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Abstract

The configuration interaction approach provides a conceptually simple and pow-

erful approach to solve the Schrödinger equation for realistic molecules and materials

but is characterized by an unfavourable scaling, which strongly limits its practical

applicability. Effectively selecting only the configurations that actually contribute to

the wavefunction is a fundamental step towards practical applications. We propose

a machine learning approach that iteratively trains a generative model to preferen-

tially generate the important configurations. By considering molecular applications it

is shown that convergence to chemical accuracy can be achieved much more rapidly

with respect to random sampling or the Monte Carlo configuration interaction method.

This work paves the way to a broader use of generative models to solve the electronic

structure problem.

Introduction

The application of machine learning (ML) to quantum chemistry and computational mate-

rials science has experienced an impressive growth in the past few years. However, methods
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that apply ML to molecular dynamics1,2 or molecular property predictions3,4 usually imply

the availability of a certain amount of data previously produced by approximating the so-

lution of the Schrödinger equation. By considering the exponential numerical complexity

involved in the exact solution of this equation it would be highly desirable to take advantage

of ML techniques also in this context. For realistic molecules and materials this is a widely

open field of research and the full potential of ML has yet to be widely exploited in its full

potential.

In a seminal work Carleo and Troyer showed that neural networks can effectively represent

the quantum states of spin models, thus reducing the exponential complexity of the many-

body problem.5 Specifically, they showed that a restricted Boltzmann machine (RBM) used

as an ansatz within variational Monte Carlo can achieve variational energies lower than those

obtained with traditional approaches. From a theoretical point of view this success relies

on universal approximation theorems,6,7 which imply that neural networks can approximate

complex (but ”reasonably” smooth) high-dimensional functions, including quantum states.

This method was demonstrated numerically considering the one- and two-dimensional Ising

and Heisenberg models. More recently Carleo and coworkers have applied a similar approach

to realistic Hamiltonians of small molecules.8 This was achieved by mapping the electronic

structure Hamiltonian into a spin-like Hamiltonian by using quantum information encodings.

The most accurate results where obtained with the Jordan-Wigner mapping,9 which leads

to an approach equivalent to the configuration interaction (CI).10 Within the CI method

the fully interacting wavefunction is expressed as a linear combination of excited Slater

determinants (the “configurations”); while the coefficients of this expansion are typically

computed as solution of an eigenvalue problem, in Ref. 8 they were learnt by the RBM in an

unsupervised way using a Monte Carlo sampling and the variational principle. While this

approach was achieving chemical accuracy for small basis sets, the Monte Carlo sampling was

repeatedly drawing the most dominant states (i.e. the Hartree-Fock determinant) and this

was at the origin of a significant slow down of convergence for basis sets beyond the minimal
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STO-3G. It was recently shown that this issue can be alleviated by using autoregressive

neural networks, that allowed calculations with up to 30 spin orbitals.11 Our numerical

results presented below show that a simple RBM architecture used as a generative model

can easily double this number. More in general it should be noticed that the representation

of the wavefunction in the configuration space is strongly non-smooth (determinants with

similar occupations can provide significantly different contributions to the wavefunction) and

this could be challenging for ML regression approaches. To overcome this issue alternative

methods use instead the high expressive power of deep neural networks to represent electronic

structure wavefunctions in real-space;12–15 as an advantage some of these techniques can

achieve the complete basis set limit in a rather straightforward way but on the other side

they require deep architectures involving the optimization of a large number of parameters

and special care to keep into account the antisymmetry of the electronic wavefunction.

The antisymmetry is instead naturally included in the CI space which, however, grows

unfavorably with the system size. This has lead to the development of a series of methods that

select the excited determinants that contribute the most to the wavefunction, either based on

perturbation theory16 or Monte Carlo sampling.16 More recently machine learning techniques

have been coupled to these methods.17–19 In this context Coe was the first to propose a Monte

Carlo approach that explores the configuration space but, instead of explicitly computing

the coefficient of each configuration, this is predicted by a regression neural network.17 While

Carleo and coworkers apply a neural network approach to “exactly” fit the wavefunction in

the configuration space using the variational principle,8 the alternative approaches of Refs.

