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ABSTRACT 

The supply of (–)-hopeaphenol (1) was achieved via enzymatic biotransformation in order to 

provide material for pre-clinical investigation. High-throughput screening of a pre-fractionated 

natural product library aimed to identify compounds that inhibit the bacterial virulence type III 

secretion system (T3SS) identified several fractions derived from two Papua New Guinean 

Anisoptera species, showing activity against Yersinia pseudotuberculosis outer proteins E and H 

(YopE and YopH). Bioassay-directed isolation from the leaves of A. thurifera, and similarly A. 

polyandra, resulted in three known resveratrol tetramers, (–)-hopeaphenol (1), vatalbinoside A (2) 

and vaticanol B (3). Compounds 1–3 displayed IC50 values of 8.8, 12.5 and 9.9 M in the reporter-

gene assay, and IC50 values of 2.9, 4.5 and 3.3 M in the YopH assay, respectively, which 

suggested that they could potentially act against the T3SS in Yersinia. The structures of 1-3 were 

confirmed through a combination of spectrometric, chemical methods and single crystal X-ray 

structure determinations of the natural product 1 and the permethyl ether analogue of 3. The 

enzymatic hydrolysis of the β-glycoside 2 to the aglycone 1 was achieved through 

biotransformation using the endogenous leaf enzymes, this significantly enhanced the yield of the 

desired bioactive natural product from 0.08% to 1.3% and facilitates ADMET studies of (–)-

hopeaphenol (1). 
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 The development pipeline for new antimicrobials is poor, especially for compounds active 

against Gram-negative pathogens such as Pseudomonas aeruginosa.1 Gram-negative bacteria are 

particularly problematic since their defence system consists of very efficient mechanisms to escape 

antibiotic pressure.2, 3 Infections caused by P. aeruginosa and Acinetobacter spp. in particular, have 

increased in frequency and severity due to their capacity to generate mutator strains, persister cells 

and biofilms, and have therefore become progressively more difficult to treat.1 

 In the search for new antibacterial agents, numerous bacteria-specific cellular machinery or 

processes have been evaluated, and of interest to our research group, are compounds that disrupt the 

expression of bacterial effector proteins, known as exoenzymes, which are translocated via the type 

III secretion system (T3SS) from the bacteria to the infected host cell.4, 5 These proteins alter the 

function of the host cell, assist the microbe to invade, resist phagocytosis, grow in deep tissues and 

cause disease.6-10 The T3SS is involved in a range of pathogenic mechanisms and its activity 

correlates closely with disease progression and outcome.11 

 The well-studied plasmid-encoded Ysc of Yersinia is representative of these common 

virulence systems. The bacterium adheres to a eukaryotic cell and injects a set of bacterial effector 

proteins, Yops (Yersinia outer proteins), into the lumen of the target cell, and results in the 

inhibition of the innate immune response.12, 13 Six different effector Yops have been identified 

including YopE, which inhibits phagocytosis, pore formation and cytokine production and YopH, a 

protein tyrosine phosphatase, which also inhibits phagocytosis, and T- and B-cell activation.14 

These Yops are essential for virulence and synthetic small molecules that inhibit Yop secretion 

have been identified.15, 16 It has been shown that the salicylidene acylhydrazide class of inhibitors 

can attenuate virulence without affecting bacterial growth in a number of bacterial species.17-23  

 Several studies suggest that one of the key advantages of using virulence systems as targets 

for novel anti-infectives is a low probability for development of resistance.4, 24 Virulence blockers 

target extracellular processes and are therefore less likely to be impacted by drug efflux 

mechanisms which have transmembrane and cytoplasmic domains.25 It has been demonstrated that 
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the mechanisms of fluoroquinolone resistance and T3SS virulence are independently associated in 

P. aeruginosa.26 Another advantage of virulence inhibitors is that cross-resistance is unlikely to 

evolve within or be transmutable to the beneficial microflora which do not possess T3SS 

machinery.27 Lastly, since virulence blockers have a low impact on bacterial growth, selective 

pressure in favour of drug resistance is reduced and such mutations might result in dysfunctional 

virulence systems, and consequently the development of less virulent bacteria.4, 27, 28  

 To date, multiple approaches towards identifying T3SS inhibitors have been undertaken. 

Several studies report on the utilization of in silico modelling and screening campaigns with 

subsequent in vitro evaluations of target compounds. Several research groups have undertaken 

extensive in vitro screening programs of commercial, predominantly synthetic, compound libraries 

(ranging between 9,400 and 100,000 compounds).15, 16, 29-32 This research has resulted in the 

identification of several important classes of T3SS inhibitors and notable examples include the 

salicylidene acylhydrazides,15, 20 salicylanilide esters33 thiohydrazide hydrazone derivatives34 and 

N-hydroxybenzimidazoles.35 Three smaller studies have specifically investigated T3SS inhibitors 

from natural sources. Vikram et al.,36 have evaluated the T3SS inhibition of 11 citrus flavonoids 

whilst Tsou et al.,37 have evaluated T3SS inhibition of 146 Traditional Chinese Medicine extracts in 

a Salmonella typhimurium model and Moir et al.,32 have screened 1,873 plant extracts for T3SS 

inhibition. In addition, two articles describe activity of T3SS inhibitors in vivo 38, 39 and chemical 

optimization has resulted in more potent compounds and quantitative structure-activity relationships. 

 In this paper, we report the bioassay-directed isolation and in vitro biological activity of 

three compounds with activity against the T3SS components, Y. psueudotuberculosis YopE and 

YopH, from two Papua New Guinean Anisoptera species. Structure elucidation by a combination of 

NMR, MS, single crystal X-ray crystallography and chemical methods is discussed. Furthermore, 

enzymatic hydrolysis of one of the plant metabolites was achieved through biotransformation using 

the endogenous leaf enzymes, which significantly increased the yield of the desired bioactive 

natural product, thus enabling and expediting future ADMET and animal studies. 
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RESULTS AND DISCUSSION 

  We have undertaken a high-throughput screening (HTS) campaign of the Eskitis Institute’s 

‘Nature Bank’ natural product fraction library40 in order to identify new compounds that potentially 

inhibit the T3SS system.41 The Eskitis Nature Bank consists of 202,983 unique fractions derived 

from analytical HPLC (C18 monolithic) fractionation of 18,453 biota samples of plants and marine 

invertebrates sourced from tropical and temperate Australia, China and Papua New Guinea.42 These 

samples have been extracted, pre-fractionated under optimal conditions for drug discovery,40 and 

formatted for HTS. 

