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SUMMARY

In this article, we apply Davis’s second-order predictor-corrector Godunov type method to numerical
solution of the Savage–Hutter equations for modeling granular avalanche flows. The method uses monotone
upstream-centered schemes for conservation laws (MUSCL) reconstruction for conservative variables and
Harten–Lax–van Leer contact (HLLC) scheme for numerical fluxes. Static resistance conditions and stop-
ping criteria are incorporated into the algorithm. The computation is implemented on graphics processing
unit (GPU) by using compute unified device architecture programming model. A practice of allocating mem-
ory for two-dimensional array in GPU is given and computational efficiency of two-dimensional memory
allocation is compared with one-dimensional memory allocation. The effectiveness of the present simula-
tion model is verified through several typical numerical examples. Numerical tests show that significant
speedups of the GPU program over the CPU serial version can be obtained, and Davis’s method in con-
junction with MUSCL and HLLC schemes is accurate and robust for simulating granular avalanche flows
with shock waves. As an application example, a case with a teardrop-shaped hydraulic jump in Johnson and
Gray’s granular jet experiment is reproduced by using specific friction coefficients given in the literature.
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1. INTRODUCTION

Landslides, rock avalanches, and debris flows are natural phenomena, which frequently occur in

mountainous areas. They may cause great loss of properties and lives and have been extensively

studied by many researchers in various disciplines. However, these phenomena are multiphase, poly-

disperse, multiscale, erosive, and rheologically complicated, entailing high complexity to scientific

studies. It is well known that the basic composition materials in the aforementioned geomorpho-

logical phenomena are granular materials. Granular materials are a collection of a large number of

discrete solid particles with interstices filled with one or more fluids [1]. Motions of a plenty of

granular materials make up granular flows, which are a continuum treatment used to describe real

avalanches and debris flows. The granular materials driven by the gravity slide and accelerate down

the slope, forming granular avalanche flows that generally have small thicknesses but can travel very

long distances.

At the present stage, the main models for granular avalanche flows are typified by shallow gran-

ular flow models such as the Savage–Hutter (SH) model [2], the Iverson–Denlinger two-phase
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mixture model [3, 4], and the two-phase thin layer model proposed by Pitman [5], to name a few. The

derivation of shallow flow models utilizes the depth average approach and their canonical equations

are often written in a Cartesian coordinate system with the ´ axis normal (or approximately normal)

to the basal surface. The canonical formulations [2, 3, 5] are not suitable for numerical calcula-

tion of avalanche flows over general topography. To simulate granular avalanche flows on general

three-dimensional (3D) terrains, the SH model can be formulated in a general curvilinear coordinate

system with x; y axes tangential to and ´ axis normal to the basal surface, but such forms contain

many non-conservative metric terms and may lead to computational complexity. Bouchut and

Westdickenberg [6] derived a shallow water models in which the coordinate system is a global

Cartesian system, but the solution variables are the flow depth in the direction normal to the topog-

raphy and the velocity tangent to the topography. However, the pressure term can not be written in

conservative form for variable bed slope angles. Denlinger and Iverson [7] reformulated the depth-

averaged governing equations in a global Cartesian coordinate system with ´ vertical and accounted

explicitly for the effect of non-zero vertical accelerations on depth-averaged mass and momen-

tum fluxes and stress states. Their equations provide a hope of using global Cartesian formulation

to describe shallow granular flows over general 3D terrains. In this paper, we focus on numerical

method for the SH model formulated in a special global curvilinear coordinate system that is straight

in the transverse direction [8, 9]. This formalism has the same conservative terms as in the Cartesian

formulation. We also consider the special difficulty in simulating granular avalanche flows, that is,

the yielding/stopping properties of granular materials [10–13]. Appropriate static resistance condi-

tion and stopping criterion must be taken account into the solution procedure in order to model the

yielding/stopping properties.

As depth averaged shallow flow models are in most situations hyperbolic equations that allow

for discontinuous solutions, some well-known Godunov type methods such as Harten–Lax–van

Leer (HLL), HLL contact (HLLC) (c.f. [14]), and wave propagation schemes have been used in

the literature [3, 7, 15]. Other classes of high-resolution shock-capturing methods such as non-

oscillatory central schemes [16] were also employed [8, 9]. Wang et al. [8] demonstrated that the

non-oscillatory central scheme with Minmod limiter or van Leer limiter was very suitable to handle

the problem of avalanche dynamics. Patra et al. [15] employed Davis’s second-order predictor-

corrector Godunov type method [17] with van Leer’s monotone upstream-centered schemes for

conservation laws (MUSCL) reconstruction (c.f. [14]) and HLL scheme to solve the Denlinger–

Iverson formulation [4, 7]. However, the static resistance condition and the stopping criterion are

missing in their numerical procedure. In this paper, we add the static resistance condition and the

stopping criterion to Davis’s Godunov type method to simulate the yielding/stopping properties of

granular avalanche flows. Furthermore, we implement graphics processing unit (GPU) computing

and test the correctness and efficiency of the resulting code in several numerical examples.