17–19 are more qualitative and use supervised learning techniques.

In this work we propose an alternative approach named CIgen that uses generative ma-

chine learning to directly generate the configurations that contribute the most to the elec-

tronic wavefunction. This is done with the general aim of avoiding the exploration of the

overwhelmingly large configuration space to search for the most important determinants.

Notable examples of generative machine learning algorithms include the restricted Boltz-
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P(v)=
e-βE(v,h)
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One visible input layer v & one hidden layer h
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determinants {v(k)} with 

probability P(v(k))

Diagonalize in basis A U G

and prune with threshold pmin 
update      & A 
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(c)

(d)
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Learning the probability 

distribution P(v)

Training set of binary vectors

(after flattening) {v(k)}

Sampling ṽ from P(v)

Figure 1: (a) Restricted Boltzmann machine (RBM) architecture consisting of one visible
input layer and one hidden layer of binary values; for a given configuration (v,h) the param-
eters (a, b,W ) are used to define an energy function E and an associated Boltzmann-like
probability density P . (b) As an example, the RBM can be trained on a set of handwritten
digits and afterward used to generate new realistic ones; to this purpose the digit’s images
are flattened to become unidimensional binary vectors v(k) where 1 and 0 correspond to the
digit and background pixels, respectively. (c) The configuration interaction (CI) approach
expands the wavefunction of a molecule as a a linear combination of excited Slater determi-
nants, which can be represented as a sort of unidimensional binary image. (d) The CIgen
algorithm presented in this work iteratively trains an RBM on the distribution of determi-
nants in the current approximation of the wavefunction and subsequently uses it to expand
it by generating new important contributions.
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mann machines,20,21 the variational autoencoders,22 and the generative adversarial networks

(GANs).23 CIgen is based on RBMs, a type of generative neural network whose architecture

is shown in Fig. 1(a). As for other generative models the RBM can learn in an unsupervised

way the statistical distribution behind a series of input objects and then be used to generate

new ones. A qualitative example is shown in Fig. 1(b): An RBM can be trained with a

series of pictures, e.g. of handwritten digits, in practice represented as a flattened matrix of

pixels and afterward used to generate realistic new realistic images of the same digit.

For a given molecule or material the excited Slater determinants are associated to an

underlying probability distribution that could only be exactly evaluated by solving the

Schrödinger equation to obtain the wavefunction. By representing the space of excited

determinants simply as binary vectors (a sort of onedimensional binary image), the RBM

is here iteratively trained using data from the current approximation of the wavefunction

and subsequently used to generate new important determinants to improve the wavefunction

approximation (see Fig. 1(c-d)).

Within the previous approach of Carleo and coworkers5,8 the RBM was not properly used

as a generative model but rather as a regression model for the wavefunction (to this purpose

the RBM architecture was generalized to include complex weights); here we use instead

the RBM as a model to qualitatively represent the probability distribution associated with

the wavefunction, which is afterward used to generate the most likely configurations. In

this respect the CIgen approach has some similarities with the use of RBMs to learn the

statistical distribution of data from experimental measurements of quantum states and to

subsequently generate new configurations for quantum averages.21 Differently from selective

CI or Monte Carlo CI our approach does not “explore” the huge determinant space to find

significant contributions but rather directly generate them with the current approximation of

the probability distribution associated with the RBM. Comparison with previous approaches

will be further discussed below.
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Results and discussion

Configuration interaction approach

Considering the non-relativistic N electron problem in the Born-Oppenheimer approxima-

tion, the configuration interaction method solves the Schrödinger equation for a fixed basis

set by expanding the wavefunction in the following way:10

|Ψ〉 = c0|Φ0〉+
∑
ra

cra|Φr
a〉+

∑
a<b
r<s

crsab|Φrs
ab〉+

∑
a<b<c
r<s<t

crstabc|Φrst
abc〉+ · · · (1)

where |Φ0〉 is the Hatree-Fock ground state, |Φr
a〉 is a singly excited Slater determinant from

occupied spin orbital a to unoccupied spin orbital r, and all the other terms correspond to

multiple excitations; while |Ψ〉 could denote any excited state of a given system here the dis-

cussion will be focused on the ground-state. When all the possible excited determinants are

included in Eq. 1 the approach is called full configuration interaction (FCI) and the solution

of the Schrödinger equation becomes exact for a given basis set. Within the “brute-force”

