spatial location and interacts only within a particular
neighborhood. Information slowly diffuses across the
grid thus clusters of solutions are formed around dif-
ferent optima.

Cellular automata (CA) [18] can be used as a frame-
work to enable a fine-grained parallel implementation
of GA through the diffusion model. A CA is composed
of a set of cells in a regular spatial lattice, either one-
dimensional or multidimensional. Each cell can have a
finite number of states. The states of all the cells are
updated synchronously according to a local rule, called
a transition function. That is, the state of a cell at a
given time depends only on its own state at the pre-
vious time step and the states of its nearby neighbors
(however defined) at that previous step. Thus the state
of the entire automaton advances in discrete time steps.
The global behaviour of the system is determined by
the evolution of the states of all the cells as a result
of multiple interactions. A cellular genetic algorithm
[14] can be designed associating to each cell of a CA a
transition function state with two substates: one con-
tains a chromosome belonging to the initial population
and the other its fitness. At the beginning a random
chromosome is generated and its fitness is evaluated.
Then, at each generation, the transition function asso-
ciated with a cell selects the chromosome with the best
fitness in the neighborhood. The genetic operator of
crossover is applied to the current string and the se-
lected string. After evaluating the offspring, if one of
them has a better fitness than the current string, it be-
comes the current string. Next, the mutation operator,
with probability pmut, is applied to this string.

cadef

{
dimension 2 ;
radius 1 ;
state ( float chromosome, int fitness);
neighbor Neum[4] ([0,-1]North,[-1,0]West,

[0,1]South, [1,0]East);
parameter (pcross 0.5, pmut 0.8) ;

}
float chrom,off1,off2,f1,f2,index,fit,cross,mut ;
int partner;

{
if (step = 0)
{

chrom = rand float();
fit = evaluate fitness(chrom);
update (cell chromosome, chrom) ;
update (cell fitness, fit) ;

}
else

{
while (not solution)
{
chrom = cell chromosome;
partner = max fitness(North fitness,West fitness,

East fitness, South fitness);
cross = rand float();
if (cross > pcross)
{
crossover(chrom,Neum[partner] chromosome,

off1,off2);
f1 = evaluate fitness(off1) ;
f2 = evaluate fitness(off2) ;
index = index max fitness(cell fitness,f1,f2) ;
chrom = find chrom(index, cell chromosome,

off1, off2);
}
mut = rand float();
if (mut > pmut)
mutation(chrom) ;

fit = evaluate fitness(chrom) ;
update (cell chromosome,chrom) ;
update (cell fitness, fit) ;

}
}
}

Figure 1. Pseudo-code of the cellular ge-

netic algorithm.



The cellular genetic algorithm on a 2-dimensional
toroidal grid, using the von Neumann neighborhood,
can be described by the pseudo-code shown in figure 1.

We use the CARPET language [17] to describe the
transition function of each cell of the CA. CARPET is
a high-level language based on C language with addi-
tional constructs to describe cellular algorithms. The
definition part cadef sets the features of the CA. In this
part the user can define the dimension, the radius, the
state and the neighborhood of the CA. The parameter
statement assigns a global value for all the cells of the
automaton. This value can be interactively changed by
the user interface.

Cadef part in figure 1 defines a two-dimensional
CA, with radius equal to 1 and a state with two sub-
states that can be individually accessed. The param-
eter statement assigns an initial value to the proba-
bilities that are used to execute the crossover and the
mutation. The predefined variable cell refers the cur-
rent cell in the two-dimensional space under considera-
tion. The different substates are referred by appending
the name of the substates to the reserved word cell or
to variables defined in the neighbor statement. Neum
is an alias to refer a neighbor cell variable. Step is a
predefined variable and allows to know the number of
iterations that have been executed. The statement up-
date updates the value of one of the substates of a cell.
After an update execution the value of the substate,
in the current iteration, is unchanged. The new value
takes effect at the beginning of the next iteration.

This approach has the advantage of working with
large populations, enabling fast convergence, and re-
ducing the number of iterations and the execution time.
This cellular model avoids the problem of premature
convergence in some GA applications, i.e. that a rather
good individual, with a fitness higher than the oth-
ers, spreads rapidly through the population. In cellular
implementation of GA the produced information flows
and spreads like a slow migration to the zones near the
interested neighbor. So good schemata discovered can
slowly diffuse through the whole population, leaving
time to discover other schemata at different portions.
Furthermore, this approach allows to keep a diversity
of the population as the search proceeds in the search
space.

