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1. INTRODUCTION 

The linear-quadratic (LQ) method proposed by Kydland and Prescott 

(1980,1982) for approximating the solution to non-LQ optimization problems has 

been applied in numerous studies (Altug 1986; Christiano 1987c, 1988; Christiano 

and Eichenbaum 1988; Cooley and Hansen 1988; Hansen 1985; Hansen and Sargent 

1988; and King, Plosser, and Rebelo 1988). In general, little is known about the 

accuracy of this method. This article provides some evidence of its accuracy within 

the context of a particular example. This is done by comparing the LQ 

approximate solutions with the solutions obtained by discretizing the underlying 

state space and applying a variant of the value-function iteration methods described 

by Bertsekas (1987). Since the grid for the endogenous; variables in the state space 

is very fine, I expect that the solution obtained by value-function iteration 

approximates very closely the solution in the version of the problem in which the 

endogenous state variables take on a continuum of values. 

The example used here is a version of the Brock-Mirman (1972) 

one-sector stochastic growth model. A solution to the model is a set of two decision 

rules. These relate end-of-period capital and current consumption to the 

current-period state variables. There are two state variables: beginning-of-period 

capital and the current period's technology shock, which is a realization from a 

stationary stochastic process. Two versions of the LQ approximation method are 

studied: The first relates end-of-period capital linearly to the state variables and is 

called the linear LQ approximation. This is the original method used by Kydland 

and Prescott (1980, 1982). The second approximation used is log linear in 

end-of-period capital and the state variables and is therefore called the log-linear 
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LQ approximation. It is applied by Christiano (1987b,c; 1988) and King, Plosser, 

and Rebelo (1988). This method has the virtue that in the special case in which the 

model does admit an analytic solution, then the log-linear decision rules and the 

exact decision rules coincide (see Remark 1). This case is the model studied by 

Long and Plosser (1983) in which the depreciation rate on capital is 100%, the 

production function is Cobb-Douglas, and utility is logarithmic in consumption. 

The accuracy of the approximate decision rules is evaluated on four 

dimensions. First, I compare the LQ decisions with those of the (approximately) 

exact solution at selected points in the state space. Second, I compare the LQ 

decision rules' implications for several first and second moments with those of the 

exact solution. This comparison is particularly relevant, since first and second 

moments play an important role at the parameter selection and model evaluation 

stages, respectively, for many who use LQ approximations. Third, I report the 

amount, expressed as a fraction of the initial stock, that a planner who only knows 

the LQ decision rule would be willing to pay to learn the exact decision rule. This is 

a measure of how close to optimal the LQ decision rules are. Finally, graphs of the 

steady-state distribution of consumption and capital, as implied by all three 

solutions, are presented. 

The results suggest that the LQ approximation is remarkably accurate for 

the example at hand. In addition, they show that the log-linear and linear LQ 

approximations are roughly equally accurate. This latter finding illustrates that the 

relative accuracy of the two decision rules is context specific. For example, in 

Christiano (1987a,b) and Christiano (1988, n. 18), I show that in a model similar to 

the one here but with a productivity shock which is a logarithmic random walk, the 

two approximations are dramatically different. Christiano (1987b) shows that the 

difference reflects the accuracy of the log-linear approximation and the very poor 
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accuracy of the linear approximation in that context. 

The plan of the paper is as follows. In Section 2, I present the growth 

model that is studied and its LQ approximate solution. Section 3 formulates the 

optimization problem as a dynamic programming problem and discusses its solution 

by value-function iteration. Section 4 describes the model parameters used in the 

experiments. Section 5 presents the comparison of the LQ and value-function 

iteration solutions. Section 6 presents my conclusions. 

2. T H E P R O B L E M AND ITS SOLUTION B Y LQ A P P R O X I M A T I O N 

The problem I consider is the one good growth model in which the 

planner maximizes 

E Q E ® = Q ( l - r ^ C p - ^ (2.1) 

subject to 

C t + K t - ( 1 4 ) K W = e x p ( x t ) K ? _ r (2.2) 

Here, C t and K t are date-t consumption and the end-of-period-t capital stock. 

Also, 6, a, and r are the rate of depreciation on capital, the share of income due to 

capital, and risk aversion. Throughout, I assume that x. is a realization from an n 

state, first-order Markov chain with 
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x t € S= \ } (2.3) 
x 

P r { x t + 1 = S}\ x t = ^} = ^ 

E x t = 0. 

It is sometimes convenient to refer to the model for x̂ . in terms of its Wold 

representation, which has a first-order autoregressive form: 

x

t
 =

 P*t-1
 + e

t ' <
2

'
4

) 

2 
where e. is mean zero with variance a and is uncorrected with x. ... Further 

t e t-1 

details about n , T = [ir- J and ^"are given below. 
x 1J 

A solution to this problem is a function relating the date-t decision, K .̂, 

to the date-t information variables, x̂ . and K^._j. The exact solution is known only 

for the case r = 8 = 1 (see Long and Plosser 1983). I now describe two variants of 

the LQ approximation method proposed by Kydland and Prescott (1980, 1982). 

The first of these, the linear LQ method, approximates the decision rule for K t with 

one that is linear in x t and K t _^. The second, the log-linear LQ method, 

approximates it with one in which the log of K t is related linearly to x̂ . and the log 

of K j_^. The decision rule delivered by the log-linear LQ method has the virtue of 

coinciding with the exact decision rule when 6= r = 1. 

2.1 The Linear LQ Approximation 

4 



Express the problem as a standard calculus-of-variations problem by 

substituting (2.2) into (2.1): 

maximize EQ 2 " _ Q / r u ( K . _ ^ , K T , x t ) (2.5) 

subject to XQ and K _ ^ given. Here, 

u ( K , K ' , x ) = ^ [exp(x)K
a

 + (1-<5)K - K ' ] ^
 T

\ (2.6) 

The linear LQ method approximates the solution to (2.5) by the solution 

to the following linear-quadratic optimization problem: 

maximize EQ E™_Q 0 U(K^_j , K t , x t ) , (2.7) 

where U is the second-order Taylor series expansion of u about K t _^ = K t = K* 

and x t = x*. Here, K* and x* are the steady-state values of K t and x t of the 

nonstochastic version of (2.5) obtained by setting « t = 0 for all t. Trivially, x = 0. 

Also, it is easy to verify that 

K = 
[7?aexp(x*)] 

1-{1-S)0m 

[ l /( l-o)] 

(2.8) 

It is convenient to define K. = - K . At date t, the first-order 

necessary condition for K t to solve (2.7) is 

¥ W ^
K

t + ?
K

t - i = - W )
x

t -
(2.9) 
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Here, 

<t> = ~ 

u

22
 +

 ^
 U

1 

fin 
I I = 1 + / T

1

 + [i _ (i-«)/3I(C*/K*), (2.10) 

12 

where C * / K * is the steady-state consumption-to-capital ratio, given by 

, * l i r * _ / T
1

 - 1 + ffl-a) 

a 
(2.11) 

In (2.10), u-. is cross-derivative of u with respect to its i ^ and j * *
1

 arguments, 
�i 

evaluated at steady state. It can also be shown that 

u 
23 + PfiMu 

U

1 2 

(HO + '1 (HO 
K* 

+ 
K* 

2 

K*. (2.12) 

Let A be the unique number that satisfies |A| < 1 and A - <f)\ + (1//?) = 0. Then, 

the unique solution to (2.7) is the rule 

K

t "
 A K

t - l
 + <i

TJ3pX
x

v 

or, 

K t = ( l -A)K + A K t _ 1 + q r 4 I x t  

= f

l i n L Q ^
K

t - l ' 

(2.13) 
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say, where f j m L Q (
K

.
 x

) = (
1 _

^ )
K

 + AK + [qA/(l-/3pA)]x. Substituting this 

decision rule into (2.2), we get the linear LQ approximate decision rule for 

consumption, g J i n L Q : 

C

t
 =

 ghnLQ(
K

t - l>
 x

t ) 

~ exp(x t )K^_ 1 + ( l - ^ )K t _ 1 - f ] i n L Q ( K t _ r x t ) . (2.14) 

This decision rule gets its name from the fact that the decision rule for is linear 

in its arguments. Clearly, g j ^ q is not itself linear. 