FCI approach the coefficients of the expansion c0, c
r
a, · · · are determined by computing the

expectation value of the Hamiltonian 〈Ψ|Ĥ|Ψ〉 and applying the variational principle. Since

the total number of determinants grows as
(
2K
N

)
, where 2K is the number of spin-orbitals,

the FCI approach becomes quickly unpractical for most applications. It is however well

known that often the wavefunction can be accurately represented by a limited number of

excited determinants and here a ML model is proposed to directly generate the important

contributions.

Generative model

In this work, it is shown that restricted Boltzmann machine (RBM) can be used to efficiently

generate the excited determinants that contribute the most to the wavefunction in Eq. 1.
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An RBM, pictorically represented in Fig. 1, is a generative neural network consisting of

one input layer of D visible binary units {vi} ∈ {0, 1}D, one layer of P binary hidden units

{hj} ∈ {0, 1}P , and D × P weights {Wij} between both layers. Two bias vectors {ai} and

{bj} are added to the visible and hidden layer, respectively.

By introducing an energy function of Λ = {a, b,W } for a given configuration {v,h} as

E(v,h,Λ) = −(aTv + bTh + vTWh), (2)

and an inverse temperature β = 1/T , one can define the probability distribution associated

with the RBM over the input configurations v to be

P (v) =

∑
{h} e−βE(v,h)∑
{h,v} e−βE(v,h)

. (3)

After training on a set of vectors v distributed according to P (v), the RBM can be used

to generate new vectors v according to this probability distribution. To this purpose the

Gibbs sampling can be used:24 Starting from an initial random trial vector as input, one

can obtain a hidden-layer vector h using the conditional probability p(hi|vi) and then obtain

a new input-layer vector v using the conditional probability p(vi|hi); the repetition of this

operation a certain number of times forms a Markov chain that generates a vector v according

to the probability P (v).

For the purpose of this work the input vectors v represent the Slater determinants and

their associated probability P (v) should ideally be proportional to their contribution to the

wavefunction (the square of the c coefficients in Eq. 1). The determinants are represented

as binary vectors, where 1 denotes occupied and 0 unoccupied states, with size equal to the

number of spin-orbitals (see Fig. 1). The architecture of the RBM used in this work is rather

simple, with 2K (the number of spin orbitals) neurons in the visible and in the hidden layers.

Given a certain fixed subspace of determinants, the Hamiltonian is diagonalized to obtain the

wavefunction coefficients; the model is then trained with random configurations generated
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according to the corresponding probability distribution by updating the RBM parameters

with the contrastive divergence algorithm.25 The training and generative procedure of an

RBM are discussed in detail in Supplementary Material. The generation of new determinants

and the retraining of the model are performed iteratively. Specifically, the CIgen algorithm

performs the following steps:

1. Start: The configuration interaction singles and doubles (CISD) is used to generate an

initial guess wavefunction.

2. Pruning: The determinants whose squared wavefunction coefficients (Eq. 1) are below

a certain threshold pmin are pruned.

3. Training: The RBM model is trained only on the non pruned determinants but the

Hartree-Fock determinant, which is typically associated to a very high probability, is

not included in the training set (otherwise the ML would mainly generate the Hartree-

Fock state in the following step).

4. Generation: The trained RBM is used to generate a set of new determinants, whose

number is proportional to the number of determinants already included in the current

approximation of the wavefunction. During this procedure determinants are automat-

ically discarded if they are already included in the wavefunction, if they do not couple

through single or double substitutions with the current determinant set, and if they

do not have correct spin and point group symmetries.

5. Diagonalization: The Hamiltonian is diagonalized in the subspace that includes the

newly generated determinants and new coefficients are obtained for Eq. 1.