 A primary assay utilizing the bacterial clone Y. pseudotuberculosis YPIII(pIB102-Elux),15 

with a luminescent reporter gene under the control of the promoter for the T3SS effector protein 

YopE, detected three library fractions derived from both leaf extracts of two Papua New Guinean 

Anisoptera (Dipterocarpaceae) species, A. thurifera and A. polyandra, that inhibited the luminescent 

signal. To verify the positive hits a colorimetric assay to detect the protein tyrosine phosphatase 

enzyme activity of the secreted effector protein YopH was performed in conjunction with a 

standard antibacterial growth assay,41 and suggested that these fractions selectively inhibited the 

T3SS. Bioassay-directed fractionation of the CH2Cl2/CH3OH extract from A. thurifera and similarly 

A. polyandra resulted in the purification of three known resveratrol tetramers, (–)-hopeaphenol (1), 

vatalbinoside A (2) and vaticanol B (3). 

 The CH2Cl2/CH3OH extract from the air-dried and ground leaves of A. thurifera and 

similarly A. polyandra was initially chromatographed through polyamide gel. The resulting CH3OH 

eluent was then fractionated by HPLC using C18 bonded silica (gradient CH3OH /H2O/0.1% 

CF3COOH). Bioassay (YopE reporter-gene assay and validation of positive hits in the YopH 

phosphatase assay) indicated the active fractions, and subsequent mass-directed isolation of A. 

thurifera yielded the previously reported resveratrol tetramers, (–)-hopeaphenol (1, 0.08% dry 

wt.),43 vatalbinoside A (2, 1.1% dry wt.)44 and vaticanol B (3, 0.25% dry wt.).45 Mass-directed 
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isolation of A. polyandra yielded 3 (0.26% dry wt.). It is noted that the chemical composition of the 

leaf samples from A. polyandra and A. thurifera bear a close similarity by LC-MS. 

 Stilbene oligomers are biosynthesized via resveratrol or related phenols (e.g. prenylated 

stilbenes or aryl benzofuran derivatives) and can be classified as dimers, trimers, tetramers etc. 

depending on their degree of polymerization.46 Structural characterization of these compounds is 

critical for inferring structure-activity information, however complete assignment of the tetrameric 

stilbenoids is particularly challenging since polymerization can give rise to complex structures with 

confusing stereochemistries and the possibility of multiple epimers, enantiomers and rotational 

isomers.46, 47 In addition, further modifications such as glycosylation give rise to additional 

molecules with increased complexity.  

 In the case of 1, the compact tetrameric structure was elucidated following 1D and 2D NMR 

data analysis in conjunction with comparison to literature values.48 The absolute stereochemistry 

was established on the basis of optical activity ([α]D
25 -454° c 0.1, CH3CH2OH), which was in 

agreement with the reported value ([α]D
20 -407°, CH3CH2OH).49 The structure and absolute 

configuration for (–)-hopeaphenol had previously been determined in 1970 by Coggon et al.50 from 

X-ray crystallographic studies of the dibromodeca-O-methyl derivative which contained two 

crystallographic independent molecules, each of which are located about a two-fold symmetry axis. 

[A representative view of one molecule of this structure derived from the original Coggon data is 

provided in the supplementary tables (Supporting Information S7)]. In this present study, the high 

yields of 1 provided sufficient sample to carry out recrystallization experiments, which resulted in 

well-formed crystals of the monohydrate suitable for X-ray diffraction studies. An ORTEP 

representation of the structure is shown in Figure 1. The absolute configuration established for this 

structure was consistent with that determined for the structure of the dibromodeca-O-methyl 

derivative.   

 The structure and relative stereochemistry for compound 2 was assigned from its NMR 

spectroscopic resemblance to the aglycone 1 and in comparison to the literature values, with the H-



 

 7 

8b and H-8c resonances corrected as: two symmetrical and resolved broad doublet of doublets (J = 

3.0, 3.0 Hz) resonating at δH 4.01 and 3.97 ppm respectively, compared to the previous report in 

which these protons were assigned as a 2H doublet of doublets (J = 10.2, 4.2 Hz).44 Crystals of 2 

were not suitable for X-ray crystallographic studies, the enantiomeric purity of 2 was confirmed on 

the basis of its conversion to the aglycone 1 upon acid hydrolysis (5% H2SO4 in CH3CH2OH, 65 

°C, 4 h) and comparison of the optical activity of hydrolysis product ([α]D
20 -375° c =0.1, CH3OH) 

to the natural product (1). 

 Compound 3 was elucidated as vaticanol B on the basis of 1D and 2D NMR spectroscopic 

data and in comparison to the literature.51 Crystals of 3 could not be obtained from the nature-

derived product; consequently reaction of 3 with MeI/K2CO3 in acetone at 40 °C for 2 h afforded 

the decamethyl ether 5. Purification of the reaction mixture using C18 HPLC afforded 5, (91% yield) 

which readily formed colourless prisms upon evaporation of the mobile phase. An ORTEP 

representation of the extended tetrameric rotamer vaticanol B (5) is shown in Figure 2.  

 Vatalbinoside A (2), vaticanol B (3) and (–)-hopeaphenol (1) exhibited IC50 values of 12.4, 

9.9 and 8.8 M (reporter-gene assay) and 4.5, 3.3 and 2.9 M (YopH phosphatase assay) without 

detectable inhibition of bacterial growth (Table 1). These results suggest that this class of molecules 

targets the T3SS and may be developed as novel antibacterial agents or as chemical tools for 

studying the T3SS. The anti-virulence efficacy of  compound (1) in Y. pseudotuberculosis, P. 

aeruginosa and C. trachomatis is discussed elsewhere.52 

 In regards to natural product drug discovery, much concern in the past and present, 

particularly from the pharmaceutical industry, relates to the sufficient supply of a natural product 

lead or drug for more detailed pharmacological evaluations, both in the in vitro and/or in vivo 

setting. The stilbenoid compounds from these current studies are all structurally complex and total 

syntheses have not been reported. We concluded that continued investigation of the biological 

activities of stilbenoids 1-3 must therefore rely on material isolated from natural sources, at least in 

the short term.  In order to complete comprehensive structure and pharmacological studies, an 
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alternative enrichment and efficient large-scale isolation scheme was developed that has broader 

application to the purification of stilbenoids, in general. 

It has been shown above, that acid hydrolysis could produce 1 in high yield from the more 

abundant glycosylated compound 2. Compound 1 is slightly more active than 2 and 3 and 

consequently, we explored enrichment of 1 by enzymatic hydrolysis of 2 prior to isolation. In a 

procedure inspired by the enzymatic hydrolysis of ruberythric acid to alizarin in madder root,53 the 

biotransformation of 2 to 1was achieved by utilizing the endogenous enzymes present in the leaf. 

The dried ground leaf material of A. polyandra was suspended in tap water for 7 days at 35°C. 

Following chromatographic purification, a sixteen-fold enrichment of 1 (0.08–1.3% dry wt.), but 

not complete conversion, was achieved over this time-frame. 