2.2 The Log-Linear LQ Approximation 

Let k t = log(K t) and define 

r(k, k', x) = u(exp(k), exp(k'), x), (2.15) 

where u is given in (2.6). Then, an equivalent way to write (2.5) is 

maximize E Q T,*=Q ^x{k%_v x t ) , (2.16) 

with respect to decision rules for k̂ .. The log-linear LQ method approximates this 

decision rule by the one that solves 

maximize E Q E ^ O ^ V l ' k t , x t ) , (2.17) 
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where R is the second-order Taylor series expansion of r about kt_^ = k t = log(K ) 

and x. = x*. Let k = k. - k*. The first-order necessary condition for k, to solve 
t t t ' I 

(2.17) is 

E

t
k

t + i - * \
 +

 ( v ^ t - i
=

 - f o / o ^ K ' 
(2.18) 

where <f> and q are as defined in (2.10) and (2.12), respectively. Equations (2.10) 

and (2.12) are relevant here despite the fact that they involve uij, since 

(r 2 2 + /?r u)/(/?r 1 2) = (u 2 2 + pun)/(Pui2) and (r 2 3 + fan)/in = 

(u23 + /?/nii3)/(ui2K*). Here, ry is the cross-derivative of r with respect to its i
t h 

and j
t h

 arguments, evaluated at k t-i = k t = log(K*). 

The solution to (2.17), then, is 

k t = Ak t _ 1 + ( q / K * ) T = ^ x t , 

or, 

K

t = (
K

* )
( 1

"
A ) e x

p [ K ^ I ^
x

t 

"
 f

l o g L Q ^
K

t - l '
 x

t ^ 

K 
t-1 

(2.19) 

When T = 6=1, then A = a, q /K* = (l-0pa)/a, and ( K * ^
1

 ^ = a0, so that 

(2.19) reduces to 

K t = a0 exp(x t )K^_ 1 , (2.20) 
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which is the exact solution to (2.5). (See Long and Plosser 1983.) This result is of 

sufficient interest to deserve emphasis. 

Remark 1. If r = 8 = 1, then the log-linear approximation is exact. 

An analogous remark applies in the context of the linear LQ decision rule. In 

particular, when r = 8 = 1, then (2.13) reduces to K f c = ( l - a )K* + 4- K *x t . 

But this is the first-order Taylor series expansion of the right side of (2.20) about 

x t = 0 and K t _^ = K*. Thus, we have 

Remark 2. If r = 8 = 1, then the linear LQ decision rule is the first-order Taylor 

series expansion of the exact decision rule about the steady-state values of x^ and 

K

t-r 

Denote the log-linear LQ decision rule by f i 0 gLQ
: 

K

t =
 f

l o g L Q
( K

t - l '
 X

t
) =

 (
K

* )
( 1 _ A ) e x

P { x t q A / [ K * ( l - ^ A ) ] } k\_v (2.21) 

The implied log-linear decision rule for consumption is g i 0 gLQ
: 

c

t = S k W V r
 x

t ) 

=
 e x

P ( * t )
K

? - l + (MJKt-l - f

l ogL Q (
K

t - l >
 x

t ) ' <
2

'
2 2

) 

Unless T — 8 - 1, gi 0gLQ *
s n o t

 itself log linear. 

9 



3. T H E SOLUTION B Y V A L U E - F U N C T I O N I T E R A T I O N 

In the problem posed in Section 2, only the exogenous shock x^ was 

assumed to lie on a discrete grid 3L In particular, the capital stock was implicitly 

assumed to be able to take on a continuum of values. Value-function iteration 

methods require that the capital stock lie on a discrete grid and therefore do not, 

strictly speaking, apply to that problem. However, one expects that by choosing a 

sufficiently fine grid for K t , denoted JS, an arbitrarily accurate approximation to 

the underlying continuous problem can be obtained. In the calculations here, X is 

in fact extremely fine. 

Problem (2.5) is expressed as a dynamic programming problem: 

v

<
K

t - l ' V = v A ,
m a x

 > ( K t _ r K t , x t ) + /3E t v(K t , x t + 1 ) } } (3.1) 
K

t
€A

l
K

t-i> V 

subject to {x.} being generated by the n state, first-order Markov chain given in 
L X 

(2.3). In (3.1), A denotes the feasible set of possible choices of K t . Feasibility is 

determined by the nonnegativity constraint on C t and by the requirement that K t 6 

J6. Formally, 

A(K, x) = {K ' G X\ exp(x)K
a

 + (1-<5)K - K ' > 0}. (3.2) 

The set J£, described below, is a discrete interval of t positive numbers. I now 

discuss the method used to find v in (3.1) and explain how v is used to solve 

(2.1)—(2.3), the problem of interest. The following discussion is not solely relevant 
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for the example here of one endogenous state variable, one control variable, and one 

exogenous shock. In particular, for the rest of this section, K .̂ and can be 

thought of as vectors. Also, u(-,-,�) can be thought of as an indirect utility 

function, after control variables (such as hours worked) that directly affect current 

utility (but not next period's state) have been maximized out. 

The date-t state variables ( K t _ p
 x

t ) can only take on the m = n ^ 

possible values in ( ^ x &), which I denote by Sp s m - Let v = [v(s^), 

v (s m ) ] ' G R . We can think of the expression to the right of the equality in (3.1) as 

defining an ordinary function T mapping points in R
m

 into K
m

. We can also think 

of v as the fixed point of that function, i.e., v = T(v). In addition, the "max" in 

(3.1) refers to m maximization problems, one for each of the m values of (K*_p x .̂) 

G {JS x JT). 

There exist several iterative methods for finding the fixed point v. One 

of these, standard value-function iteration, starts with some initial VQ e R
m

 and then 

evaluates V j + j = T(VJ ) for j = 0, 1, 2, ... . The limit of this sequence is v. (This 

method is also called successive approximation in Bertsekas 1987 and contraction 

iteration in Rust 1987, 1988a,b.) Because of this algorithm's reputation for being 

slow, I used an alternative, hybrid value-junction iteration. This method is based on 

the function T , which maps K
m

 into K
m

, and where p is a strictly positive integer. 

For a given v. e K
m

, T (v.) is defined as follows: Let fpp(s) £ A(s) be the argmax 

J P J 
indicated in (3.1) when v is replaced by v- and s 6 {s,, s }. Let G- denote the 

J J 

m*m state transition matrix induced by 7r and fpp. Specifically, the (i, v
til

 element 

of Gj is the probability that ( K t , x^+i)
 = s

u &
v e n t n a t

 (^ t -1 '
 x

t^
 =

 V ^
e t U

j
 = 

[u(Sj, fj)p(
s

i)))
 u

(
s

m > ^E)p(
S

m^
 e

 " *
m

' *
n t

* "
s n o t a t

i °
n

> *
s e a s

y
 t 0

 verify that 

T(v.) = u. + / ? G j V j . Then, T p (v . ) = u- + 0G.U. + ... + (pG.^u. + (/?G.)
p

v.. In 

words, T (v.) is the value of following the decision rule fpp for p periods given that 
r J 
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the p+1 period stock of capital is valued according to /5
p

Vj. Hybrid value-function 

iteration involves evaluating v-, , = T (v.) for j = 0, 1, 2, ... , starting from some 

initial v^ 6 R
m

. The limit of this sequence is tested to determine whether it is the 

fixed point of T that is sought. Obviously, standard value-function iteration is a 

limiting version of hybrid value-function iteration, with p = 1. The motivation for 

using hybrid value-function iteration is based on considering the other extreme, as p 

-» m: T (v.) = [I - /3G.]
_ 1

u.. It is easy to verify that [I - /?G. ]
- 1

u. = v- + [I -
® J J J J J J 

T /

( v - ) ]
- 1

[
T

(
v

- ) - v ] , where T'(v-) = (3G- is the derivative of T with respect to v.. 
J J J J J J 

Using these relations, it is easy to verify that T (v-) is the fixed point of the linear 
^ J 

approximation of T about Vj. This is why it seems reasonable to call this method 

Newton value-function iteration. [This method appears under different names in the 

literature. Rust (1987, 1988a,b) calls it Newton-Kantorovich iteration; Bertsekas 

1987 calls it policy iteration, which is not to be confused with a very different 

method having the same name used by Danthine, Donaldson, and Smith (1987). 

Sargent (1987, p.47) calls it Howard policy improvement] Under Newton 

value-function iteration, one evaluates v-^_j = T^Vj) for j = 0, 1, 2, ... , starting 

from some initial Vg 6 R
m

. A well-known virtue of Newton value-function iteration 

is that this sequence converges in a finite number of steps to v (Bertsekas 1987.) 

The computational difficulty with Newton value-function iteration is that it 

requires inverting the m«m matrix [I - T'(v-)]. When n = 1 in the problem 

j x 

addressed here, then this matrix can be inverted very rapidly by a recursive 

algorithm, and Newton value-function iteration is feasible. (For another class of 

problems whose structure permits inverting [I - T'(v.)] rapidly by a recursive 
J 

algorithm, see Rust 1987, 1988a,b.) However, I have not found a way to recursively 

invert this matrix when n > 1. The motivation for using hybrid value-function 

iteration to do the calculations here is that, roughly speaking, it approximates 
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Newton value-function iteration by replacing [ I -T ' (v-) ] by a truncated 

geometric sum. In several computational experiments, I found that hybrid 

value-function iterations with p = 10 generated a 25% reduction in central 

processor unit (CPU) time over the p = 1 case. This reduction is relatively modest, 

partly reflecting the fact that the maximization in (3.1) is relatively simple. 