The SH model is 2D and its numerical solution time is generally not long. However, for engi-

neering design and hazard risk analysis, a large number of simulations with high grid resolutions

must be completed in short times, thus necessitating parallel computing. With the availability and

development of NVIDIA’s compute unified device architecture (CUDA, for introduction, see [18])

as a programming model, GPU computing has become one of the most popular choices for parallel

computing because of GPU’s massive parallel processing power and low energy consumption per

Gflops. CUDA is based on C language, thus making nowadays general users learn easily. Owing to

its character of ‘many-core’ and faster memory access, a GPU can speedup massively data-parallel

codes many times relative to a central processing unit (CPU) of the same generation. Furthermore,

performance benefits can scale with multiple GPUs using CUDA 4.0 above, OpenMP, or Pthread

on a shared-memory computer installed with several GPUs. There are numerous work on apply-

ing GPU computing for computational fluid dynamics. Here, we only listed some work related

to shallow flow models [19–25]. Kuo et al. [19] presented application of the split HLL scheme

for both the Euler and shallow water equations to Tesla C1060 GPU (first generation general pur-

pose GPU) using CUDA and reported over 67 times speedup over an Intel Xeon X5472 CPU

core (3.0 GHz). Brodtkorb et al. [20] implemented the second-order Kurganov-Petrova’s central

scheme for the shallow water equations on NVIDIA GeForce GTX 480 graphics card and combined

the simulation with OpenGL visualization on the same card. Sætra and Brodtkorb et al. [21, 22]
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presented detailed multiple-GPU implementation of a block-based AMR method for the same

central scheme and a series of performance and accuracy tests. In Ref. [21], they used the row

decomposition of computational domain to put the transferred data in continuous memory and the

control thread-work thread strategy to enable multi-GPU computations in a single node and per-

formed traditional CUDA block decomposition within each GPU for further parallelism. Their

implementation shows near perfect weak and strong scaling and enables simulation of up to 235 mil-

lion cells at a rate of over 1.2 gigacells per second using four Fermi GPUs (second generation).

Vinas et al. [23] also presented multi-GPU implementations of a Roe type finite volume method for

shallow water equations with contamination transport using MPI where the fastest example reached

a speedup of 78� using four M2050 GPUs on an Infiniband network with respect to a parallel exe-

cution on a six-core CPU. Smith and Liang [24] implemented a Godunov-type MUSCL–Hancock

scheme for shallow water equations on Fermi M2075 GPU and significantly expedited the simula-

tions when compared to a traditional CPU approach. They also pointed out that there are significant

localized errors introduced by 32-bit floating-point precision. Vacondio et al. [25] parallelized a

well-balanced positive depth reconstruction finite volume explicit discretization technique on GTX

580 and M2070 GPUs for fast flood simulations. In that work, they adopted a novel and efficient

block deactivation optimization procedure to increase the efficiency of numerical solution in the

presence of wetting–drying fronts.

While many researchers have applied GPU computing to the shallow water equations for mod-

eling flood events and obtained good performance as mentioned earlier, there are few similar

applications to granular avalanche flows. Ref. [22] remarked that many techniques used in GPU

implementation for the shallow water equations are transferable to other hyperbolic conservation

laws and numerical schemes. Therefore, it is worthwhile to apply GPU computing to the SH

equations for simulating granular avalanche flows. In this work, we use CUDA and a single GPU to

implement the numerical algorithm for the SH model.

The paper is organized as follows. In Section 2, the SH model is formulated. In Section 3, Davis’s

version of the Godunov type method together with the MUSCL reconstruction and HLLC scheme

is given, and the static resistance condition and stopping criterion are added to the numerical proce-

dure. In Section 4, a short introduction of CUDA implementation used is presented followed by a

practice on allocating global memory on GPU for 2D array for ease of code porting. In Section 5,

three numerical examples are used to verify the correctness of the numerical model and test the per-

formance of the GPU and CPU programs, and one granular jet example is used to demonstrate the

application of the developed code. The last section gives the conclusion.

Figure 1. The curvilinear coordinates Oxy´ is defined on the reference surface (dashed lines) where
the downslope inclination angle of the reference surface � is a function of the downslope coordinate x

(reproduced from [8]).
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2. GOVERNING EQUATIONS

In 1989, Savage and Hutter first derived the SH equations [2] from the incompressible Navier–

Stokes equations by using the depth-averaged approach. In the SH model, the granular material is

regarded as cohesionless Coulomb material, that is, the shear stress � only depends on the normal

stress � : � D � tan �, where � is the internal friction angle of the material. The system of the

equations is of hyperbolic type akin to the shallow water equations. There are various forms of SH

equations according to different coordinate systems chosen. Here, we use the same special global

curvilinear coordinate system given in Ref. [8] as shown in Figure 1, where there is no transverse

variation for the inclination angle � in the y direction. The corresponding non-dimensional SH

equations are

@h

@t
C @

@x
.hu/ C @

@y
.hv/ D 0; (1)

@

@t
.hu/ C @

@x

�
hu2 C ˇxh2

2

�
C @

@y
.huv/ D hsx; (2)