  The Genus Anisoptera comprises 11 species [The Plant List54], that are distributed from 

Bangladesh to New Guinea,55 and eight of these species are currently listed as endangered, or 

critically endangered.56 Anisoptera belongs to the subfamily Dipterocarpoideae which are 

represented by resinous rainforest trees, which characteristically produce resveratrol 

oligostilbenes.57 The chemistry of only two Anisoptera species has been investigated: bergenin and 

six resveratrol oligomers has been reported from A. marginata 58, 59; whilst the chemical 

characterization of A. scaphula is ongoing.60   

 Stilbenoids are biologically active phytoalexins, and their range of pharmacological activity 

has been comprehensively reviewed.46 Of relevance to this study, is that the tetrameric stilbenes 

have demonstrated antifungal,43 antibacterial,61 antiviral,62 anti-inflammatory,63 cytotoxic64 and 

antitumor activity in vitro.65 The biological activity of hemsleyanol C, an epimer of 3, is noted as a 

potent topoisomerase II inhibitor,66 whilst an epimer of 1, has demonstrated moderate antibacterial 

activity against methicillin-resistant Staphylococcus aureus (MRSA).61 

 In this study we have identified three resveratrol tetramers from two Anisoptera species, 

which inhibit YopE and YopH from Y. pseudotuberculosis in vitro. As these compounds did not 

inhibit the growth of Y. pseudotuberculosis (Table 1), these compounds may selectively inhibit the 
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T3SS. It has been reported that T3SS inhibitors are able to attenuate virulence without effecting 

bacterial growth in Y. pseudotuberculosis.20 This is the first report of chemical constituents of A. 

thurifera and A. polyandra, and the first report detailing the bioassay-directed isolation of stilbenoid 

oligomers against protein components of the T3SS. The promising in vitro data for stilbenoids 1 

warranted further biological evaluation, the anti-infective activity of 1 against three Gram-negative 

bacterium are reported by co-workers elsewhere.52  

 

EXPERIMENTAL SECTION 

 General Experimental Procedures. NMR spectra were recorded at 30 oC on either a 

Varian 500 MHz or 600 MHz Unity INOVA spectrometer (Varian, Walnut Creek, CA, USA). The 

latter spectrometer was equipped with a triple resonance cold probe. The 1H and 13C NMR chemical 

shifts were referenced to the solvent peak for acetone-d6 (δH 2.05 and δC 29.9) or CD3OD (δH 3.31 

and δC 49.15). LRESIMS were recorded on a Waters ZQ mass spectrometer (Waters, Milford, MA, 

USA). HRESIMS were recorded on a Bruker Daltronics Apex III 4.7e Fourier-transform mass 

spectrometer (Bruker, Karlsruhe, Germany). A BIOLINE orbital shaker (Edwards Instrument 

Company, Narellan, NSW, Australia) was used for the large-scale extraction of plant material. 

Machery Nagel Polyamide CC6 (0.05–0.016 mm) was used for tannin/polyphenolic removal 

(Machery Nagel, Düren, Germany). Alltech Davisil 40–60 μm 60 Å C18 bonded silica was used for 

pre-adsorption work (Alltech, Deerfield, IL, USA). Merck 40–63 μm silica (Kiesselgel 60) was 

used for flash chromatography. A Waters 600 pump equipped with a Waters 996 PDA detector and 

a Waters 717 autosampler (Waters, Milford, MA, USA) were used for HPLC. A ThermoElectron 

C18 Betasil 5 μm 143 Å column (21.2 mm  150 mm) (Thermo Scientific, Los Angeles, CA, USA) 

and a Phenomenex Luna C18 column 5 μm 143 Å column (Phenomenex, Torrance, CA, USA) were 

used for semi-preparative (21.2 mm  250 mm) and preparative (50 × 150 mm) HPLC separations. 

All solvents used for chromatography, UV, and MS were Lab-Scan HPLC grade (RCI Lab-Scan, 

Bangkok, Thailand), and the H2O was Millipore Milli-Q PF filtered (Millipore, Billerica, MA, 
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USA). All synthetic reagents were purchased from Sigma Aldrich and used without further 

purification. 

 Plant Material. The leaves of Anisoptera thurifera (Blanco) Blume and A. thurifera subsp. 

polyandra (Blume) P.S.Ashton (syn. Anisoptera polyandra) were collected in Papua New Guinea. 

Voucher samples (QID016405; A. thurifera) and (QID018040; A. polyandra) have been lodged 

with the Biodiversity Research Pty Ltd, Port Moresby, Papua New Guinea.  

 Bioassay-Directed Isolation. In separate extraction processes, the air-dried and ground 

leaves of A. thurifera (10 g) and A. polyandra (10 g) were defatted (250 mL n-hexane, 2 h) and then 

sequentially extracted with CH2Cl2 (250 mL, 2 h) and CH3OH (2 × 250 mL, 2 h then 24 h) with 

stirring (200 rpm). The filtered CH2Cl2 and CH3OH extractions were combined and dried under 

reduced pressure to yield a crude extracts (1.9 g, A. thurifera, and 2.0 g A. polyandra). 

 The organic extracts were resuspended in CH3OH (150 mL) and loaded onto a polyamide 

gel column (30 g bed volume, pre-equilibrated with CH3OH) to remove pigments. The column was 

eluted with CH3OH (300 mL), and the eluent evaporated to obtain a crude extract (1.0 g, A. 

thurifera, and 1.1 g, A. polyandra). A portion of this crude material (0.8 g) was pre-adsorbed to C18-

bonded silica (1 g) then packed into a stainless steel guard cartridge (10 × 30 mm) that was 

subsequently attached to a C18 semi-preparative HPLC column. Isocratic HPLC conditions of H2O-

CH3OH-CF3COOH (90:10:0.1) were initially employed for the first 10 min, then a linear gradient 

to CH3OH (0.1% CF3COOH) was run over 40 min, followed by isocratic conditions of CH3OH 

(0.1% CF3COOH) for a further 10 min, all at a flow rate of 9 mL/min. Sixty fractions (60  1 min) 

were collected from the start of the run then submitted to bioassay. 

 In the case of A. thurifera: Bioassay data indicated that fractions 25–30 were the active 

fractions. 1H NMR analysis of the fractions identified that fractions 25–26 contained vatalbinoside 

A (2, 44.7 mg, 1.0% dry wt). Fractions 27–30 were a mixture of related oligostilbenes and were 

combined (73.4 mg) and further fractionated using identical C18 HPLC conditions to those detailed 

above. 1H NMR analyis of all UV-active peaks resulted in the identification of the previously 
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reported natural products, vatalbinoside A (2, 4.2 mg, 0.10% dry wt), vaticanol B (3, 10.8 mg, 

0.25% dry wt) and (–)-hopeaphenol (1, 3.4 mg, 0.08% dry wt).  