Christiano and Fitzgerald (1989) consider a problem in which the maximization step 

is much more time consuming. They report experiments in which hybrid 

value-function iteration led to more than a tenfold reduction in C P U time over 

standard value-function iteration. 

The function v is used to compute a decision rule for capital f ^p : 

f

Dp(
K

t-l' x

t ) = " 8 " " M
K

t-V
 K

V
 x

t ) + ^ t
v

(
K

t '
 x

t + l » - <
3

-
3

) 

t ' t - r V 

A decision rule for C^ can be obtained from f^p by 

«Dp(
K

t-r x

t ) =
 e x

P (
x

t )
K

? - i + (M>*t-i -
f

Dp(
K

t-r x

t ) - (
3 4

) 

The decision rules (3.3)—(3.4) solve a version of the maximization problem posed in 

(2.1)-(2.3), in which the constraint K t € X is imposed (Harris 1987). 

I now discuss the choice of capital grid J6. Let x and x denote the 

smallest and largest possible values of x.. Let K be the limit of the sequence {K-}, 
I — 1 

where K Q is the smallest element in c^Tand = fj)p(Kj_p *))
 1

 = 1> 2, ... . 

Similarly, K is the limit of the sequence Kj defined by the condition that KQ is the 

largest element in X and K j = fj)p(Kj_j, x), j = 1, 2, ... . Then, since fjjp(">
 x

)
x % 

increasing in x for all examples studied, it follows that 3j-jp = {K 6 X: K < K < K} 
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forms an ergodic set relative to the DP decision rule. That is, if K f c € X should 

begin outside this set, it then moves inside and stays there. The steady-state 

probability of K t lying outside this set is zero. In a similar way, the linear and 

log-linear LQ decision rules also imply ergodic sets, which I label ^ i n L Q and 

^ogLQ' Using (2.13), it is easily confirmed that % n L Q
 =

 {K* + 

xqA/[(l-/?/>A)(l-A)], K* + xqA/[(l-/?pA)(l-A)]}. A similar calculation can be used 

to compute ^ o g L Q using (2.19). 

One way to choose the grid is to make its smallest (or largest) point 

slightly less (or greater) than the lowest (or highest) value in ^ p . Since 

knowledge of ^ p requires the decision rules, one could proceed by first getting a 

rough guess of ^ p according to decision rules obtained by using a coarse grid and 

based on ^ j n L Q
 o r

 ^iogLQ' ^
e

 second-stage calculations can then be based on a 

very fine grid that contains few points outside ^ p . This is the strategy I followed 

for the calculations here. 

4. M O D E L P A R A M E T E R I Z A T I O N 

This section reports the model parameterizations used in the experiments. 

I begin by describing the Markov-chain models used to model the exogenous shock. 

4.1 Markov-Chain Models for {x.} 

In the experiments, I used two Markov-chain models for {x t}: a 

two-state model (n = 2) and a three-state model (n = 3). The Markov chain is 
X X 

completely described by the state space of x t , 3, and the transition probability 

matrix ir. 
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The Two-State Markov-Chain Model for { x j . In this case, 

7T = 
0 1-0 

1-0 0 J 
(4.1) 

The Wold representation (2.4) associated with this Markov chain is 

p = 20-1, E ^ l x ^ J = 0, E f e j j x ^ ] = a\= a\l-p
2

). (4.2) 

Also, the steady-state probabilities of x^ = -a and = a are each 1/2. Evidently, 

2 

values for p and a£ completely determine the parameters of the two-state Markov 
2 2 2 

chain. In the experiments, I set a f = (.01) and (.10) , and p = .95. This implies a 

= .032 and .32, and <f> = .975. Prescott (1986, p. 15) argues that a value of af 

which is a little under .01 is empirically plausible. The large value of a^ (.10) was 

also used to see how large the shocks must be before the LQ approximation 

deteriorates significantly. The large value of p corresponds well with Prescott's 

(1986) empirical finding that technology shocks are highly serially correlated. 

The Three-State Markov-Chain Model for {x^}. In this case, 

7T = 

0 7 1-0-7 

Tp 1-2 V ip 

L 7 Y 

r -x i 
0 
X 

(4.3) 

The Wold representation corresponding to this Markov chain is also (2.4) and 
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p = 2 0 + 7 - l , E f e J x ^ ^ O , K = 1 + . 5 7 M 

Var(x t) = X
2

/ K , a
2

 = Var(x t )(H>
2

) , 

(4.4) 

where K E E(x t ) / [E(x t ) ] is kurtosis. Unlike in the two-state model, e t is 

conditionally heteroscedastic in the three-state Markov-chain model. The 

steady-state probabilities for x t = -x , x t = 0, and x t = x, are P, (1-2P), and P, 

where P = (2/t)
-

*. To determine this model, values must be assigned to four 

o 
parameters: (f>, 7, tp, and x. Thus, unlike in the two-state case, values for o and p 

2 
are not sufficient. To determine values for this Markov-chain example, I set a , p, 

2 2 2 
K, and 7. In the experiments, I set a = (.01) and (.10) , p = .95, K = 3, and 7 = 

.040. These parameter values imply xn = 7^3 = .955, TTH = -K^ = .005, ir^ = X 3 2 = 

2 

.040, 7T 2 i = 7T23 = -010, and ir22 = -980 for each value of cr£. I set « = 3 so that the 

model would resemble the normal distribution, for which K — 3. 

4.2 Other Model Parameters 

I analyzed five parameterizations of the model. The first four of them set 

P = .98, T = .5, p = .95, a = .33, and they incorporate one of the four 

Markov-chain models for x � the low-variance (a = .01) and high-variance (a = 

.10) two-state Markov chain and the low- and high-variance three-state Markov 

chain. By comparing these model results, we can judge their robustness to the 

number of states in the Markov chain and to the variance of the technology shock 

innovation. A fifth model was studied to determine how risk aversion affects the 

results. In that model, risk aversion is very high, with r = 3. Otherwise, the fifth 
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model is parameterized in the same way as the model with r = .5 and a three-state 

low-variance Markov-chain model for x^. 

The ergodic sets associated with each of the three capital decision rules, 

corresponding to each of my five models, are reported in Table 1. It is striking how 

similar ^ 0 g L Q
 a n

^ are. In contrast, ^ j n L Q '
s

 shifted to the left of in 

the high shock variance cases. Table 1 also reports the boundaries of the capital 

grid used when solving each model by value-function iteration. In each case, J6 

contains 20,000 points. The interval between grid points is reported in column (6) 

of Table 1. Column (7) of Table 1 reports the number of minutes of CPU time used 

in solving the model by value-function iteration. The time used to solve the 

three-state exogenous-shock models exceeds by about 50 percent the time required 

for the two-state exogenous-shock models. This excess reflects the fact that the 

number of points in the state space of the three-shock models (60,000) exceeds that 

in the two-shock models (40,000) by 50 percent. In each case, the value-function 

iterations were started with VQ = 0 and were considered to have converged when 

sup {| Vj - Vj_j | /1 Vj_j | } *100 was less than .000001. 

5. COMPARISON OF LQ AND DP DECISION RULES 

This section reports comparisons of the LQ and DP decision rules for each 

of the five models defined in Section 4.2 and column (1 ) of Table 1. There seems to 

be no best metric for comparing decision rules, so I use several. The first metric 

compares the LQ and DP decision rules directly by tabulating their values at 

alternative points in the state space. The second compares several first- and 

second-moment properties of the decision rules. The third measures the amount an 

agent who uses an LQ decision rule would be willing to pay to learn the DP decision 
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rule. (The amount is expressed as a fraction of initial capital.) This is a direct 

measure of how close to optimal the LQ decision rules are. The fourth compares the 

steady-state distribution of C t and K t implied by the LQ and DP decision rules. 

5.1 Tabulation of Decision Rules 

Tables 2 and 3 tabulate the DP and two LQ approximate decision rules 

at various points in the state space for the five models whose solutions were 

computed. The ( K ^ , x t ) combinations represented in Tables 2 and 3 include all 

possible x^'s in the relevant Markov chain and five representative K^_^'s. Of these, 

the middle one is always K* and the least and greatest ones are the end points of 

gj^p, taken from Table 1. The other two points are halfway between K* and these 

end points. To aid in comparing the LQ and DP decision rules, cases where they 

differ by between 1 and 10 percent are indicated by an asterisk (*), cases where they 

differ by between 10 and 20 percent are marked by a dagger (f), and cases where 

they differ by more than 20 percent are marked by a double dagger (tt). 