@

@t
.hv/ C @

@x
.huv/ C @

@y

�
hv2 C ˇyh2

2

�
D hsy ; (3)

where h is the flow thickness in the ´ direction, and u and v are the depth-averaged velocity

components in the x and y directions, respectively. ˇx and ˇy are defined as

ˇx D " cos �Kx; ˇy D " cos �Ky ; (4)

where Kx and Ky are the earth pressure coefficients in the x and y directions according to the

Mohr–Coulomb yield criterion, and " is aspect ratio of the characteristic thickness to the character-

istic downslope extent. The terms sx and sy represent the net driving accelerations in the x and y

directions, respectively,

sx D sin � � u

jvj tan ı � max
�
0;
�
cos � C ��u2

��
� " cos �

@´b

@x
; (5)

sy D � v

jvj tan ı � max
�
0;
�
cos � C ��u2

��
� " cos �

@´b

@y
; (6)

where jvj D
p

u2 C v2, ı is the basal Coulomb friction angle, � D � @�

@x
is the local curvature of the

reference surface, and �� is the local stretching of the curvature. The shallow basal topography is

defined by its elevation ´ D ´b.x; y/ above the curvilinear reference surface as shown in Figure 1.

The earth pressure coefficients are given according to [26]:

Kxact/pass
D 2

0
@1 �

s

1 � cos2 �

cos2 ı

1
A sec2 � � 1; (7)

Kyact/pass
D 1

2

�
Kx C 1 �

p
.Kx � 1/2 C 4 tan2 ı

�
; (8)
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where � and ı are the internal and bed friction angles respectively. The subscripts ‘act’ and ‘pass’

denote active (‘�’) and passive (‘C’) stress states:

Kx D

8
ˆ̂<
ˆ̂:

Kxact
;

@u

@x
> 0

Kxpass
;

@u

@x
< 0

; (9)

Ky D

8
ˆ̂<
ˆ̂:

Kyact
;

@v

@y
> 0

Kypass
;

@v

@y
< 0

: (10)

3. NUMERICAL METHODS

3.1. Second-order Godunov type method

Similar to Ref. [15], a second-order predictor-corrector Godunov type method due to Davis [17] with

the MUSCL reconstruction for the conservative variables U D .h; hu; hv/T and HLLC numerical

flux [14] is used. Define the cell average:

Ui;j D 1

�x�y

“

�ij

Udxdy: (11)

The method achieves second-order accuracy in time and space by using second-order predictor-

corrector scheme and MUSCL reconstruction. To proceed, rewrite the system (1–3) as

@U

@t
C A

@U

@x
C B

@U

@y
D S .U/ ; (12)

where A and B are the Jacobian matrices of the physical fluxes F and G, respectively:

A D @F

@U
D

2
4

0 1 0

�u2 C ˇxh 2u 0

�uv v u

3
5 ; B D @G

@U
D

2
4

0 0 1

�uv v u

�v2 C ˇyh 0 2v

3
5 : (13)

The procedure of the predictor-corrector Godunov type method goes as follows.

Step 1: Predictor step. Compute the solution variables at the half time level n C 1
2

by using

Taylor expansion and Equation (12) (Lax–Wendroff approach):

U
nC

1
2

i;j D Un
i;j � �t

2

h
An

i;j

�
���x

i;j

�n C Bn
i;j

�
���

y
i;j

�n

� Sn
i;j

i
; (14)

where ���x
i;j and ���

y
i;j are the limited slopes of U in the x and y directions, respectively.

The limiter here could use the Minmod limiter

���x
i;j D

���x
i;j

�x
; ���x

i;j D Minmod.Ui;j � Ui�1;j ; UiC1;j � Ui;j /: (15)

Step 2: Data reconstruction. The left state UL
iC1=2 and the right state of UR

iC1=2 at the cell inter-

face i C 1=2 in the x direction are constructed using the piece-wise linear MUSCL

reconstruction for the conservative variables obtained in Step 1:

UL

iC
1
2

D U
nC

1
2

i;j C �x

2

�
���x

i;j

�nC
1
2 ; UR

iC
1
2

D U
nC

1
2

iC1;j � �x

2

�
���x

iC1;j

�nC
1
2 : (16)

Similarly, U
L;R
j C1=2

are reconstructed in the y direction.
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Step 3: Corrector step. Godunov type method is used to update the solution,

UnC1
i;j D Un

i;j � �t

�x

�
OFiC

1
2 ;j � OFi�

1
2 ;j

�
� �t

�y

�
OGi;j C

1
2

� OGi;j �
1
2

�
C�tS

nC1=2
i;j ; (17)

wherebFiC
1
2

D bF
�

UL

iC
1
2

; UR

iC
1
2

�
is the numerical flux. We use the HLLC numerical flux

bF HLLC
�
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iC
1
2
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iC
1
2

�
D

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

F
�

UL

iC
1
2

�
; SL > 0

F
�

UL

iC
1
2

�
C SL

�
U�L

iC
1
2

� UL

iC
1
2

�
; SL 6 0 6 S�

F
�

UR

iC
1
2

�
C SR

�
U�R

iC
1
2

� UR

iC
1
2

�
; S� 6 0 6 SR

F
�

UR

iC
1
2

�
; SR 6 0

: (18)