 In the case of A. polyandra: Bioassay data indicated that fractions 29–31 were active. 

Fractions 29–31 were combined (32.7 mg), the mixtures were fractionated using identical C18 

HPLC conditions to those detailed above. 1H NMR analysis of all UV-active peaks resulted in the 

identification of the previously reported natural product, the vaticanol B (3, 19.2 mg, 0.26% dry 

wt). Compounds 1 and 2 were identified in extracts of A. polyandra but were not isolated in 

sufficient quantities during the bioassay-directed fractionation step. 

 Alternative Enrichment of 1 and Optimized Large-scale Purification of 1–3.  Several 

strategies, with broader application, to the optimal enrichment or semi-purification of the major 

stilbenoid tetramers prior to HPLC purification were developed. 

 Enzymatic Hydrolysis of Stilbenoid Glycosides using Endogenous Leaf Enzymes. The 

air-dried and ground leaf material of A. polyandra (100 g) was suspended in tap water (400 mL) in 

a glass container. The leaf material/water was maintained at 35 °C in a water bath for 7 days. The 

water level was maintained at 400 mL with the addition of fresh tap water. Prior to filtration, 

methanol (400 mL) was added to the plant material to solubilize the aglycone product. The sample 

was filtered through a glass frit (Pore 1) then sequentially extracted with acetone (2 × 400 mL) at 

ambient temperatures for 24 h with shaking. The resulting H2O/CH3OH and acetone extracts were 

filtered then combined and dried under reduced pressure to yield a crude extract (14.5 g). 

 Enrichment of Stilbene Glycosides and Stilbene Aglycones by Normal Phase Column 

Chromatography. The aglycone-enriched extract of the leaf material was resuspended in acetone 

and pre-adsorbed to silica gel (100 g). The dry pre-adsorbed sample was loaded onto a silica flash 

column (200 g, 12.5 cm diam. × 4 cm high; pre-equilibrated with 1:1 hexane:EtOAc. The extract 

was fractionated using a step-wise gradient consisting of: 1:1 hexane:EtOAc; 1:9 hexane:EtOAc; 

19:1 acetone:CH3OH. Fraction 1, which contained plant pigments, was discarded. Fraction 2 



 

 12 

contained a crude mixture of stilbenoid aglycones and fraction 3 contained a crude mixture of 

stilbenoid glycosides. 

  Purification of Compounds 1 – 3 by Reversed Phase Preparative HPLC. Fraction 2 

(10.3 g) was re-suspended in CH3OH and pre-adsorbed onto C18 bonded silica (40 g). The dried 

pre-adsorbed extract (sufficient for three guard cartridges) was then loaded into a stainless steel 

guard cartridge (50 × 25 mm diam.). A C18 Betasil preparative column (Thermo Electron Company 

Betasil C18; 150 × 50 mm; 5 μm) was pre-equilibrated with the starting mobile phase H2O-CH3OH-

CF3COOH (85:15:0.1). Isocratic HPLC conditions of H2O-CH3OH-CF3COOH (85:15:0.1) were 

employed for the first 2 min, then a linear gradient to H2O-CH3OH-CF3COOH (63:37:0.1) was run 

over 32 min, followed by isocratic conditions of H2O-CH3OH-CF3COOH (63:37:0.1) for a further 

51 min, and lastly, a linear gradient to H2O-CH3OH-CF3COOH (20:80:0.1) over 68 min, all at a 

flow rate of 18 mL/min. 118 Fractions (84 sec.) were collected over 150 min from the start of the 

run. Pure (–)-hopeaphenol (1) eluted between fractions 26 – 40 (1.02 g, 99% purity; 0.5 g 60% 

purity; 1.3% dry wt., cumulative yield). Vaticanol B (3) eluted between fractions 41–72 (4.15 g, ca. 

70–99% purity; ca. 2.9% yield dry wt.).  

 Fraction 3 contained a moderate amount of the unhydrolyzed β-glycoside 2 (1.7 g, 30% 

purity; 0.5% yield dry wt.). Crystals of 2 was obtained after further purification by reversed-phase 

HPLC. A portion of this crude material (0.1 g) was pre-adsorbed to C18-bonded silica (1 g) then 

packed into a stainless steel cartridge (10 × 30 mm) that was subsequently attached to a C18 Betasil 

semi-preparative HPLC column (21.2 mm  150 mm). A linear gradient from H2O-CH3OH-

CF3COOH (80:20:0.1) to H2O-CH3OH-CF3COOH (72:28:0.1) was run over 30 min, followed by 

isocratic conditions of H2O-CH3OH-CF3COOH (72:28:0.1) for a further 30 min, all at a flow rate of 

9 mL/min. Compound 2 eluted between 36–42 min. Crystalline 2 (not suitable for X-ray 

crystallographic studies) was obtained by slow evaporation of the mobile phase. 

 (–)-Hopeaphenol (1): Colourless plates (CH3OH /H2O/0.1% CF3COOH); decomp. ~280°C; 

Lit: 351°C (evac. cap.)49; [a] D25= -454° (c 0.1, CH3CH2OH); Lit: [a]D
20= -407° (c not specified, 
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CH3CH2OH)49; 1H and 13C NMR data were consistent with literature values48; (+)-LRESIMS (rel. 

int.) m/z 907 (100) [M+H]+. Crystals of the monohydrate of 1 suitable for X-ray diffraction studies 

were obtained by slow evaporation of the CH3OH/H2O.0.1% CF3COOH HPLC eluent of 1.  

Vatalbinoside A (2): Colourless needles decomp. ~280 °C; [a] D25= -341° (c 0.1, CH3OH); 

Lit: [a]D
25= -320° (c 0.1, CH3OH)44; 1H and 13C NMR data were consistent with literature values44; 

IR max (KBr) 3265, 1612, 1513, 1345, 1240, 1022, 839 cm-1; (+)-LRESIMS (rel. int.) m/z 1091.4 

(100) [M+Na]+. 

 Vaticanol B (3): white amorphous powder; m.p. decomp. ~280 °C; [a] D25= -46° (c 0.06, 

CH3OH); Lit: [a]D
20= -14 (c 0.1, CH3OH)51; 1H and 13C NMR data were consistent with literature 

values51; (+)-LRESIMS (rel. int.) m/z 907 (100) [M+H]+, (+)-HRESIMS m/z 907.2740 (C62H52O17 

[M+H]+ requires 907.2749).  

 Acid Hydrolysis of 2. A solution of 2 (10 mg in 1 mL of 5% H2SO4 in CH3CH2OH) was 

refluxed for 4 h at 65 °C. The reaction mixture was allowed to cool, then evaporated to dryness. 