3. The PCGA method

Analogously to traditional evolutionary approaches,
the PCGA method is based on a population of binary
strings of length n. Each string encodes an assignment
of truth values to the set of n variables in which the
i-th bit represents the truth value (true if the bit value

Figure 2. A population with Moore’s neigh-

borhood

is 1, false otherwise) of the i-th boolean variable. The
fitness function evaluates a string with respect to the
number of unsatisfied clauses. A string whose fitness
value is zero is a solution to the satisfiability problem
because it means that there are no unsatisfied clauses.

As already observed, the search space of combinato-
rial problems presents a high number of local optima.
The implementation of standard genetic operators thus
creates some problems. In fact, classical crossover and
mutation and the selection mechanism based on the
allocation of offspring strings proportionally to the fit-
ness value of their parents, brings the population to a
rapid uniformity which corresponds to get trapped into
local minima. It has been experimented [6, 7] that it
is essential for the success of the method to maintain a
good diversity in the individuals which constitute the
population because this gives more chance to explore
different portions of the search space.

This goal has been obtained by using of a cellular
genetic algorithm. The population of strings is mapped
into a two-dimensional square lattice, thus every string
s represents a cell (i, j) of a two-dimensional cellular
automaton. Such a mapping allows to define a neigh-
borhood (that is the set of cells that neighbor s) in
which the cell (i, j) can interact. Every string s in the
population is thus mated with the element, among the
k neighbors, where k depends on the neighborhood re-
lation chosen, with the best fitness.

The standard Moore neighborhood has been exper-
imented. Figure 2 shows a population with such a
neighborhood. Each cell contains a transition function
like that defined in figure 1.

The new crossover and mutation operators are de-



Figure 3. 2-points crossover operator.

fined as follows. Crossover is realized by selecting two
positions i and j at random, between 1 and n, and two
new strings, u and v, are generated by swapping all the
bits of the two parents, s and w, contained into a neigh-
borhood of i and j. The length d of the neighborhood
is a parameter of the method (see figure 3).

If the fitness of the offspring is better than that of
the current string s, s will be substituted by either u
or v, (the one having the best fitness). Such a model
allows for the formation of subpopulations of strings
having common characteristics inside the niches and
relatively noncompetitive among them. Notice that
the other parent string w is used only to generate the
offspring. Such a choice is very important because sub-
populations diffuse information very slowly thus avoid-
ing to bring the population towards an homogeneous-
ness too high which would mean to get trapped into
local minima.

The mutation operator plays an important role in
the diversity maintenance because it introduces uphill
moves that could increase the number of unsatisfied
clauses but which, at the same time, employs a mech-
anism to escape from local minima by allowing to gen-
erate strings belonging to completely different portions
of the search space.

Bit mutation is done according to the random walk
strategy of [16]. The variable with the best decrease in
the number of unsatisfied clauses is flipped and, when
no downward move is possible, a variable that appears
in some unsatisfied clause is picked at random and its
assignment value changed.

Thus, whether crossover brings the population to-
wards the best individuals, mutation has both the roles
of improving the population and, at the same time, to
introduce new strings to maintain a good diversity in

the individuals which constitute the population. Fur-
thermore, since the execution of both crossover and
mutation could give rise to a solution, the satisfiabil-
ity test is done after the application of each of them.
The combination of the new local selection mechanism
along with specialized crossover and mutation opera-
tors allows the genetic algorithm to reach a solution in
a low number of generations.

4. Implementation and results

The PCGA method is naturally suitable for running
on distributed-memory MIMD machines. It uses a grid
of elements (population) of fixed size where each cell
performs a transition function on a string chosen ran-
domly. PCGA leads the search on a population that
can be regarded as a region of the feasible space. Ge-
netic operators generate, at each iteration, a different
population and this allows to explore the whole space
of the solutions. A larger population allows to explore
a wider region of the search space, reduces the number
of iterations needed by the algorithm and improves the
convergence. Therefore, a parallel implementation of
the algorithm, by reducing the execution time of a sin-
gle iteration, allows to use a larger population to find
a better solution in fewer iterations.

An efficient parallel implementation of PCGA can
be realized using the SPMD (Single-Program Multiple-
Data) model. According to this model, the algorithm
can be implemented as a set of medium-grain cooper-
ating processes, each mapped on a distinct processing
element that executes the same program on different
data (a partition of the population).

To implement the PCGA algorithm, we used the
parallel computation environment provided by the
CAMEL system [1]. CAMEL is an interactive parallel
environment that allows to develop and execute CAR-
PET programs on a parallel machine. The main goal
of CAMEL is to integrate computation, visualization
and control into one environment that allows interac-
tive steering of applications. CAMEL consists of

• a parallel run-time support for the CARPET lan-
guage;

• a graphical user interface (GUI) for editing, com-
piling configuring, executing and steering the com-
putation;

• a tool for the interactive visualization of the re-
sults.