6. Iterate: The procedure is repeated from step 2 until convergence of the energy is

achieved.

Differently from previous approaches based on RBMs for quantum states,5,8 CIgen does

not require an RBM architecture generalized to include complex weights and, while the model
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still learns in an unsupervised way, the procedure is not based on the variational principle.

While the training of a ML model based on the variational principle is more elegant and

physically motivated,5,8 the CIgen approach is less prone to overfitting as it does not aim to

exactly fit the wavefunction.

Direct generation of single and double excitations

The CIgen algorithm is based on a rather straightforward way of using a generative neural

network model to enlarge the configuration subspace of interest. However, the generative step

(step 4 of the CIgen algorithm) often samples determinants that clearly cannot contribute

to the wavefunction and this makes the overall procedure less efficient. For example, it is

well known that a fixed set of determinants can only be coupled through the Hamiltonian to

new determinants that differ by single and double substitutions. This observation, which has

some subtle implications, is exploited by the Monte Carlo Configuration Interaction (MCCI)

algorithm proposed by Greer et al.26 In the MCCI algorithm, new determinants are sampled

by randomly proposing single and double excitations of the determinants already included in

the wavefunction set. At first sight this could seem a rather inefficient random procedure but

in practice the important (highly contributing) determinants have often multiple connections

to other important determinants through single and double substitutions and are much

more likely to be sampled. To take advantage of this feature of the configuration space we

developed a variant of our approach named CIgen-SD. Within this procedure a determinant

Φ1 is first randomly selected among those included in the current approximation of the

wavefunction. Through the RBM a new determinant Φ2 is then sampled and used exclusively

to construct a transition probability matrix. Finally, a new determinant is proposed by

exciting Φ1 according to this probability matrix and the whole procedure is repeated several

times. The CIgen-SD procedure is explained in details in Supplementary Material. The

CIgen, CIgen-SD, and MCCI will be compared in the Numerical Results subsection.
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Numerical Results

We now discuss the efficiency and accuracy of the CIgen approach by considering applications

to molecular systems. To this purpose total energy calculations for the C2, N2, and H2O

molecules are performed for the 6-31G and cc-pVDZ basis sets considering the active spaces

indicated in the third column of Table 1. For the largest system the number of spin orbitals

is about double than what previously achieved with neural network quantum states.11

As a preliminary step it is important to discuss the effect of the temperature on the

generative power of the RBM (see Eq. 3). Fig. S1 shows the convergence of the total energy

of H2O in the cc-pVDZ for three values of the temperature. The convergence of the CIgen

approach is optimal at T=1 (chemical accuracy is achieved within 11 iterations) but sizeably

slows down when T is increased to 5. In the limit of a very large temperature (T=500) the

method performs poorly. Indeed, as explained in SM, the T →∞ limit leads to a completely

random generation of determinants. This shows that for reasonable choices of the tempera-

ture the CIgen method actually learns the probability associated with the wavefunction and

significantly speeds up the generation of the excited determinants with respect to random

sampling.

We now consider the convergence of the total energy in the cc-pVDZ basis for the three

molecules C2, N2, and H2O in the cc-pVDZ basis and compare the perfomance of the CIgen

and CIgen-SD algorithms with the MCCI algorithm. In all three cases the two CIgen variants

considered here outperform the MCCI method. This is particularly true for the CIgen-SD

approach that achieves chemical accuracy with a significantly smaller number of iterations.

The detailed results for the total energies of the molecules considered here are presented

in Table 1, where CIgen-SD values are compared to coupled-cluster with singles, doubles

and perturbative triples CCSD(T) and to FCI reference values. By considering a limited

number of iterations (from a minimum of 9 for C2 in 6-31G to a maximum of 17 for water in

cc-pVDZ), CIgen-SD converges to FCI values within chemical accuracy. This is achieved by
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Figure 2: Total energy convergence for N2, C2, and H2O in the cc-pVDZ basis set as a
function of the number of iterations in the CIgen, CIgen-SD and MCCI algorithms. The
full configuration interaction (FCI) reference values and the chemical accuracy threshold are
represented by horizontal lines.

generating an excited determinant subspace that is significantly smaller than the full space.