The crude reaction mass was partitioned between EtOAc (2 × 10 mL) and sat. NaHCO3 (10 mL). 

The organic layer was washed with brine solution, and subsequently dried over Na2SO4. The 

organic layer was evaporated and the reaction mixture was further purified by C18 preparative 

HPLC using the conditions described for fraction 3 in §4.4.3. to yield (–)-hopeaphenol (1, 8 mg,  

93% yield, 98% purity). 

 Methylation of (–)-Hopeaphenol (1). (–)-Hopeaphenol (1, 20 mg, 0.02 mmol) was 

dissolved in CH3OH–CH2Cl2 (1:1, 1.5 mL) at room temperature before TMS-diazomethane (2.0 M 

in Et2O, 650 µL, 1.30 mmol) was added dropwise.67 The reaction was stirred overnight at room 

temperature, and then evaporated to dryness. The crude reaction mixture was adsorbed to C18-

bonded silica then purified by C18 semi-preparative HPLC (Betasil column, 21.2 mm  150 mm). A 

linear gradient from H2O-CH3OH-CF3COOH (50:50:0.1) to H2O-CH3OH-CF3COOH (5:95:0.1) 

was run over 30 min, followed by a linear gradient to CH3OH (0.1% CF3COOH) over 10 min 
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followed by isocratic conditions of CH3OH (0.1% CF3COOH) for a further 20 min, all at a flow 

rate of 9 mL/min.  

(–)-Hopeaphenol permethyl ether (4): (15.6 mg, 68% yield, ≥95% purity) eluted between 

33–37 minutes. m.p. 169-172 °C (CH3OH-H2O); Lit: 162–164°C (benzene-CH3OH)49; [a] D25= -

387° (c 0.1, CH3OH); Lit.: [a] DRT -378° (c not specified, CHCl3)49; 1H NMR (500 MHz, CD3OD): 

δ 3.29 (s, H-13a-OMe/13d-OMe), 3.65 (s, H-13b-OMe/13c-OMe), 3.72 (s, H-4b-OMe/4c-OMe), 

3.77 (s, H-11a-OMe/11d-OMe), 3.80 (s, H-4a-OMe/4d-OMe), 3.87 (brs, H-8b/8c), 4.15 (d, 11.8, H-

8a/8d), 4.92 (d, 2.4, H-14b/14c), 5.73 (brs, H-7b/7c), 5.77 (d, 11.8, H-7a/7d), 5.84 (d, 2.4, H-

12b/12c), 6.41 (d, 2.4, H-14a/14d), 6.66 (d, 2.4, H-12a/12d), 6.71 (d, 8.6, H-3b,5b/3c,5c), 6.85 (d, 

8.7, H-3a,5a/3d,5d), 6.89 (d, 8.4, H-2b,6b/2c,6c), 7.14 (d, 8.7, H-2a,6a/2d,6d); 13C NMR (126 MHz, 

CD3OD); 41.5 (C-7b/7c),48.3 (C-8b/8c), 50.8 (C-8a/8d), 55.9 (C-11a-OMe/11d-OMe), 55.9 (C-4b-

OMe/4c-OMe), 56.0 (C-4a-OMe/4d-OMe), 56.1 (C-13a-OMe/13d-OMe), 56.6 (C-13b-OMe/13c-

OMe), 89.0 (C-7a/7d), 95.8 (C-12b/12c), 96.9 (C-12a/12d), 105.0 (C-14a/14d),108.8 (C-14b/14c), 

114.5 (C-3b,5b/3c,5c), 115.1 (C-3a,5a/3d,5d), 120.7 (C-10b/10c), 124.3 (C-10a/10d), 129.5 (C-

2b,6b/2c,6c), 130.3 (C-2a,6a/2d,6d), 132.2 (C-1a/1d), 136.2 (C-1b/1c), 140.3 (C-9b/9c), 142.6 (C-

9a/9d), 159.2 (C-4b/4c), 159.8 (C-11b/11c), 160.9 (C-13a/13d), 161.2 (C-4a/4d), 161.7 (C-

11a/11d), 161.8 (C-13b/13c); (+)-LRESIMS (rel. int.) m/z 1048 (100) [M+H]+; HRESIMS m/z 

1047.4307 (C66H63O12 [M+H]+ requires 1047.4319). 

 Methylation of Vaticanol B (3). Vaticanol B (3, 22.1 mg, 0.024 mmol) and K2CO3 (320 

mg, 2.32 mmol) were dissolved in dry acetone (5 mL) at room temperature before MeI (200 µL, 3.2 

mmol) was added dropwise. The reaction was refluxed for 2 h at 40°C then evaporated to dryness. 

The crude reaction mixture was adsorbed to C18 bonded silica then purified using the same 

conditions described above for compound 4. Evaporation of fractions 35–38 yielded the crystalline 

vaticanol B permethyl ether (5) suitable for X-ray diffraction studies. 

  Vaticanol permethyl ether (5): colourless prisms (21.0 mg, 90% yield, ≥95% purity); m.p. 

240–242°C (CH3OH-H2O); [a] D25= +60° (c 0.01, CH3CH2OH) tentative value only, this compound 
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has solubility issues in a range of solvents; 1H and 13C NMR data were consistent with literature 

values 51; (+)-LRESIMS (rel. int.) m/z 1048 (100) [M+H]+. 

 X-ray Crystallography. Unique data sets for compounds 1 (Cu-K radiation) as the 

monohydrate and 5 (Mo-K radiation) were measured at 200 K on an Oxford-Diffraction GEMINI 

S Ultra CCD diffractometer utilizing CrysAlis software.68 The structures were solved by direct 

methods and refined by full matrix least squares refinement on F2. Anisotropic thermal parameters 

were refined for non-hydrogen atoms; (x, y, z, Uiso)H were included and constrained at estimated 

values. Conventional residuals at convergence are quoted; statistical weights were employed. 

Computation used, SIR-9769, SHELX9770, ORTEP-371 and PLATON72 programs and software 

systems. The absolute configuration of 1 was determined by anomalous dispersion effects [3975 

Bijvoet pairs, Flack parameter -0.05(12)].73  In the absence of significant anomalous scatterers in 

compound 5, Friedel equivalents were merged with the absolute configuration predicted on the 

basis of optical activity.  

 Crystal data for (–)-hopeaphenol (1): C56H42O12.H2O, Mr = 924.9. Orthorhombic, space group 

P212121, a = 11.1051(2), b = 18.7895(4), c = 22.3006(4) Å, V = 4653.2(2)(2) Å3. Dc (Z = 4) = 1.32 

g cm–3. µCu = 0.77 mm; specimen: 0.36 × 0.23 × 0.08 mm; 'T'min/max = 0.768/0.941. 2max = 71.2; 

Nt = 32588, N = 8969 (Rint = 0.045), No = 7876; R1 = 0.037, wR2 = 0.095; S = 1.03, xabs = -0.05(12).  