The intermediate variables in the start region of the HLLC approximate Riemann

solver are

U�K D hK

SK � uK

SK � S�

2
4

1

S�

vK

3
5 ; K D L; R; (19)

in the x direction, and

U�K D hK

SK � vK

SK � S�

2
4

1

uK

S�

3
5 ; K D L; R; (20)

in the y direction. The estimates for the left, middle [4], and right waves are

SL D min
�
uL �

p
ˇLhL; uR �

p
ˇRhR

�
; (21)

S� D 1

2
.uL C uR/ C

�p
ˇLhL �

p
ˇRhR

�
; (22)

SR D max
�
uL C

p
ˇLhL; uR C

p
ˇRhR

�
: (23)

This Godunov type method is stable under the CFL condition

CFL D �t max
8i;j

 
jui;j j C

p
.ˇxh/i;j

�x
C

jvi;j j C
p

.ˇyh/i;j

�y

!
< 1: (24)

In this work, CFL number is taken to be 0.4.

3.2. Static resistance condition

In some studies [8, 15], the Coulomb friction law contained in Eqs (5)–(6) was used to determine the

friction force everywhere any time. This is not correct when the granular mass is at static condition:

v D 0 or when the mass has little ‘net driving force’ [10, 11]. For the case v D 0, Ref. [12]

gave a static friction calculation method for one-dimensional (1D) cases. Here, we extend the same

treatment to 2D cases.
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Theoretically, when the velocity is non-zero, that is, v ¤ 0, the friction force is computed with

the Coulomb friction law. When v D 0, the static resistance begins to work. Under this condition,

the momentum Eqs (2)–(3) reduce to

2
664

h
@u

@t

h
@v

@t

3
775 D

�
Dx

Dy

�
C
�

fx

fy

�
; (25)

where the combined gravity–topography–pressure terms are Dx D h sin � � h" cos �
@´b

@x
� ˇxh

@h

@x
,

and Dy D �h" cos �
@´b

@y
� ˇyh

@h

@y
. Here, we set Kx D Ky D 1 in ˇx and ˇy for static cases as

the literature. As the maximum friction that the materials can sustain is �max D h tan ı, the static

resistance f D .fx; fy/ can be deduced from Equation (25) as follows:

when v D 0 and
q

D2
x C D2

y < �max; set fff D �D;

when v D 0 and
q

D2
x C D2

y > �max; set fff D � D

jDj�max:
(26)

3.3. Stopping criteria

Stopping criteria for moving granular materials are introduced based on a Coulomb threshold in a

way similar to Refs. [10, 11, 13]. The Coulomb threshold is �max D hnC1
i tan ı. After obtaining a

trial solution
�
hnC1

i ; .fhu/nC1
i ; .fhv/nC1

i

�
by using Equation (17) without the source term, we set an

admissible basal shear stress at cell i and time n C 1 as

"
QTx

QTy

#nC1

i

D
"fhu

fhv

#nC1

i

C �t

2
4

sin � � h" cos � @´b

@x

�h" cos � @´b

@y

3
5

nC1

i

: (27)

The stopping criteria are

� When

ˇ̌
ˇ QTnC1

i

ˇ̌
ˇ < �max�t , that is, the admissible basal shear stress is less than the Coulomb

threshold value, and when jr.h C ´b/j < tan �, the flow velocity .u; v/nC1
i is set to zero.

� Otherwise, solve for momentums .hu/nC1
i and .hv/nC1

i using Equation (17) with the full

source term that uses the Coulomb basal friction law.

3.4. Flow front and half wet cell

In this article, we treat the flow front as Refs. [4, 15] did. Take the x direction as example. Suppose

there is a flow front of which the right side is where h D 0, then a left-going rarefaction wave

emanates from the front, and corresponding Riemann invariant is

IL D ujL C 2cL D uj0 C 2c0: (28)

Near the flow front, c0 approaches zero as h ! 0, so the wet/dry front corresponds to the tail of the

rarefaction and has exact propagating speed uj0 D ujL C 2cL. This speed is taken as the estimated

right-going wave speed SR in the HLLC scheme.

The existence of dry beds is a particular feature that must be properly addressed when designing

numerical schemes for shallow water flows. In the initial conditions, we set the granular thickness to

zero where the debris flow has not arrived. In order to ensure numerical stability and avoid spurious
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diffusion of the flow front in updating the problematic partial-wet cells, we define a cell with 0 <

h 6 � D 10�6 as the partial-wet cell. The momentum equations in the partial-wet cell are not

solved and instead the velocities are extrapolated from the neighboring cell with the largest h in a

way similar to Ref. [27]:

v D
²

0; if h 6 10�6 8 neighbor cells

vjhmax
; else

: (29)

4. GPU PARALLEL COMPUTING

The most widely used programming model to implement GPU computing is NVIDIA’s CUDA [18].

A CUDA program includes two kinds of codes, the serial codes and the parallel codes [28, 29]. The

serial codes that run on the host (CPU) side are responsible for variables declaration, initialization,

data transmission, and kernel invocation. The parallel codes (called ‘kernel functions’) running on

the device (GPU) side are executed in parallel by massive threads organized to match the GPU

hardware feature and to allow for mapping typical data structures (arrays, matrices). A number of

threads makes up a block, and many blocks make up a grid, which is the counterpart of a kernel

function. The block may be organized into 1D, 2D, or 3D array of threads, while the grid may be in

1D, 2D, or 3D array of blocks. 2D block and grid are illustrated in Figure 2.