First, consider Table 2, which reports results for both two-state 

Markov-chain models. Panel A in that table shows that the DP rule and the two 

LQ decision rules are all approximately identical in the low-variance case. In 

particular, if the capital and consumption decisions are rounded to one digit after 

the decimal, the decisions are identical. Not surprisingly, the decision rules diverge 

somewhat for the high-variance two-state Markov model, whose results are 

reported in Panel B. The divergence is fairly minor in the case of the capital 

decision, where a difference exceeding 1% occurs just once. The differences are 

larger in the context of consumption, where the level of consumption implied by the 

LQ decision rules tends to overstate optimal consumption, in one case by over 20%. 
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It is also interesting to compare the decision rules according to whether 

they are increasing or decreasing in the state variables. In all cases in Table 2, the 

DP decision rules for C t and K t are increasing over the reported values of x t and 

K t _ j . This property is shared by the LQ decision rules for K t , a fact that can be 

verified analytically from the appropriate formulas in Section 2. Over the reported 

values of x^, K ^ , the LQ decision rules for C .̂ are also increasing in K^_^. 

However, only the linear LQ decision rule for C .̂ is increasing in x^. In particular, 

in the high-variance case, the log-linear decision rule for C t is decreasing in x t for 

K t l = 86.19 and 108.69. 

Digressing slightly, note that the linear LQ approximate decision rule for 

Kj. is not monotone in when p = 1 and the approximation is taken by first 

transforming the model so that the planner's choice variables are c t = C t /exp(x t ) , 

k t = K t /exp(x t ) . Then, even though k̂ . is monotone in e^, is not. The 

log-linear LQ approximate decision rule for K^ is, by contrast, monotone in this 

case. (For a fuller explanation and a demonstration of the quantitative significance 

of these differences, see Christiano 1987a; 1988, n. 18.) 

Next consider Table 3, which reports results for the three-state 

Markov-chain models. Basically, the same picture that emerged from Table 2 

emerges here as well. In particular, for the low-variance version of the model with r 

= .5 (Panel A) , the DP and LQ decision rules are virtually identical. As in Table 2, 

the differences show up in the high-variance case (Panel B), principally in the 

consumption decision rule. Panel C shows that the high accuracy of the LQ decision 

rule when r = .5 and a = .01 also obtains when r = 3. 

Al l decision rules in Table 3 are monotone increasing over the reported 

values of the state variables, with the exception of the LQ decision rules for C t in 

the high-variance version of the model. Those rules are monotone increasing in 
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K t _ p but they fail to be monotone increasing in x t . Since they differ in this respect 

from the corresponding DP rules, this difference reflects approximation error. 

A feature of the three-shock models that the two-shock models lack is 

that both the low- and high-variance models with r = .5 share some common 

points in the state space. One of these, ( K . ^ , x .̂) = (63.69, 0.0), is reported in 

Table 3. Because their construction imposes certainty equivalence, the LQ decisions 

for C t and at this point is the same for both the low- and high-variance models. 

However, the exact problem does not satisfy certainty equivalence, so there is no 

reason to expect the DP rules to share this property. In fact, Table 3 indicates that 

f D p (63.69, 0.0) is 63.69 and 63.68 for the low- and high-shock models. Also, 

gDp(63.69, 0.0) is 3.94 and 3.95 in these two cases. Thus, while certainty 

equivalence does not hold exactly, it appears to hold approximately. This may be 

one of the reasons that the LQ approximations are so accurate. 

In sum, the evidence in Tables 2 and 3 suggests that for reasonable shock 

variance (e.g., the low-variance case), the LQ approximation is very accurate, even 

with high risk aversion of r = 3. When the shock variances get very large, 

then—not surprisingly—the quality of the approximations begins to deteriorate. 

Based only on the evidence in Tables 2 and 3, it is hard to say which 

approximation—the linear or the log-linear LQ—performs better in the 

high-variance case. On the one hand, there is evidence that the log-linear LQ 

approximation performs poorly at more points in the state space. For example, 

there are more t's associated with the logLQ results than with the l inLQ results in 

Tables 2 and 3. On the other hand, there is evidence that the states in which the 

log-linear LQ decision rules perform worst also have lower probability than the 

states in which the linear LQ decision rules perform poorly. This possibility is 

suggested by the fact that the logLQ decision rules perform worst in states with low 
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K and high x and with high K and low x combinations, whereas the reverse is true 

for the l inLQ decision rules. Given that and x̂ . are positively correlated 

(which they must be, given the high positive autocorrelation of x^), then—other 

things being equal—this would cause the log-linear decision rule to dominate the 

linear one in a weighted, overall sense. 

5.2 First- and Second-Moment Implications of LQ and DP Decision Rules 

Tables 4-7 report selected first- and second-moment properties of the 

DP and LQ decision rules, obtained by Monte Carlo simulation. I simulated 100 

data sets on C t , K t , Y { e + K { - ^ t - 1 ' "
s

^
r e e r a t e

 °* interest R t . and the 

marginal product of capital M P ^ j . Each data set has length 10,050, but the first 50 

observations were discarded before computing first and second moments. The 

risk-free rate of interest R^ is defined in the usual way as R .̂ = 

u ' ( C t ) / [ / 3 E t u ' ( C t + 1 ) ] - 1, where the conditional expectation is evaluated relative 

to the appropriate consumption decision rule and Markov-chain probabilities, and 

u(C t ) = c (
1 _ r

t y ( l - r ) . The marginal product of capital is M P k t s 0 Y t + 1 / K t , 

where Y t = exp(x t)K^_^ is output. 

In performing the simulations, I found that the linear LQ decision rule 

occasionally implies a negative value for C t . This happened only when the 

exogenous shocks were drawn from the three-state, high-variance Markov chain. 

To accommodate this, I redefined f j j nLQ
 a n

^ SjinLQ *
n a w a

^
 w n e n e v e r

 they 

implied a negative C^, then C^ was set to .01 and was adjusted appropriately. 

These redefined linear LQ decision rules were also used to compute the risk-free rate 

of interest. Of the 1 million total values of C t computed, 92 had to be adjusted in 

this way. Similarly, negative values of C t were encountered in computing 0.67% of 
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the R ' s . 

First Moments. Table 4 reports first-moment properties of the DP and 

LQ decision rules for the r = .5 models, as indicated in the column headings. The 

statistic column contains the variable whose mean is reported in the other columns. 

Those columns contain the average, across 100 simulations, of the mean value of the 

variable. Numbers in parentheses in the statistic column are steady-state values of 

the associated variable. Numbers in parentheses in the other columns are the 

standard deviation across the 100 simulations. The small size of the standard 

deviations reflects the large number of observations per simulation (i.e., 10,000). 

By comparing the first-moment properties of the DP rules with the corresponding 

steady states, we can assess an assumption implicit in many applications that utilize 

the LQ approximation. This assumption—that steady states and unconditional 

means roughly coincide—plays a role in two places in applied work. First, there 

would be little sense in approximating a model about steady state if the model's 

variables did not fluctuate about this point in the stochastic version of the problem. 

Second, many empirical researchers who use the LQ approximation select model 

parameter values by equating nonstochastic steady-state properties of their model 

with corresponding sample statistics (Kydland and Prescott 1982.) This method of 

assigning parameter values would be inappropriate if the nonstochastic steady state 

diverged substantially from the mean of the stochastic version of the model. 

First consider capital, consumption, and output. Table 4 indicates that, 

for the high-variance economy, the mean of these variables is roughly 10% higher 

than their steady-state values. In addition, the mean of the capital output ratio is 

about 7% higher than its steady-state value. Presumably, the larger average capital 

stock in the stochastic economy reflects households' efforts to insure themselves 
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against the risk associated with the production technology. Recall, however, that 

the innovation to the technology shock in the high-variance economy is more than 

10 times what is plausible empirically. In the more empirically plausible 

low-variance economy, E K t / Y t " K * / Y * , E K t 2 K*, E C t v C * , and E Y t * Y * 

(stars indicate steady-state quantities). 

The mean value of capital implied by the linear LQ decision rule is 

roughly equal to K , as it must, given that it is linear. The log-linear LQ decision 

rule implies a larger mean value of in the high-variance economies because of the 

convexity of the exponential function. Thus, in the high-variance economies, the 

mean of the logLQ capital stock lies between that of the DP and l inLQ decision 

rules. The same is true for C, Y , and K / Y . 

Next, consider R t and M P ^ t . In nonstochastic steady state these 

quantities are both / J "
1

 - 1 = .0204. In the stochastic version of the model, one 

expects E M P ^ ^ > ER^. This inequality reflects that M P ^ ̂  is the return on a 

riskier investment than is R t , since the states in which the former pays off the most 

are those in which consumption is valued least, i.e., C o v ^ M P ^ t , u'(Ct_|_^)) < 0. 