 Crystal data for vaticanol B permethyl ether (5): C66H62O12, Mr = 1047.2. Monoclinic, space 

group P21, a = 15.5983(6), b = 12.4215(3), c = 16.8136(7) Å,  = 117.230(5), V = 2896.7(2) Å3. Dc 

(Z = 2) = 1.20 g cm–3. µMo = 0.08 mm; specimen: 0.54 × 0.35 × 0.10 mm; 'T'min/max = 0.99/0.96. 

2max = 55.0; Nt = 22650, N = 6728 (Rint = 0.044), No = 3205; R1 = 0.057, wR2 = 0.117; S = 0.84.  

 Full .cif depositions reside with the Cambridge Crystallographic Data Centre, CCDC Nos. 

998909 [(–)-hopeaphenol, 1] and 953125 (vaticanol B permethyl ether, 5). Copies can be obtained 

free of charge on application at the following address: http://www.ccdc.cam.ac.uk/cgi-

bin/catreq.cgi). 

http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
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 Determination of YopE Expression using a Reporter-gene Assay. YPIII(pIB102-

Elux)74 from a culture grown on LB agar containing 25 g/mL chloramphenicol (Sigma) for 48 

h at 26 °C was used to inoculate a liquid culture, then grown for 12–16 h in Brain Heart Infusion 

Broth (BHI; Difco) containing 25 g/mL chloramphenicol (Sigma) on an orbital shaker at 26 °C. 

Liquid cultures were diluted to an OD620 of 0.2, then further diluted 1 in 4 in Ca2+ depleted 

media (BHI media with 5 mM EGTA and 20 mM MgCl2) before addition of 30 µL of bacteria 

to a 384-well white solid lidded Optiplate™ (Perkin Elmer). Before bacterial addition, 5 L of 

fraction or compound/controls were added to the plate, by diluting plates of library fractions or 

compounds/controls in DMSO with a Minitrak™ (PerkinElmer) liquid handler, by addition of 1 

L of fraction to 4 L of H2O.  

 Plates were incubated at 26 °C for 1 h followed by incubation at 37 °C for 3 h and then 

transferred back to 26 °C for 15 min. 15 L of 0.1% decanal (Sigma) emulsified in H2O was added 

to each well. Plates were read on a Trilux (PerkinElmer) counter using a luminescence protocol. A 

dose response of streptomycin was used as an antibacterial control. Bacteria in BHI with 2.5 mM 

Ca2+ was used as an in plate negative control for the assay since no Yop protein is expressed during 

these conditions. Ca2+ depletion at 37 °C stimulates Yop production and the Yop production will 

eventually suppresses growth.15  

Fractions were tested at single point concentrations of 7.14 μge/μL Active fractions and 

controls were retested at 7.14, 1.42, 0.71, 0.14 and 0.071 μge/μL. Pure compounds were screened at 

10, 20, 50 and 100 μM. YopE suppression was calculated using linear regression on the basis of the 

reduction in luminescent signal versus sample concentration (μg/mL). IC50 values were calculated 

from interpolation of the dose response curves. 

 Combined Reporter-gene and Phosphatase Assay for the Determination of YopH 

Secretion. Before addition of decanal, and as according to the YopH protocol, 5 L of the final 

assay volume was added to a clear 384-well plate (Becton Dickinson) containing 45 L of YopH 

substrate p-nitrophenyl phosphate (pNPP; Acros Organics; 12.5 mM in 20 mM MES pH 5.0 and 0.8 
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mM DTT), with a Biomek FX liquid handler (Beckman Coulter). Plates were incubated for 15 min 

at 37 °C before addition of 10 µL of sodium hydroxide to stop the reaction. Plates were then read at 

405 nm on a VictorII Wallac plate reader (PerkinElmer). To the remainder of the assay volume 

decanal was added and luminescence was measured as described above. Controls were as described 

for the reporter-gene assay. Fractions were tested at single point concentrations of 7.14 μge/μL 

Active fractions and controls were retested at 7.14, 1.42, 0.71, 0.14 and 0.071 μge/μL. Pure 

compounds were screened at 10, 20, 50 and 100 μM. IC50 values were calculated from interpolation 

of the dose response curves. 

 Antibacterial Optical Density (OD620) Assay. YPIII(pIB102-Elux) cultures were grown 

overnight, then diluted to an OD620 of 0.2 in BHI medium, with 2.5 mM Ca2+. A further 1:4 dilution 

in BHI with 2.5 mM Ca2+ was prepared before addition to the assay. 50 μL of the diluted bacteria 

was added to clear, lidded 384 well plates (Becton Dickinson), containing 5 μL of 

fraction/compound or controls.  Active fractions and controls were screened at a single point 

concentration of 7.14 μge/μL then retested at 4.45, 0.91, 0.45, 0.091 and 0.045 μge/μL to determine 

a dose response. Plates were incubated for 3 h at 37 °C and then transferred to room temperature for 

15 min before reading at 620 nm on a VictorII Wallac plate reader. Streptomycin was used as an in-

plate negative growth control and an external plate contained a dose response of streptomycin for 

the estimation of the antibacterial IC50 values. Pure compounds were screened at 10, 20, 50 and 100 

μM. 

 

ASSOCIATED CONTENT  

Supporting Information 

1D and 2D NMR spectra for (–)-hopeaphenol permethyl ether (4) and an ORTEP view of the 

dibromodeca-O-methyl derivative of hopephenol. This material is available free of charge via the 

Internet at http://pubs.acs.org. 

 

AUTHOR INFORMATION 

http://pubs.acs.org/


 

 18 

Corresponding Author 

* Tel: +61-7-3735-6000. Fax: +61-7-3735-6001. E-mail: r.quinn@griffith.edu.au 

 

ACKNOWLEDGMENTS 

 The authors would like to acknowledge Creative Antibiotics Sweden AB and the Australian 

Research Council (linkage grant # LP120200339) for financial support. The authors thank D. 

Camp, C. Lewis and K. Watts from the Molecular Libraries group (Eskitis Institute) for their 

assistance in the preparation of the screening library. We thank B. Aldred for technical assistance 

with the HTS. We thank T. Rali for the collection and taxonomic identification of the plant material 

and the Central Analytical Research Facility, Queensland University of Technology for access to 

single crystal X-ray diffraction facilities. 