Efficient GPU computing requires careful consideration of parallelism organization, memory

management, and kernel scheduling [24]. In the present explicit predictor-corrector Godunov type

method, all the calculations including slope limiter, reconstruction, flux and source evaluation, as

well as solution update could be run on GPU in parallel. They are executed in several different

kernel functions in order to keep each kernel small enough to use the fast registers and shared mem-

ories efficiently. Kernel __global__ void getLRUD is used to calculate the predictor step and data

reconstruction step, __global__ void RKresult is used to compute the corrector step including flux

and source evaluation, and __global__ void Boundary is used to apply boundary conditions. Fur-

thermore, a single timestep �t in Equation (24) is used for all cells, which is determined from the

smallest permissible timestep in the whole domain. It can be computed on GPU in a reduction kernel

(__global__ void getDeltat), which utilizes the shared memory and round query strategy [30]. This

process is shown in Figure 3. As convention, we map each mesh cell to a thread, and each thread

controls one or several mesh cells depending on whether the total number of computational cells

Figure 2. Sketch of organization of a compute unified device architecture (CUDA) program.
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Figure 3. Timestep reduction process in GPU.

Figure 4. Allocation of a second-rank pointer in CPU.

Figure 5. Allocation of a second-rank pointer d_h with the help of auxiliary variable dev_h on GPU.

Figure 6. Copy data from GPU to CPU.

exceeds the maximum number of threads allowed by the GPU capacity. In the first box in Figure 3,

every thread computes the maximum eigenvalue of its own. In the second box, every block allo-

cates a shared memory, all threads of a block load their values into the shared memory, then carry

out binary comparison, and the resulting maximum value is stored at the first thread of the block.

In the third box, the first thread of each block loads the block’s max-value into a global array, dur-

ing which atom addition operator is used to record the number of blocks that have done the data

load and mark the finishing of data load. In the fourth box, all threads in the last block make binary

comparison in the data in the global array and gets the maximum value of all cells. We then use this

value to compute the time step from Equation (24).

A lot of GPU programmers will use 1D memory allocation, which can make addressing and

memory copy between CPU and GPU fast. In this work, in order to make the addressing direct in

the GPU program, we use 2D memory allocating for solution variables. In C++, the 2D memory

allocation of a second-rank pointer h on CPU is via new double (Figure 4).

Now, the CPU memory can be used directly for the pointer h. But we could not use cudaMalloc

to allocate a second-rank pointer on GPU in the way similar to new double in Figure 4, because

cudaMalloc can only allocate a first-rank pointer. In this work, in order to use a second-rank pointer

d_h on GPU, we allocate memories for the second class (pointing to pointer) of d_h and for the

first class (pointing to double number) of a temporary second-rank pointer dev_h on GPU (line 3

and 5 in Figure 5, respectively), while the second class of dev_h is allocated on CPU (line 2). We

then copy the memory of the second class of dev_h from CPU to that of d_h on GPU, as shown in

the last line of Figure 5. In this way, the first-class pointer of d_h is associated with that of dev_h

on GPU.

Now, we can use the second-rank pointer d_h as a 2D array directly in GPU, but when we want

to copy the data of d_h back to CPU for output, we must copy each dev_hŒi �, which points to

Ny double numbers allocated on GPU, instead of d_hŒi �, which is not explicitly allocated on GPU,

back to hŒi � (Figure 6).

While this method of allocating 2D GPU memory is convenient for porting the serial program to

the GPU program, the speed of accessing GPU memory is expected to be slower than that of the

1D memory allocation. Table I shows comparison of the computational times between 1D and 2D
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Table I. Comparison of the running times for matrix
multiplication C D A � B .

n 1D allocation 2D allocation 2D(serial code)

128 1.1 ms 8.2 ms 10 ms
256 3.1 ms 23.4 ms 140 ms
512 14.2 ms 109.2 ms 1340 ms
1024 90.7 ms 716.2 ms 12040 ms

memory allocation methods to compute C D A � B , where A; B and C are n � n matrices. The

results were obtained in double precision using an NVIDIA Tesla C2075 GPU with 6 GB mem-

ory and an Intel Xeon Westmere 5675 3.06 GHz 6-core CPU with 24 GB memory. Only global

memory is used in the code. It can be seen from Table I that 2D memory allocation method is

much slower than the 1D counterpart, although it achieves considerable speedup relative to 2D

allocation serial code for large n. This indicates that 1D memory allocation is desirable for effi-

cient GPU computing. However, the difference may not be so large for a practical application code

because other bottlenecks occur even using 1D memory allocation, as will be seen from Table IV.

The 2D memory allocation technique presented here may be helpful in porting a serial code to

a GPU code.

5. NUMERICAL EXAMPLES

We use three examples to verify the accuracy of the numerical model and compare the efficiency of

both CPU and GPU programs. Meanwhile, we compare the efficiency of present GPU implementa-

tion with earlier GPU codes for modeling shallow water flows in the literature. Finally, we simulate

a granular jet example to demonstrate the application of the developed flow solver. The computer we

used is a server with an Intel Xeon Westmere 5675 (3.06 GHz) CPU and an NVIDIA Tesla C2075

GPU. All computations use double precision.