As it turns out, both ER^ and E M P ^ t are approximately p~
l

 - 1, even in the 

high-variance model. The fact that the average equity premium E fMP^ t - R j is 

roughly zero in this model is reminiscent of a similar result obtained by Mehra and 

Prescott (1985) for an endowment economy. 

In sum, the evidence in Table 4 for the four r = .5 models suggests that 

the steady-state properties of the nonstochastic version of the model approximate 

closely the corresponding first-moment properties of the stochastic version of the 

model, as long as the innovation variance to the technology shock is of plausible 

magnitude (i.e., a f = .01). Table 7 reports first-moment results for the r = 3, 

low-variance model. As in the r = .5 low-variance models, there is little difference 
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between steady states and unconditional means in the r = 3 model. 

Second Moments. Tables 5-7 report second-moment properties of the 

models. There, a denotes the standard deviation of the variable X , . In addition, 

PXyi
T

) denotes the correlation between X t and and A c t signifies C t - C^_j. 

Numbers not in parentheses are the average of the associated statistic, across the 

100 data sets. Numbers in parentheses are the corresponding standard deviation. 

First consider Table 5, which reports results for the r = .5 models. A 

striking feature of that table is that the results differ so little between decision rules 

and models. The only quantitatively meaningful differences lie in oJOy
 a n

d 

p A „ (0 ) . With regard to the former, the standard deviation of ffjff is higher for 
r,i ic r y 

the l inLQ decision rule and the high-variance three-shock economy than for the 

other cases. With regard to p A (0), the LQ versions of that statistic are smaller 

in the high-variance models while the DP versions appear scale independent. Since 

the LQ and DP versions are equal for the low-variance economies and scale 

independence seems plausible, I interpret this to reflect approximation error in the 

LQ approximation. The importance of the very fine grid used in the paper showed 

up in calculating p r A c ( 0 ) . For example, when I computed the DP decision rules 

with a grid of .01 between capital points, then I got the following results for 

PT A c ( 0 ) in the four r = .5 models: .787 (.006), .365 (.006), .780 (.007), and .406 

(.013) in the high- and low-variance two-state models and the high- and 

low-variance three-state models, respectively. Thus, using a grid coarser than the 

one underlying the results in Table 5, I found that the DP rules imply some scale 

dependence. 

Next, consider the dynamic correlations reported in Table 6 for the r = .5 
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economies. As in the other tables, there are few significant discrepancies between 

solution methods and models. One discrepancy is that the correlations based on the 

l inLQ solution to the high-variance three-state Markov model are all smaller than 

the other correlations, presumably reflecting approximation error. Another 

discrepancy is the scale dependence in the LQ versions of ^ c 0)» for i=l,2. 

Table 7 contains the second-moment results for the r = 3 model. There 

are virtually no noticeable discrepancies between LQ and DP second moments. One 

exception is p^c r(2), which is lower for the DP decision rule than for the LQ 

decision rules. 

An interesting feature of the results in Table 7 is that the correlations 

between consumption changes and lagged variables is close to zero when r = 3 and 

much further from zero in the r = .5 case. In this respect, the r = 3 results are 

close to what I found in a version of this model that I have studied elsewhere 

(Christiano 1987b,c), in which p = r = 1, 6 = .018, /? = .99, and in which hours are 

variable. In that model, consumption changes are also approximately uncorrelated 

with lagged variables. 

To summarize, in the low-variance economies, the first- and 

second-moment properties implied by the LQ approximations and the 

value-function iteration solution are roughly identical, even with high risk-aversion. 

Discrepancies occur for very large shock variances. An interesting feature of the 

results is that second-moment properties seem relatively insensitive to whether the 

exogenous shock is drawn from a two- or three-state Markov chain. 

5.3 The Value of the DP Rule to an LQ Decision Maker 

Table 8 reports the amount, as a fraction of K._,, that a planner using an 
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LQ decision rule would be willing to pay to learn the DP rule in the four r = .5 

models. This quantity was computed for the same ( K t _ p
 x

t ) combinations used in 

Tables 2 and 3. How I did this is discussed below. 

To place the LQ and DP decision rules on a comparable basis, I redefined 

the LQ rules slightly. Instead of allowing * i 0 gLQ
 a n

^ % n L Q
 t 0 m a p

 ^ t - 1 '
 x

t^
 o n t o 

the real line, I replaced (for purposes of computation in Table 8) ^ 0 g L Q ^ t - l '
x

t ^ 

a n (

* * l i n L Q ^ t - l '
x

t ) ky
 t n e n e a r e s t

 point in A(K^_pXj), defined in (3.2). Given the 

fine grid J6, this adjustment presumably has negligible effect. 

I computed the
 v

i 0 g L Q
 a n (

*
 v

n n L Q ^
u n c t

^
o n s t n a i s o

*
v e t n e

 following 

functional equations: 

v

l o g L Q (
K

t - l '
 x

t ) =
 u

(
K

t - l '
 X

t
} 

+

 ^ t
v

l o g L Q (
K

t >
 x

t + l ) C « ) 

and 

v

l i n L Q (
K

t - l '
 x

t ) =
 u

(
K

t - l '
 f

l i nLQ<
K

t - l '
 x

t>> V 

+ ^
E

t
v

l i n L Q (
K

t '
x

t + l ) ' ( « ) 

for u defined in (2.6). In each case, the expectation operator was evaluated relative 

to the relevant two- or three-state Markov chain with high or low variance. (To 

avoid complicating the notation, I do not index the v functions by the 

Markov-chain model.) 

Relative to a given model (defined by the Markov chain for the exogenous 

shock) and specified initial conditions, I computed the loss of using the LQ decision 
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rules as follows. Let v* =
 v

i 0 g L q ( K t _ p x t ) . Then let K be defined by the 

property Vj->p(K , x t ) = v*, i.e., K is that level of capital (K < K t _j ) such that a 

planner starting with K , x^ and knowing the DP rule achieves the same utility as a 

planner starting with K._ j , x t who uses the log-linear LQ decision rule. Evidently, 

the LQ planner would be willing to pay no more than K ^ - K to acquire 

knowledge of the DP rule. Table 8 reports this as a percentage of K^_j, i.e., 

[ (K t _j -K )/K t_jJ"100. Similar calculations were carried out for the linear LQ 

decision rule. 

It is not surprising, in view of the preceding results, that for the 

low-variance shock distributions with r = .5, the LQ planner would not pay 

anything to acquire the DP decision rule (see Table 8, Panels A and C.) Thus, for 

these shock distributions, the LQ rules are roughly optimal. I obtained exactly the 

same results for the low-variance, r = 3 model as for the low-variance, r = .5 

models. 

With high shock variances, the results in Panels B and D of Table 8 show 

that the LQ planner would pay a positive, though still very small, amount to 

acquire the DP rule. Except when very far from steady state, the planner would 

pay less than 1% of initial capital. 

5.4 Steady-State Capital and Consumption Distribution 

Figures 1 and 2 plot steady-state capital and consumption, respectively, 

for the high-variance two-state Markov-chain model for r = .5. The same is done 

in Figures 3 and 4 for the high-variance three-state Markov-chain model. The 

low-variance steady-state distributions are not plotted because they actually 

coincide. 
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A distinguishing feature of these figures is the bimodal distribution when 

the Markov chain has two states and the unimodal distribution for the three-state 

Markov process. In the two-state case, note the pronounced lack of symmetry in all 

but one of the distributions. This reflects the nonlinearity of all but one of the 

decision rules. The exception, f j j n LQ. produces a roughly symmetric steady-state 

distribution for capital. 

An interesting feature of these charts is the left shift in the l inLQ 

distributions for C t and K t relative to the logLQ and DP distributions. In view of 

this shift, it is not surprising that the nonnegativity constraint on Cj. proved 

occasionally binding when the three-state high-variance Markov-chain version of 

the model was solved by linear LQ approximation. 

6. C O N C L U S I O N 

The purpose of this article was to evaluate the accuracy of two methods 

for approximating the consumption and capital decision rules that solve a version of 

the Brock and Mirman (1972) optimal growth problem. The strategy I took was to 

define the growth problem in such a way that numerical dynamic programming 

methods could be used to obtain arbitrarily accurate approximations to the exact 

decision rules. This involved positing a discrete distribution for the exogenous 

shocks of the model and forcing the capital stock to lie on a very fine grid. The 

accuracy of the LQ approximate decision rules was evaluated by comparing them 

along four dimensions with the presumed exact solutions obtained by dynamic 

programming (DP) methods. 