For example, for the molecule N2 in the cc-pVDZ basis set only 3.5 million determinants

are generated and included in the wavefunction out of the about 540 millions that would be

allowed by spin and space symmetries. This significant reduction of two orders of magnitude

in the number of determinants is not achieved by a search in the configuration space but

rather by an iterative generation (and model training) of the determinants that contribute

the most to the total energy.

As a final result in Fig. 3 we present a full binding curve for the N2 molecule. This

represent a much more challenging example since for large interatomic distances the binding

is characterized by strong static correlation whose description could become problematic for

several traditional quantum chemical approaches. This is the case of CCSD(T) that starting
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Table 1: Total energies (Ha) for the different systems/basis sets considered here as ob-
tained with the CIgen-SD method; reference FCI and CCSD(T) energies are provided for
comparison purposes. The (N,K) column indicate the size of the active space, where N is
the number of correlated electrons and K is the number of active molecular orbitals, and the
Nconv column indicates the number of iterations to achieve convergence (i.e when the energy
in two successive iterations differs by less than 10−5 Hartree).

System Basis (N,K) ECIgen−SD ECCSD(T ) EFCI Nconv

C2 6-31G (12,18) -75.64416 -75.64415 -75.64418 12
N2 6-31G (14,18) -109.10824 -109.10635 -109.10842 12

H2O 6-31G (10,13) -76.12220 -76.12182 -76.12237 10
C2 cc-pVDZ (8,26) -75.72982 -75.72781 -75.72984 9
N2 cc-pVDZ (12,27) -109.27827 -109.27829 -109.27834 13

H2O cc-pVDZ (8,23) -76.24192 -76.24131 -76.24195 17

at around 1.8 Å produces a binding curve with an unphysical behavior. The CIgen approach

well describes the N2 binding curve at every distance and produces a curve in excellent

agreement with FCI. The comparison with the CISD curve, which provides the starting

training data for the generative model, shows clearly that CIgen recovers an increasing

amount of electronic correlation energy as a function of the interatomic distance.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Bond distance [Å]

109.1

109.0

108.9

108.8

108.7

108.6
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En
e

rg
y 

[H
a

]

CISD
CCSD(T)
FCI
CIgen

Figure 3: CIgen dissociation curve of N2 in the 6-31G basis set compared to the CCSD(T),
FCI, and CISD curves.
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In summary we have shown how a generative model can be used to solve the Schrödinger

equation by sampling the excited Slater determinants that contribute the most to the wave-

function. Numerical applications show that this approach is already competitive with previ-

ous approaches based on Monte Carlo sampling of the excited determinants26 or on machine

learning ansatzes to represent the wavefunction in the configuration space.8,11 An improve-

ment that should be addressed in future work involves the development of a generative model

that intrinsically takes into account the symmetry of the determinants and, more in general,

the properties of the determinants contributing to the wavefunction. It has already been

shown that a sizeable improvement in the convergence speed can be achieved by directly

generating the determinants that couple with double and single substitutions to the deter-

minants already included in the wavefunction. In the current implementation, however, spin

and spatial symmetries of the generated determinants are verified and enforced only a pos-

teriori. The development of a generative machine learning model whose architecture keeps

into account these symmetries would certainly increase the numerical efficiency of CIgen to

possibly perform calculations with significantly larger numbers of spin orbitals.

Methods

Computational details

The equilibrium geometries of the molecules considered in this work are optimized at the

CCSD(T) level of theory in the corresponding basis set (6-31G or cc-pVDZ) and can be

obtained from the Computational Chemistry Comparison and Benchmark DataBase.27 The

reference results for these molecules at the CCSD(T) and FCI level of theory (Table 1 and

Figs. 2-3) have been obtained from the Molpro code.28,29

The electronic structure part of our implementation (specifically the diagonalization of

the Hamiltonian in the space of the generated determinants) is based on the Quantum

Package code.30 The selection of the determinants to be included in the wavefunction in Eq.
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1 is based on an acceptance threshold of 10−12 on the squared coefficients.
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