5.1. Dam break problem

For the dam break problem [31], the computational domain is set to Œ�12:8; 12:8� � Œ�1:6; 1:6� m2,

and the initial conditions are

v D 0; h D
´

h0 x < 0

0 x > 0
; (30)

where h0 D 10 m; � D 40o; and ı D 24:5o. The original example is a 1D problem, but we calculate

it with 2D code and cut a slice from the plane y D 0 to compare with the exact solution.

In order to get the exact solution, we rewrite the SH equations in dimensionalized form as in

Ref. [31] (we correct the sign errors in [31]):

ht C uhx C hux D 0;

ut C g cos �hx C uux D �g cos � .tan ı � tan �/ :
(31)

Notice that the x direction is downward along the slope. With the change of variables

� D x C 1

2
g cos �.tan ı � tan �/t2; U D u C g cos �.tan ı � tan �/t; (32)

Equation (31) reduces to a homogeneous system of equations; then by utilizing the Ritter solu-

tion of a frictionless dam break, we can obtain the analytical solution of a granular dam break

problem [31]:
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Figure 7. Exact and numerical solutions on two grid numbers for the dam break problem after 0.5 s.

Table II. Errors of the computed depth and orders of
accuracy for the dam break problem.

Grid L2 error order L1 error Order

64�8 0.130163 — 0.452701 —
128�16 0.073894 0.8168 0.345509 0.3898
256�32 0.0409712 0.8508 0.252918 0.4501
512�64 0.0223083 0.8770 0.177114 0.5140

.h;U/ D

8
ˆ̂̂
<̂
ˆ̂̂
:̂

.h0; 0/; � < �c0t
 

h0

9

�
2 � �

c0t

�2

;
2

3

��

t
C c0

�!
; �c0t 6 � 6 2c0t

.0; 0/; � > 2c0t

: (33)

where c0 D
p

gh0 cos �.

Figure 7 shows the computed depth in comparison with the exact solution after 0.5 s. We can

observe some differences only at the right flow front and the left tail of the rarefaction wave.

However, on the finer grid 512�32, the difference is further reduced. In Table II, we give numerical

errors of the computed depth h relative to the exact solution. The errors are reduced with increasing

grid sizes, but the numerical order is not second order. It may be related to the initial data jump, the

limiter, the numerical flux, the treatment of the partial wet cells, and so on. However, the numerical

order is compatible with other general convergence rates for similar test models (e.g., [10]).

5.2. Quiescent equilibrium and start/stop flow conditions

This example is used to illustrate the role of the stopping criteria and static resistance in simulating

quiescent equilibrium and start/stop flow conditions. According to Ref. [31], we give the bed level

´b and the initial free surface level H D ´b C h as

´b D
p

x2 C y2

2
; H D ´b C h D 0:2 � ´b: (34)

Because h is non-negative, the initial granular mass only covers the region where ´b.x; y/ 6 0:1.

The computational domain is Œ�0:3; 0:3��Œ�0:3; 0:3� m2, and the mesh used is 256�256. In the first

case, we set ı D � D 40o. As the free surface slope angle of the mass is less than the internal friction

angle, which decides the maximum permissible value of the pile slope, the initial pile will keep its

static state all the time. In Table III, we give numerical errors of the computed depth relative to the
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Table III. Errors of the computed depth and orders of accuracy
for the static pile problem at ı D 40o, t D 1 s.

Mesh L2 error Order L1 error Order

64�64 0.00348176 — 0.0337154 —
128�128 0.00160774 1.1148 0.0225977 0.5772
256�256 0.000719244 1.1605 0.0148297 0.6077
512�512 0.00032317 1.1542 0.00963436 0.6222

Figure 8. The counter lines of depth with ı D 40o and t D 0:4 s (left), t D 1 s (right).

Figure 9. The counter lines of depth with ı D 20o at t D 0:1 s and t D 4 s.

exact solution on various mesh sizes. The numerical orders of accuracy are improved compared with

Table II. Figure 8 shows the computed counter lines of the depth at t D 0:4 s and t D 1 s, we can

observe the mass at t D 1:0 s is basically the same as at t D 0:4 s, with a little smearing in the center.

In the second case, we set ı D � D 20o. As the friction angle is smaller than the initial free

surface slope angle, the mass begins to flow, and Figure 9 shows the counter line distributions at

t D 0:1 s and t D 4 s. The distribution after t D 4 s will remain unchanged as the flow has reached

static balance.
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5.3. Inclined plane merging continuously into a horizontal plane

In this subsection, we present a simulation example of finite granular mass sliding down an inclined

plane and merging continuously into a horizontal plane [8]. The computational domain is x 2
Œ0; 30�; y 2 Œ�7; 7� (dimensionless). The ratio " and the stretching parameter � in Equation (5) are

both set to 1 in this work. The inclined region lies x 2 Œ0; 17:5�, and the horizontal region lies

x > 21:5. The transition zone between them is smooth and the inclination angle is

�.x/ D

8
ˆ̂̂
<
ˆ̂̂
:

�0; 0 6 x 6 17:5;

�0

�
1 � x � 17:5

4

�
; 17:5 < x < 21:5;

0o; x > 21:5;

(35)

where �0 D 35o. We set ı D � D 30o. An hemispherical shell with radius of r0 D 1:85 centered at

.x0; y0/ D .4; 0/ is released suddenly at t D 0.