I found that the LQ approximation works well in the model economy 

studied here. In this respect, the conclusions are similar to those reached by others 
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who looked at different examples (Christiano 1986, 1987b; Danthine, Donaldson, 

and Mehra 1988; Rebelo and Rouwenhorst 1989). 
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Table 1. Decision Rule Information 

(1) 

Model 

(2) 

V Q ' 

(3) 

l inLQ 

(4) (5) (6) 

Increment 

(7) 
C P U 
Time 

Two-state 
a = .10 

r = .5 {37, 110} {29, 98} {37, 109} {35, 115} .00400 213.84 

Two-state 
ae = .01 

r = .5 {60, 67} {60, 67} {60, 67} {55, 70} .00075 214.02 

Three-state 
a = .10 

e 
T = .5 {25, 163} {4, 123} {25, 161} {20, 165} .00725 310.58 

Three-state 
ae = .01 

T = .5 {58, 70} {58, 70} {58, 70} {55, 75} .00100 314.80 

Three-state 
a = .01 

£ 

r = 3.0 {49, 83} {47, 80} {49, 83} {45, 85} .00200 342.08 

N O T E : Column ( l ) : Number of states and 0~^ value indicate the Markov-chain model 

of the xt's. The only other parameter that differs between models is T. 

Columns (2)—(4): First and second numbers associated with C? are the upper and lower 

boundaries, respectively, of the ergodic set associated with the HnLQ, logLQ, or D P 

capital decision rules, as indicated by the subscript. 

Column (5): The first and second numbers associated with <M are the boundaries of the 

capital grid used in the value—function iteration calculations. 

Column (6): Increment between adjacent values of capital in J%. 

Column (7): Time, in central processor unit minutes, used to solve the associated model 

by value—function iteration on the Federal Reserve Bank of Minneapolis's Amdahl dual 

5860 mainframe computer. Details of the solution method are described in Section 3. 

In the case of the first four models, p = 10 for all j , using notation presented Section 3. 

In the case of the last model, p = 10 for j = 1, 108 and p = 00 for j = 109, 

118, whereupon convergence occurred. The convergence criterion is reported in Section 

4.2. 
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Table 2. Capital and Consumption Rules: Two-State Markov Process 

Panel A : a = .01, r = .5 (Low Variance) 

K M grid I x t=-.03 x t=.03 x t=-.03 x t=.03 x t=-.03 x t=.03 

f

D P —
f

l o g L Q
_ f

l inLQ 
60.32 60.32 60.53 60.32 60.52 60.31 60.53 
62.00 61.95 62.16 61.95 62.16 61.95 62.16 
63.69 63.58 63.79 63.58 63.79 63.58 63.79 
65.46 65.30 65.51 65.29 65.51 65.30 65.51 
67.23 67.01 67.23 67.01 67.23 67.02 67.23 

S

D P 
g

logLQ 
g

l i nLQ 

60.32 3.75 3.78 3.75 3.79 3.75 3.78 
62.00 3.83 3.87 3.83 3.87 3.84 3.87 
63.69 3.92 3.96 3.92 3.96 3.92 3.96 
65.46 4.01 4.05 4.02 4.05 4.01 4.05 
67.23 4.10 4.14 4.11 4.14 4.10 4.14 

Panel B: a = .10, T = .5 (High Variance) 

grid j x t=-.32 x t=.32 x t=-.32 x t=.32 x t=-.32 x t=.32 

f

D P —
f

l o g L Q ^ 
f

l inLQ 

36.78 36.78 38.63 36.79 38.05* 36.55 38.70 
50.24 49.79 51.82 49.76 51.47 49.58 51.73 
63.69 62.77 64.95 62.62 64.77 62.61 64.76 
86.19 84.45 86.85 83.95 86.83 84.41 86.56 

108.69 106.11 108.69 105.11 108.72 106.21 108.36 

&DP 
s

l o g L Q ~ ^ 
s

l i nLQ 

36.78 2.39 2.68 2.38 3.25tt 2.62* 2.61* 
50.24 3.09 3.43 3.12 3.78t 3.30* 3.52* 
63.69 3.78 4.16 3.93* 4.34* 3.93* 4.35* 
86.19 4.90 5.33 5.40t 5.35 4.94 5.62* 

108.69 5.99 6.47 6.99t 6.45 5.89* 6.80* 

N O T E : The table reports capital and consumption decisions for various points in the 

state space based on the DP, logLQ, and l inLQ decision rules. Rows correspond to 

values of initial capital and columns correspond to technology shock values, as indicated. 

Let z denote the ratio of an LQ decision to a DP decision at a given point in the state 

space. Let z ' be | ( z - l ) x l 0 0 | , rounded to the nearest integer, where | - | denotes the 

absolute value operator. Then * indicates 1 < z' < 10, f indicates 10 < z ' < 20, and 

f t indicates z ' > 20. 
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Table 3. Capital and Consumption Rules: Three-State Markov Process 

Panel A: <r£ = .01, r = .5 (Low Variance) 

K t - i 1 x t=-.06 x t=.0 x t=.06 x t=-.06 x t=.0 x t=.06 x t=-.06 x t=.0 x t=.06 

f

D P
 f

logLQ
 f

l inLQ 
57.96 57.96 58.14 58.32 57.96 58.13 58.30 57.95 58.14 58.32 
60.82 60.73 60.91 61.10 60.73 60.91 61.09 60.73 60.91 61.10 
63.69 63.51 63.69 63.88 63.50 63.69 63.87 63.50 63.69 63.87 
66.82 66.54 66.72 66.92 66.53 66.72 66.92 66.54 66.73 66.91 
69.96 69.58 69.76 69.96 69.55 69.76 69.96 69.58 69.77 69.95 

g

D P
 g

logLQ
 g

l i nLQ 
57.96 3.61 3.64 3.67 3.61 3.65 3.70 3.62 3.64 3.67 
60.82 3.76 3.79 3.82 3.76 3.79 3.83 3.77 3.79 3.82 
63.69 3.91 3.94 3.97 3.91 3.94 3.98 3.91 3.94 3.98 
66.82 4.07 4.10 4.13 4.08 4.10 4.13 4.07 4.10 4.14 
69.96 4.23 4.26 4.29 4.25 4.27 4.29 4.23 4.26 4.30 

Panel B: o, = .10, r = .5 (High Variance) 

Kt- i I xt=-.55 xt=.0 xt=.55 xt=-.55 Xt=.0 x t=.55 xt=-.55 x t=.0 x t=.55 

f

D P
 f

logLQ
 f

l inLQ 
24.60 24.60 25.65 27.53 24.61 25.34* 26.09* 23.95* 25.81 27.68 
44.14 43.45 44.71 46.97 43.36 44.65 45.97* 42.89* 44.75 46.61 
63.69 62.27 63.68 66.20 61.85 63.69 65.58 61.82 63.69 65.55 

112.26 108.95 110.63 113.64 107.12*110.30 113.57 108.89 110.75 112.61 
160.84 155.60 157.48 160.84 151.76*156.26 160.90 155.95 157.81 159.67 

g

D P
 g

logLQ
 g

l i nLQ 
24.60 1.65 1.83 2.08 1.64 2.14t 3.52tt 2.30+t 1.66* 1.93* 
44.14 2.69 2.92 3.25 2.78* 2.98* 4.25tt 3.26tt 2.88* 3.61t 
63.69 3.68 3.95 4.34 4.10t 3.94 4.97t 4.12t 3.94 5.00t 

112.26 6.04 6.38 6.90 7.87tt 6.71* 6.96 6.10* 6.26* 7.92t 
160.84 8.30 8.70 9.31 12.15tt 9.92t 9.25 7.96* 8.37* 10.47t 

Panel C: a£ = .01, r = 3.0 (Low Variance) 

K t_! [ x t=-.06 x t=.0 x t=.06 x t=-.06 x t=.0 x t=.06 x t=-.06 x t=.0 x t=.06 

'DP logLQ ' l inLQ 
48.95 48.95 49.09 49.23 48.95 49.07 49.19 48.93 49.09 49.24 
56.32 56.25 56.39 56.54 56.25 56.38 56.52 56.23 56.39 56.54 
63.69 63.54 63.69 63.85 63.53 63.69 63.84 63.53 63.69 63.84 
73.24 72.99 73.15 73.32 72.96 73.14 73.32 72.99 73.15 73.30 
82.78 82.44 82.61 82.78 82.38 82.58 82.78 82.45 82.61 82.76 

g

D P
 g

logLQ
 g

l i nLQ 
48.95 3.42 3.48 3.54 3.42 3.49 3.58 3.43 3.47 3.53 
56.32 3.65 3.71 3.78 3.65 3.72 3.80 3.66 3.71 3.78 
63.69 3.87 3.94 4.00 3.88 3.94 4.01 3.88 3.94 4.01 
73.24 4.15 4.21 4.28 4.17 4.22 4.28 4.14 4.21 4.29 
82.78 4.41 4.47 4.54 4.46 4.49 4.54 4.39 4.47 4.56 

NOTE: See notes to Table 2. 
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T a b l e 4 . F i r s t - M o m e n t P r o p e r t i e s : T = . 5 Economy 