 
REFERENCES 

 

(1) Talbot, G. H.  Expert. Rev. Anti. Infect. Ther. 2008, 6, 39-49. 
(2) Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R.  Clin. Microbiol. Rev. 2006, 19, 
403-434. 
(3) Erol, S.; Altoparlak, U.; Akcay, M. N.; Celebi, F.; Parlak, M.  Burns 2004, 30, 357-361. 
(4) Clatworthy, A. E.; Pierson, E.; Hung, D. T.  Nat. Chem. Biol. 2007, 3, 541-548. 
(5) Dean, S. N.; Bishop, B. M.; van Hoek, M. L.  BMC Microbiol. 2011, 11, 114. 
(6) Dacheux, D.; Attree, I.; Schneider, C.; Toussaint, B.  Infect. Immun. 1999, 67, 6164-6167. 
(7) Sawa, T.; Yahr, T. L.; Ohara, M.; Kurahashi, K.; Gropper, M. A.; Wiener-Kronish, J. P.; 
Frank, D. W.  Nat. Med. 1999, 5, 392-398. 
(8) Sundin, C. Type III secretion mediated translocation of effector exoenzymes by 
Pseudomonas aeruginosa. PhD, Umeå University, Sweden, 2003. 
(9) Hornef, M. W.; Roggenkamp, A.; Geiger, A. M.; Hogardt, M.; Jacobi, C. A.; Heesemann, J.  
Microb. Pathog. 2000, 29, 329-343. 
(10) Sundin, C.; Hallberg, B.; Forsberg, A.  FEMS Microbiol. Lett. 2004, 234, 87-91. 
(11) Coburn, B.; Sekirov, I.; Finlay, B. B.  Clin. Microbiol. Rev. 2007, 20, 535-549. 
(12) Cornelis, G. R.  Nature Rev. Molecul. Cell Biol. 2002, 3, 742-752. 
(13) Rosqvist, R.; Magnusson, K.-E.; Wolf-Watz, H.  Embo J. 1994, 13, 964-972. 
(14) Viboud, G. I.; Bliska, J. B.  Ann. Rev. Microbiol. 2005, 59, 69-89. 
(15) Kauppi, A. M.; Nordfelth, R.; Uvell, H.; Wolf-Watz, H.; Elofsson, M.  Chem. Biol. 2003, 10, 
241-249. 
(16) Pan, N. J.; Brady, M. J.; Leong, J. M.; Goguen, J. D.  Antimicrob. Agents Chemother. 2009, 
53, 385-392. 
(17) Bailey, L.; Gylfe, A.; Sundin, C.; Muschiol, S.; Elofsson, M.; Nordstroem, P.; Henriques-
Normark, B.; Lugert, R.; Waldenstroem, A.; Wolf-Watz, H.; Bergstroem, S.  FEBS Lett. 2007, 581, 
587-595. 
(18) Muschiol, S.; Bailey, L.; Gylfe, A.; Sundin, C.; Hultenby, K.; Bergstroem, S.; Elofsson, M.; 
Wolf-Watz, H.; Normark, S.; Henriques-Normark, B.  Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 
14566-14571. 

mailto:r.davis@griffith.edu.au


 

 19 

(19) Negrea, A.; Bjur, E.; Ygberg, E.; Elofsson, M.; Wolf-Watz, H.; Rhen, M.  Antimicrob. 

Agents Chemother. 2007, 51, 2867-2876. 
(20) Nordfelth, R.; Kauppi, A. M.; Norberg, H. A.; Wolf-Watz, H.; Elofsson, M.  Infect. Immun. 

2005, 73, 3104-3114. 
(21) Slepenkin, A.; Enquist, P.-A.; Hagglund, U.; de la Maza, L. M.; Elofsson, M.; Peterson, E. 
M.  Infect. Immun. 2007, 75, 3478-3489. 
(22) Duncan, M. C.; Linington, R. G.; Auerbuch, V.  Antimicrob. Agents Chemother. 2012, 56, 
5433-5441. 
(23) Tsou, L. K.; Dossa, P. D.; Hang, H. C.  MedChemComm 2013, 4, 68-79. 
(24) Marra, A.  Drugs R&D 2006, 7, 1-16. 
(25) Zechini, B.; Versace, I.  Recent patents on anti-infective drug discovery 2009, 4, 37-50. 
(26) Wong-Beringer, A.; Wiener-Kronish, J.; Lynch, S.; Flanagan, J.  Clin. Microbiol. Infect. 

2008, 14, 330-336. 
(27) Keyser, P.; Elofsson, M.; Rosell, S.; Wolf-Watz, H.  J Intern Med 2008, 264, 17-29. 
(28) Rasko, D. A.; Moreira, C. G.; Li de, R.; Reading, N. C.; Ritchie, J. M.; Waldor, M. K.; 
Williams, N.; Taussig, R.; Wei, S.; Roth, M.; Hughes, D. T.; Huntley, J. F.; Fina, M. W.; Falck, J. 
R.; Sperandio, V.  Science 2008, 321, 1078-1080. 
(29) Gauthier A, R. M., Lowden M, Ibarra JA, Puente JL, Finlay BB  Antimicrob. Agents 

Chemother. 2005,, 49, 4101-4109. 
(30) Felise, H. B.; Nguyen, H. V.; Pfuetzner, R. A.; Barry, K. C.; Jackson, S. R.; Blanc, M. P.; 
Bronstein, P. A.; Kline, T.; Miller, S. I.  Cell Host Microbe 2008, 4, 325-336. 
(31) Mecsas, J. U.S. Patent Application, US20110319398 A1, 2011. 
(32) Moir, D. T.; Aiello, D.; Peet, N. P.; Williams, J. D. U.S. Patent Application, 
US20120114633 A1, 2010. 
(33) Kratky, M.; Vinsova, J.  Curr. Pharm. Des. 2011, 17, 3494-3505. 
(34) Yarovenko, V. N.; Zayakin, E. S.; Krayushkin, M. M.; Zorina, V. V.; Kapotina, L. N.; 
Zigangirova, N. A.  J. Chem. Chem. Eng. 2010, 4, 55-59. 
(35) Kim, O. K.; Garrity-Ryan, L. K.; Bartlett, V. J.; Grier, M. C.; Verma, A. K.; Medjanis, G.; 
Donatelli, J. E.; Macone, A. B.; Tanaka, S. K.; Levy, S. B.; Alekshun, M. N.  J. Med. Chem. 2009, 
52, 5626-5634. 
(36) Vikram, A.; Jayaprakasha, G. K.; Jesudhasan, P. R.; Pillai, S. D.; Patil, B. S.  J. Appl. 

Microbiol. 2010, 109, 515-527. 
(37) Tsou, L. K.; Yount, J.; Dossa, P.; Hang, H. C. In Abstracts of papers, discovery of 

antibacterial virulence inhibitors targeted at Type III protein secretion, 240th ACS National 
Meeting, August 22-26, Boston, MA, United States, 2010;  
(38) Chu, H.; Slepenkin, A.; Elofsson, M.; Keyser, P.; de la Maza, L. M.; Peterson, E. M.  Int. J. 