Figure 10 shows the thickness contours of the fluid at nine different times as computed on 480 �
224 meshes without using the stopping criteria so as to compare with the results in Ref. [8]. The

results at t D 6; 15, and 24 are comparable. The quantitative difference between present and Wang’s

results may attribute to different schemes, different mesh sizes, and different " used.

We may compare the difference between with and without the stopping criteria for later stage

of the avalanche. Figure 11 shows results at t D 40 on three gradually refined meshes. The pile

becomes wider as the mesh is refined. For this particular example, the difference between with and

without the stopping criteria is small.

Figure 10. Thickness contours of the flow at nine times as computed on 480 � 224 meshes without the
stopping criteria. The last row is Wang’s results [8]. The quantitative difference may be caused by different

schemes and mesh sizes and possibly different " used (Ref. [8] did not give mesh numbers and ").
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Figure 11. Comparison of calculated results between with and without the stopping criteria at t D 40 using
three consecutively refined meshes. .8 � 8/ � .30 � 14/ means there are 8 � 30 meshes in the x direction
and 8 � 14 meshes in the y direction. Solid lines denote results with the stopping criteria, while dashed lines

denote without.

Table IV. CPU and GPU times for run from t D 0 to t D 24 with four meshes, where M0N0 D
30 � 14.

Mesh CPU serial time GPU time (2D) Sp (2D) GPU time (1D) Sp(1D)

4 � 4 � .M0N0/ 13220 ms 758.8 ms 17.4 538.4 ms 24.56
8 � 8 � .M0N0/ 100480 ms 3466 ms 29.0 2452 ms 41.0
16 � 16 � .M0N0/ 793250 ms 21672.7 ms 36.6 16169.1 ms 49.1
32 � 32 � .M0N0/ 6420670 ms 156224.8 ms 41.1 122621.7 ms 52.4

1D, one-dimensional memory allocation ; 2D, two-dimensional memory allocation.

We have also compared both CPU and GPU programs in this example. The running times of both

CPU and GPU programs are recorded in order to compare their efficiencies. Define the GPU/CPU

speedup ratio as

Sp D time of CPU serial program

time of GPU program
: (36)

Timings for run from t D 0 to t D 24 with four different meshes are given in Table IV. It can be

seen that with the increase of the mesh number, the speedup ratio increases. This can be explained

as follows. In the GPU program, there are some parts that need to be serialized. Hence, the running

time is composed of the serial time and the parallel time. With the increase of the mesh number,

the parallel computation work running on GPU will increase and finally saturate because of GPU’s

parallel capacity, while the serial work running on CPU and the memory copy work will not increase

much. Therefore, the speedup ratio will increase until a maximum value is attained. Table IV also

compares the 2D and 1D memory allocations. Unlike in previous matrix multiplication case, the 1D

GPU memory allocation code is only a bit faster than the 2D memory allocation code for this case.

As to performance comparison with previous work, the best specific time (i.e., time per cell per

time step) of the present implementation is approximately 5:2�10�8 s per cell per time step (double

precision) with 1D memory allocation on Tesla C2075 for this 2D example (Table V). This rate

is a bit slower than but comparable to other CUDA–GPU implementations for the shallow water

equations, for example, 1 � 10�8 s per cell per time step (in double precision) on Tesla M2075

in Ref. [24], and 1:9 � 10�8 � 2:2 � 10�9 s per cell per time step on Tesla M2070 in Ref. [25].

Because the SH equations have extra calculations for Kx ; Ky , and stopping criteria compared with
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Table V. Specific times for two-dimensional and one-dimensional memory
allocations with four meshes, where M0N0 D 30 � 14.

Mesh 2D specific time(s/cell/step) 1D specific time(s/cell/step)

4 � 4 � .M0N0/ 1:7 � 10�7 1:1 � 10�7

8 � 8 � .M0N0/ 1:1 � 10�7 6:8 � 10�8

16 � 16 � .M0N0/ 9:0 � 10�8 5:7 � 10�8

32 � 32 � .M0N0/ 8:3 � 10�8 5:2 � 10�8

1D, one-dimensional memory allocation; 2D, two-dimensional memory allocation.

Figure 12. Experimental apparatus [32]. The granular jet impinges on the inclined plane, spreads into a
region of thin, fast flow (A), and then passes through a jump, becoming thicker and slower flow (B).

the shallow water equations, and different papers had used different numerical schemes and different

treatment of dry-wet fronts, a precise comparison of computational efficiency is out of the scope of

the present paper.