T w o - S t a t e 

a = .10 

e 

T w o - S t a t e 

o = .01 
e 

T h r e e - S t a t e 

a = . 1 0 
e 

T h r e e - S t a t e 

a = .01 
e 

S t a t i s t i c
3 DP Log L i n DP Log L i n DP Log Lin DP Log L i n 

C 4 . 3 4 4 . 2 7 4 . 1 9 

( 3 . 9 4 ) ( . 1 5 ) ( . 1 5 ) ( . 1 5 ) 

3 . 94 3 .94 3 .94 

( . 0 1 4 ) ( . 0 1 4 ) ( . 0 1 4 ) 

4 . 3 1 4 . 2 4 4 . 1 6 

( . 1 3 ) ( . 1 3 ) ( . 1 3 ) 

3 . 94 3 .94 3 .94 

( . 0 1 2 ) ( . 0 1 2 ) ( . 0 1 2 ) 

Y 4 . 3 4 4 . 2 7 4 . 1 9 

( 3 . 9 4 ) ( . 1 5 ) ( . 1 5 ) ( . 1 5 ) 

3 . 94 3 . 9 4 3 .94 

( . 014 ) ( . 0 1 4 ) ( . 0 1 4 ) 

4 . 3 1 4 . 2 4 4 . 1 6 

( . 1 3 ) ( . 1 3 ) ( . 1 3 ) 

3 . 9 4 3 . 9 4 3 . 9 4 

( . 0 1 2 ) ( . 0 1 2 ) ( . 0 1 2 ) 

1 K 
w

 ( 6 3 . 6 9 ) 
(X? 

\ 
K/Y 

( 1 6 . 1 7 ) 

7 0 . 8 5 67 .61 6 4 . 0 0 

( 2 . 6 4 ) ( 2 . 6 5 ) ( 2 . 5 3 ) 

17 .30 16 .73 16 .08 

( . 0 6 8 ) ( . 0 5 9 ) ( . 103 ) 

6 3 . 7 8 6 3 . 7 5 6 3 . 7 2 

( . 2 5 ) ( . 2 5 ) ( . 2 5 ) 

16 .18 16 .18 16 .17 

( . 0 0 5 ) ( . 0 0 5 ) ( . 0 0 5 ) 

7 0 . 4 4 6 7 . 0 6 6 3 . 4 2 

( 2 . 3 4 ) ( 2 . 2 5 ) ( 2 . 1 0 ) 

17 .29 16.71 15 .99 

( . 0 9 8 ) ( . 0 0 6 ) ( . 1 3 1 ) 

6 3 . 7 3 6 3 . 7 0 6 3 . 6 6 

( . 2 1 ) ( . 2 1 ) ( . 2 1 ) 

16 .18 16 .17 16 .17 

( . 0 0 4 ) ( . 0 0 4 ) ( . 0 0 5 ) 

M P k .0204 .0211 .0220 .0204 .0204 .0204 .0204 .0211 .0224 .0204 .0204 .0204 

( . 0 2 0 4 ) ( . 6 5 E - 4 ) ( . 7 8 E - 4 ) ( . 1 3 E - 3 ) ( . 6 6 E - 5 K . 6 7 E - 5 X . 6 7 E - 5 ) ( . 5 5 E - 4 ) ( . 8 6 E - 4 ) ( . 3 5 E - 3 ) ( . 5 6 E - 5 X . 5 7 E - 5 X . 6 0 E - 5 ) 

R .0204 .0203 .0204 .0204 .0204 .0204 .0204 .0203 .0200 .0204 .0204 .0204 

( . 0 2 0 4 ) ( . 8 8 E - 4 X . 1 2 E - 3 X . 9 4 E - 4 ) ( . 9 0 E - 5 X . 8 9 E - 5 X . 9 0 E - 5 ) ( . 7 4 E - 4 X . 1 4 E - 3 X . 7 2 E - 3 ) ( . 7 5 E - 5 X . 7 5 E - 5 X . 7 5 E - 5 ) 

NOTE: R e s u l t s a r e based on 100 d a t a s e t s , each o f l e n g t h 1 0 , 0 0 0 , u s i n g t h e i n d i c a t e d s o l u t i o n (DP, l o g - l i n e a r L Q , o r 

l i n e a r LQ) t o t h e v e r s i o n o f t he g rowth mode l t h a t i n c o r p o r a t e s t h e i n d i c a t e d p r o b a b i l i t y model f o r t he exogenous s h o c k , 

x^ ( t w o - o r t h r e e - s t a t e Markov c h a i n , w i t h h i g h o r low v a r i a n c e s ) . I n i t i a l c o n d i t i o n s were r a n d o m i z e d a c r o s s s i m u l a -

t i o n s . S t a n d a r d d e v i a t i o n s a c r o s s s i m u l a t i o n s a p p e a r i n p a r e n t h e s e s . F o r p a r a m e t e r v a l u e s , s e e S e c t i o n 3 i n t he t e x t . 

l

C , Y , K, R, M P k deno te the means o f C f c , Y f c , K t , R f c , and M P k t , r e s p e c t i v e l y . Numbers i n p a r e n t h e s e s i n t h i s co lumn a r e 

s t e a d y - s t a t e v a l u e s . 



Table 5. Second-Moment P r o p e r t i e s : t = .5 Economy 

S t a t i s t i c 

Two-State 

o = .10 
e 

Two-State 

o = .01 
e 

Three -S ta te 

o = .10 
e 

Three -S ta te 

o = .01 
e 

DP Log L i n DP Log L i n DP Log L i n DP Log L i n 

.78 .79 .78 .78 .78 .78 .77 .78 .80 .78 .78 .78 
( .02) (.02) (.02) ( .02) ( .02) (.02) ( .02) ( .02) ( .02) ( .02) ( .02) ( .02) 

.56 .57 .54 .55 .55 .55 .56 .54 .51 .55 .55 .55 
( .02) (.02) (.02) ( .02) ( .02) (.02) ( .02) ( .02) ( .02) ( .02) ( .02) ( .02) 

.003 .003 .004 .003 . 003 .003 . 0 0 3 . 0 0 3 .002 .003 .003 .003 
; .0001)( .0001) ( .0002) (.0001) (.0001) (.0001) ( .0001) (.0002) ( .017) ( .0001) ( .0001) ( .0001) 

1.62 1.61 1.59 .155 .155 .155 1 .77 1.74 1.69 .155 .155 .155 
( .02) (.02) ( .02) ( .002) ( .002) (.002) ( .10) ( .10) ( .08) (.007) (.007) (.007) 

- . 0 5 - . 0 8 - . 0 6 - . 0 5 - . 0 5 - . 05 - . 0 5 - . 1 2 - . 0 5 - . 0 5 - . 0 5 - . 0 5 
( .01) ( .03) (.01) ( .013) ( .013) ( .013) ( .02) ( .03) ( .07) ( .016) ( .016) (.017) 

. 11 .06 .11 .10 .10 .10 .11 . 09 .13 . 10 . 10 . 10 

( .005) (.010) (.007) ( .005) ( .005) (.005) (.008) (.015) ( .022) (.007) (.007) (.007) 

.80 .49 .55 .81 .82 .82 .78 .32 .01 .81 .81 .80 

( .006) (.015) (.014) ( .004) ( .007) (.005) (.007) (.019) ( .073) (.005) (.007) (.008) 

° c
/ o

y 

°dk / °y 

\ ° r /
0

y 

p r > c ( 0 ) 

Pdk,c<°> 

< V , A C
( 0 ) 

NOTE: : o x denotes the standard d e v i a t i o n o f {X f c}; p x y(-r) denotes the c o r r e l a t i o n between X f c and Y t _ T ; Ac f c denotes C f c 

C £ _ i ; and dk f c = K f c - K f c _^. See a l s o the notes to Table 4 . 