The run-time support is implemented as a SPMD
program using the C language plus the standard MPI



Figure 4. A snapshot of PCGA iteration.

library and can be executed on different parallel ma-
chines such as the Meiko CS-2, IBM SP2 and networks
of workstations. The concurrent program which imple-
ments the architecture of the system is composed by a
set of macrocell processes, a controller process and a
GUI process. Each macrocell process runs on a single
processing element of the parallel machine and contains
a strip of cells of the CA. The synchronization of the au-
tomaton and the excution of the commands, provided
by the user throught the GUI interface, are carried out
by the controller process. MPI primitives handles all
the communications among the processes using two dif-
ferent communicators. A communicator provides a
mechanism for distinguishing between messages used
for different purposes. CAMEL uses two communica-
tors. One includes the controller and macrocell pro-
cesses and the other one the controller and the GUI
process. In order to improve the performance of the
applications that have a diffusive behaviour, CAMEL
integrates the run-time support with a load balancing
strategy. This load balancing is a domain decompo-
sition strategy similar to the scattered decomposition
technique.

The PCGA algorithm is coded in CARPET.
CAMEL divides the population in strips, according to
the indications provided by the user through the GUI,
and assigns each strip to a macrocell process for the
execution. The macrocell processes are automatically
mapped on the nodes of the parallel machine according
to a ring topology.

By the GUI of CAMEL, shown in figure 4, the user
can view the evolution of the algorithm by visualizing
the output according to the visualization step defined
and to change, during the execution time, the parame-
ters that define the length of the neighborhood for the

2-points crossover and the probability with which to
perform crossover and mutation.

PCGA starts with a random population and the pa-
rameters are fixed for all the computation. Figure 4,
shows as our algorithm induces niches formation allow-
ing information to diffuse across the grid and promot-
ing the making of clusters of solutions around different
optima.

The parallel implementation has been executed on a
Meiko CS-2 parallel machine. The CS-2 is a distributed
memory MIMD parallel computer. It consists of Sparc
based processing nodes running the Solaris operating
system on each node, so it resembles a cluster of work-
stations connected by a fast network. Each computing
node is composed of one or more Sparc processors, a
communication co-processor, the Elan processor, that
connects each node to a fat tree network built from
Meiko 8x8 crosspoint switches. Our machine is a 12
processors CS-2 based on 200 MHz HyperSparc pro-
cessors running Solaris 2.5.1.

PCGA has been tested on hard randomly generated
3-SAT problems. In particular, tests with 64 up to 512
variables have been considered. In our experiments,
we used a population size of 320 and 2400 elements, a
radius equal to 1, a probability between 0.3 and 0.5 for
crossover and between 0.9 and 1.0 for mutation, and
a length between 20 and 250 for 2-points crossover.
Some results are shown in table 1 and represent data
averaged over 10 independent runs. They are compared
with the results obtained with the sequential execution
of WSAT .

The main advantages of the PCGA method using a
Moore’s neighborhood over WSAT consists in a better
convergence of the algorithm. The population keeps
a diversity as the search proceeds. This is confirmed



Table 1. PCGA and WSAT on hard random 3-SAT problems.

variables clauses number of iterations number of iterations number of iterations
(pop. size 320) (pop. size 2400) (WSAT)

64 275 16 12 68
128 550 35 23 131
256 1100 540 136 1356
512 2201 941 421 2242

Figure 5. Fitness values.

by the difference between the maximum and minimum
value of the fitness before the PCGA reaches the solu-
tion as is shown in figure 5. Such a difference is signif-
icantly narrowed in proximity of the solution. Before
finding the solution the algorithm crosses a stationary
zone, as shown in figure 5. A suitable tuning of the pa-
rameters of the algorithm should allow to reduce such
stationary zone and obtain a faster convergence.

These initial experiments are very encouraging.
They show that increasing the size of the population
results in a better convergence, although this requires
a major computational cost. This means that the par-
allel implementation of the method allows a good scal-
ability on big size populations to solve satisfiability
problems having a large number of variables.

5. Conclusions

The paper presented a series of initial results regard-
ing a new strategy for using a parallel cellular genetic
algorithm to solve SAT problems. A parallel cellular
automata environment has been used as a framework
to implement the PCGA algorithm on a CS-2 paral-
lel machine. The initial experiments have shown that
PCGA has a better convergence than WSAT method.
Our future work will be focused on improving the per-

formance and the convergence of the method to solve
more large problems.
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