5.4. Granular jet

Johnson and Gray [32] conducted a series of experiments of granular jet impinging on an inclined

plane. According to their results, there are steady-state teardrop shock, blunted shock, and unstable

time-dependent flows that are dependent on the inclined angle � and the height of the release position

of the jet relative to the plane Hf , as sketched in Figure 12.
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We simulate this problem with the 2D memory allocation GPU program by giving the initial

conditions in the circular region centered at the stagnation point on the plane as Ref. [32]. In the

circular region with a chosen radius Rimp D 2R, the analytical solution [32]

v D
�
ujet cos �; ujet sin �

�
; (37)

h D R2 cos3 �

2r.1 � sin � cos �/2
; (38)

is valid, where R is the radius of the cylindrical jet, .r; �/ is the polar coordinates centered at the

stagnation point, and ujet is the jet velocity. We use the same parameters � D 26:7o, ujet D
0:99 m/s, and R � 0:5D D 7:5 mm as in Ref. [32] for the steady case with a teardrop-shaped shock.

If using a constant basal friction coefficient �, one can only obtain one steady flow of uniform

thickness at a single slope angle of � D tan�1 �. But experiments [33] have observed steady uni-

form flows over a range of slope angles over a roughened bed. This motivated Johnson and Gray

[32] to use a variable basal friction law to model the experiments. In 1999, Pouliquen et al. [34]

demonstrated that a steady flowing layer with uniform thickness can exist on a slope inclined at an

angle � with a minimum depth Qhstop .�/, below which steady flow is not observed, here Qh denotes

dimensional flow depth. They also found an empirical dependence of the ratio of flow depth Qh to
Qhstop .�/ on the Froude number,

Fr � jvjp
h" cos �

D ˇ
Qh

Qhstop .�/
; (39)

where ˇ D 0:136 is a measured constant for glass beads. At steady flowing states, � D tan �

holds, and the inverse function of Qhstop .�/ together with Equation (39) can lead to an equation for

the friction coefficient �stop D tanŒ�stop. Qhˇ=Fr/�, implying that �stop D �stop.h0/. Similar to

Ref. [32], we use the form for the function �stop.h0/ as given Ref. [34] and the form for the function

�start .h
0/ as given in Ref. [33], respectively, with experimentally measured friction angles,

�stop.h0/ D tan �1 C .tan �2 � tan �1/ e�
h0

' ; (40)

�start .h
0/ D tan �3 C .tan �2 � tan �1/

1

1 C h0

'

; (41)

where �1 D 21o; �2 D 30:7o; and �3 D 22:2o are measured friction angles [33]. The function

�stop.h0/ is a fit to the experimental measurements of Qhstop .�/ , and it takes the aforementioned

form with a transition between two friction angles �1 and �2. The function �start .h
0/ is a static fric-

tion coefficient and is calculated by measuring the maximum inclination angle at which a uniform

layer of stationary material with depth h0 starts to move. The free parameter ' has the dimension of

length and depends on the granular material and surface properties of the plane and characterizes the

depth of flow over, which a transition between the two friction angles �1 and �2 occurs. In order to

make the steady state fit the experiment better, we take the free parameter ' D 6 mm in this paper.

The functions �stop and �start are used in the following way.

� When Fr > ˇ, that is, for the steady regime where Qh > Qhstop , the friction law (40) is used as

� D �stop

 
Qhˇ

Fr

!
: (42)
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(a) present result (b) simulation [32] (c) experiment with sand [32]

Figure 13. Comparison of (a) present result with 512�256, where the contours are of flow depth and shading
indicates the flowing region of material, (b) simulation by Johnson and Gray [32], where the contours are of
flow depth at intervals of 1 mm, with dark contours at intervals of 5 mm and shading indicates the flowing
region of material, and (c) experimental results. Unit in x; y ticks in (a) and (b) is meter, while grid squares
in (c) are 2-cm intervals. Different from (b), in (a), we do not plot contours inside the circular region with

radius Rimp representing the granular jet, where the analytical solutions (37)-(38) are imposed.

� When 0 < Fr < ˇ, we follow the method [33] in interpolating between the static and steady-

flow friction coefficients with a power function

� D
�

Fr

ˇ

�
 �
�stop. Qh/ � �start . Qh/

�
C �start . Qh/; (43)

where 
 D 10�3:

The earth pressure coefficients are set to unity in this example as done in Ref. [32]. Figure 13

shows the steady-state depth contours for a teardrop-shaped shock flow obtained with the present

GPU code on 512 � 256 mesh cells in comparison with the numerical simulation and experimental

visualization in Ref. [32]. We can clearly observe that the contour lines, the shape and position of the

shock, and the stationary region are comparable to the literature. However, present shock is slightly

longer than that in [32], which may be caused by different values of the free parameter ' used.

6. CONCLUSION

In this work, we have presented an improved numerical method for the SH model for modeling

granular avalanche flows by taking into account the static resistance condition and the stopping

criteria. We apply Davis’s second-order predictor-corrector Godunov method in conjunction with

the MUSCL reconstruction and HLLC scheme to GPU computing. The accuracy of the resulting

numerical algorithm is verified through several typical numerical examples and the computational

speedup of the GPU code relative to the CPU serial code is shown to be evident. Comparisons

between using 1D and 2D memory allocations and with previous GPU codes for the shallow water

equations are also represented. As an application example, one case with teardrop-shaped shock

in the granular jet experiments of Johnson and Gray is simulated, and the computed results are

comparable to experimental and numerical results in the reference.
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