Table 6. Dynamic C o r r e l a t i o n s : T = .5 Economy 

Two-State Two-State Three-S ta te Th ree -S ta te 

S t a t i s t i c 

0 

e 
= .10 0 

e 
= .01 o 

e 
= .10 0 

E 
= .01 

S t a t i s t i c DP Log L i n DP Log L in DP Log L i n DP Log L i n 

P . ( D .53 .51 .47 .54 .54 .54 .52 .39 .14 .54 .54 .53 
AC, r ( 014) ( .027) ( .022) ( .014) ( .016) ( .014) ( 016) ( .021) ( .065) ( .018) ( .018) ( .020) 

P A . (
2

) 
.48 .45 .43 .49 .50 .50 .48 .34 . 13 .49 .49 .49 

Ac , r ( 016) ( .024) ( .020) ( .017) ( .018) ( .017) ( 018) ( .020) ( .057) ( .019) ( .020) ( .021) 

.44 .23 .30 .44 .44 .45 .45 . 13 .08 .44 .44 .43 
Ac , Ac ( 014) ( .021) ( .022) ( .014) ( .017) ( .014) ( .018) ( .022) ( .013) ( . 018) ( .019) ( .021) 

P» . (
2

) 
.40 .21 .28 .41 .41 .41 .41 .11 .07 .40 .40 .39 

AC,AC ( .016) ( . 018) ( .022) ( .015) ( .017) ( .016) ( .020) ( .022) ( .013) ( .020) ( .021) ( .022) 

P A (
 1

) 
.27 .24 .22 .27 .28 .28 .28 .16 .07 .27 .27 .27 

( .012) ( .021) ( .017) ( .012) ( .013) ( .012) ( .013) ( .017) ( .014) ( .012) ( .013) ( .014) 

P A (2) . 23 .20 . 18 .23 .23 .23 .23 .13 .05 .23 .22 .22 

Ac,y ( .011) ( .018) ( .015) ( .011) ( .012) ( .011) ( .012) ( .015) ( .013) ( .012) ( .012) ( .013) 

Pv 
.48 .46 .42 .49 .49 .49 .47 .35 . 12 .49 .49 .49 

y .
r 

( .028) ( .040) ( . 026) ( .028) ( .028) ( .028) ( .034) ( .025) ( .053) ( .033) ( .033) ( .034) 

P„ r ( 2 ) .47 .45 .41 .48 .48 .48 .46 .34 . 12 .47 .47 .47 
y >

r 

( .027) ( .039) ( .026) ( .027) ( .027) ( .027) ( .033) ( .024) t .052) ( .032) ( .031) ( . 033 ) 

Pw r ( 3 ) .45 .43 .40 .46 .46 .46 .44 .33 . 12 .46 .46 .46 

y , r ( .027) ( .039) ( .026) ( .027) ( .027) ( .027) ( .032) ( .023) ( .051) ( .030) ( .030) ( .032) 

NOTE: See notes to Tables 4 and 5. 



T a b l e 7. S t o c h a s t i c P r o p e r t i e s : T h r e e - S t a t e , o = . 0 1 , T = 3 . 0 Economy 

S t a t i s t i c DP Log L i n S t a t i s t i c s DP Log L i n S t a t i s t i c DP Log L i n 

c 

( 3 . 9 4 ) 

Y 

( 3 . 9 4 ) 

K 

( 6 3 . 6 9 ) 

' K /Y 

£ ( 1 6 . 1 7 ) 

' M P k 

( . 0 2 0 4 ) 

R 

( . 0 2 0 4 ) 

3 . 9 4 3 .94 3.94 

( . 0 2 0 ) ( .020 ) ( . 020 ) 

3 . 9 4 3 .94 3.94 

( . 0 2 0 ) ( .020 ) ( .020 ) 

6 3 . 9 7 63 .72 63.61 

( . 5 9 ) ( . 59 ) ( . 5 9 ) 

16 .22 16.17 16.16 

( . 0 5 9 ) ( .069 ) ( . 069 ) 

.0204 .0204 .0205 

( . 8 6 E - 4 ) ( . 8 7 E - 4 ) ( . 8 8 E - 4 ) 

.0204 .0204 .0204 

( . 8 8 E - 4 ) ( . 8 7 E - 4 ) ( . 8 9 E - 4 ) 

° c
/ o

y 

° d k
/ o

y 

° r
/ o

y 

Pr.c(0) 

0 d k , c ( ° > 

p

r , A c
( 0 ) 

.76 .76 .76 

( . 0 2 6 ) ( . 0 2 6 ) ( . 0 2 6 ) 

. 4 9 . 4 9 .48 

( . 022 ) ( . 0 2 2 ) ( . 0 2 2 ) 

.006 .005 .005 

( . 0 0 0 1 ) ( . 0 0 0 1 ) ( . 0 0 0 1 ) 

.170 .169 . 169 

( . 0 1 0 ) ( . 0 1 0 ) ( . 0 1 0 ) 

- . 4 0 - . 4 7 - . 4 8 

( . 0 4 9 ) ( . 0 5 7 ) ( . 0 6 2 ) 

.26 .26 .26 

( . 0 2 2 ) ( . 0 2 2 ) ( . 0 2 2 ) 

.25 .30 . 3 0 

( . 0 1 2 ) ( . 0 1 5 ) ( . 0 1 7 ) 

» A c , r
( 1 ) 

^ c , r
( 2 ) 

p

A C , A c
( 1 ) 

p

A c , A c
( 2 ) 

W
1 } 

W
2

> 

P y t r ( 1 ) 

p Y , R ( 2 ) 

. 107 .090 . 0 9 0 

( . 0 1 2 ) ( . 0 1 1 ) ( . 012 ) 

. 0 5 3 .087 .087 

( . 0 1 1 ) ( . 0 1 1 ) ( . 012 ) 

.026 .028 .028 

( . 0 1 1 ) ( . 0 1 1 ) ( . 0 1 1 ) 

.024 . 0 2 3 .024 

( . 013 ) ( . 0 1 4 ) ( . 013 ) 

- . 0 0 5 - . 0 0 5 . 0 0 5 

( . 0 0 8 ) ( . 0 0 9 ) ( . 009 ) 

- . 0 0 9 - . 0 0 9 . 009 

( . 0 0 8 ) ( . 0 0 8 ) ( . 009 ) 

- . 0 3 1 - . 0 3 5 .041 

( . 0 6 9 ) ( . 082 ) ( . 089 ) 

- . 0 3 6 - . 0 4 2 .047 

( . 0 6 8 ) ( . 0 8 1 ) ( . 088 ) 

NOTE: The model economy u n d e r l y i n g the s i m u l a t i o n s i n t h i s t a b l e i s t h e same a s t h e t h r e e - s t a t e l o w - v a r i a n c e economy i n 

T a b l e s 4 - 6 , w i t h t h e e x c e p t i o n t h a t h e r e , x = 3 . 0 . See n o t e s t o T a b l e s 4 and 5 f o r f u r t h e r i n f o r m a t i o n on n o t a t i o n and 

d e t a i l s o f t h e s i m u l a t i o n e x p e r i m e n t s . 



Table 8. Cost, in Percent of K t - i , of Using LQ Decision Rules 
(How Much an LQ Planner Would Pay to Learn the DP Rule) 

Panel A: a£ = .01, Two-state Markov chain, r = .5 

K 
t-i 

x t= - -.032 x t = .032 

Log Lin Log Lin 

60.32 

62.00 

63.69 

65.46 

67.23 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Panel B: a£ = .10, Two-state Markov chain, r = .5 

K 
t-i 

x t = - -.32 x t = 0.32 

Log Lin Log Lin 

36.78 

50.24 

63.69 

86.19 

108.69 

0.3 

0.2 

0.1 

0.2 

0.3 

0.3 

0.3 

0.2 

0.2 

0.1 

0.6 

0.2 

0.1 

0.1 

0.2 

0.3 

0.2 

0.2 

0.2 

0.2 

Panel C: a£ = .01, Three-state Markov chain, r = .5 

K x t = - . 0 6 x t = 0 . 0 0 x t = 0 . 0 6 
t-i 

Log Lin Log Lin Log Lin 

57.96 0.0 0.0 0.0 0.0 0.0 0.0 

60.82 0.0 0.0 0.0 0.0 0.0 0.0 

63.69 0.0 0.0 0.0 0.0 0.0 0.0 

66.82 0.0 0.0 0.0 0.0 0.0 0.0 

69.96 0.0 0.0 0.0 0.0 0.0 0.0 

Panel D: crf = .10, Three-state Markov chain, r = .5 

K x t = - . 5 5 x t = 0 . 0 0 x t = 0 . 5 5 
t-i 

Log Lin Log Lin Log Lin 

24.60 1.0 2.6 1.1 1.2 5.1 1.5 

44.14 0.3 2.0 0.3 0.8 1.1 1.2 

63.69 0.3 1.2 0.2 0.6 0.4 1.1 

112.26 0.7 0.5 0.2 0.4 0.2 0.8 

160.84 1.4 0.3 0.4 0.3 0.3 0.6 

NOTE: Let v* = v _(Kt- i ,xt), for given K t - i , xt, where LQ refers either to log—linear LQ 

or linear LQ , as indicated in the column headings. Let K* be such that Vj^p(K*,xt;) — v*. 

The entries in the table are [ ( K t - i - K * ) / K t - i ]xl00. 
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FIGURE TITLES 

Figure 1. Steady-State Distribution of Capital: Two-State 

Markov Shocks With High Variance. 

Figure 2. Steady-State Distribution of Consumption: Two-State 

Markov Shocks With High Variance. 

Figure 3. Steady-State Distribution of Capital: Three-State 

Markov Shocks With High Variance. 

Figure 4. Steady-State Distribution of Consumption: Three-

State Markov Shocks With High Variance. 
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