Antimicrob. Agents 2010, 36, 145-150. 
(39) Slepenkin, A.; Chu, H.; Elofsson, M.; Keyser, P.; Peterson, E. M.  J. Infect. Dis. 2011, 204, 
1313-1320. 
(40) Camp, D.; Davis, R. A.; Campitelli, M.; Ebdon, J.; Quinn, R. J.  J. Nat. Prod. 2012, 75, 72-
81. 
(41) Yin, S.; Davis, R. A.; Shelper, T.; Sykes, M. L.; Avery, V. M.; Elofsson, M.; Sundin, C.; 
Quinn, R. J.  Org. Biomol. Chem. 2011, 9, 6755-6760. 
(42) NatureBank Nature Bank - a biodiscovery resource. Available online http://www.nature-
bank.com.au/ (Accessed 20 June2013).  
(43) Liu, J. Y.; Ye, Y. H.; Wang, L.; Shi, D. H.; Tan, R. X.  Helv. Chim. Acta 2005, 88, 8. 
(44) Abe, N.; Ito, T.; Ohguchi, K.; Nasu, M.; Masuda, Y.; Oyama, M.; Nozawa, Y.; Ito, M.; 
Iinuma, M.  J. Nat. Prod. 2010, 73, 1499-1506. 
(45) Tanaka, T.; Ito, T.; Nakaya, K.-i.; Iinuma, M.; Takahashi, Y.; Naganawa, H.; Riswan, S.  
Heterocycles 2001, 55, 729-740. 
(46) Xiao, K.; Zhang, H.-J.; Xuan, L.-J.; Zhang, J.; Xu, Y.-M.; Bai, D.-L., Stilbenoids: Chemistry 

and bioactivities: Stud. Nat. Prod. Chem., Elsevier: 2008; Vol. Volume 34, pp 453-646. 

http://www.nature-bank.com.au/
http://www.nature-bank.com.au/


 

 20 

(47) Ito, T.; Oyama, M.; Sajiki, H.; Sawa, R.; Takahashi, Y.; Iinuma, M.  Tetrahedron 2012, 68, 
2950-2960. 
(48) Kawabata, J.; Fukushi, E.; Hara, M.; Mizutani, J.  Magn. Reson. Chem. 1992, 30, 6-10. 
(49) Coggon, P.; Janes, N. F.; King, F. E.; King, T. J.; Molyneux, R. J.; Morgan, J. W. W.; 
Sellars, K.  J. Chem. Soc. 1965, 0, 406-409. 
(50) Coggon, P.; McPhail, A. T.; Wallwork, S. C.  J. Chem. Soc. B. 1970, 0, 884-897. 
(51) Tanaka, T.; Ito, T.; Nakaya, K.; Iinuma, M.; Riswan, S.  Phytochemistry (Elsevier) 2000, 54, 
63-69. 
(52) Zetterström, C. E.; Hasselgren, J.; Salin, O.; Davis, R. A.; Quinn, R. J.; Sundin, C.; Elofsson, 
M.  PLoS ONE 2013, 8, e81969. 
(53) Derksen, G. C. H.; Naayer, M.; van Beek, T. A.; Capelle, A.; Haaksman, I. K.; van Doren, 
H. A.; de Groot, Æ.  Phytochemical Analysis 2003, 14, 137-144. 
(54) The Plant List Version 1. Published on the internet;. http://www.theplantlist.org/ (12 June, 
2013),  
(55) Soepadmo, E.; G., S. L.; K., C. R. C., Tree flora of Sabah and Sarawak. Forest Research 
Institute Malaysia: Kuala Lumpur, 2004. 
(56) IUCN red list of threatened species. Version 2012.2. http://www.iucnredlist.org (17 June 
2013),  
(57) Seo, E.-K.; Kinghorn, A. D., Bioactive constituents of the family Dipterocarpaceae: Stud. 

Nat. Prod. Chem., Elsevier: 2000; Vol. Volume 23, pp 531-561. 
(58) Atun, S. Fitokimia beberapa species Dipterocarpaceae Indonesia dari genus Vatica, 
Anisoptera, Hopea, dan Dipterocarpus. Disertasi, FPS Institut Teknologi Bandung., 2004. 
(59) Atun, S.  Indo. J. Chem 2009, 6, 151-157. 
(60) Parvez, M.; Rahman, A.; Molla, K.; Akter, A.  Int J Pharm Sci Rev Res 2012, 1, 1-6. 
(61) Zgoda-Pols, J. R.; Freyer, A. J.; Killmer, L. B.; Porter, J. R.  J. Nat. Prod. 2002, 65, 1554-
1559. 
(62) Dai, J.-R.; Hallock, Y. F.; Cardellina, J. H.; Boyd, M. R.  J. Nat. Prod. 1998, 61, 351-353. 
(63) Huang, K.-S.; Zhou, S.; Lin, M.; Wang, Y.-H.  Planta Med. 2002, 68, 916-920. 
(64) Ito, T.; Akao, Y.; Yi, H.; Ohguchi, K.; Matsumoto, K.; Tanaka, T.; Iinuma, M.; Nozawa, Y.  
Carcinogenesis 2003, 24, 1489-1497. 
(65) Mishima, S.; Matsumoto, K.; Futamura, Y.; Araki, Y.; Ito, T.; Tanaka, T.; Iinuma, M.; 
Nozawa, Y.; Akao, Y.  J. Exp. Ther. Oncol. 2003, 3, 283-288. 
(66) Yamada, M.; Hayashi, K.-i.; Ikeda, S.; Tsutsui, K.; Tsutsui, K.; Ito, T.; Iinuma, M.; Nozaki, 
H.  Biol. Pharm. Bull. 2006, 29, 1504-1507. 
(67) Garfunkle, J., Kimball, F.S., Trzupek, J.D., Takizawa, S., Shimamura, H., Tomishima, M., 
Boger, D.L.,  J. Am. Chem. Soc. 2009, 131, 16036-16038. 
(68) Agilent Technologies Inc, S. C. C., USA CrysAlis Pro software, 2012. 
(69) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; 
Moliterni, A. G. G.; Polidori, G.; Spaagna, R.  J. Appl. Cryst. 1999, 32, 115-119. 
(70) Sheldrick, G. M.  Acta Cryst 2008, A64, 112-122. 
(71) Farrugia, L. J.  J. Appl. Cryst. 1997, 30, 565. 
(72) Spek, A. L.  J. Appl. Cryst. 2003, 36, 7-13. 
(73) Flack, H. D.  Acta Cryst. 1983, A39, 837-838. 
(74) Forsberg, A.; Rosqvist, R.  Infect. Agents Dis. 1993, 2, 275-278. 
 
 

  

http://www.theplantlist.org/
http://www.iucnredlist.org/


 

 21 

 
 



 

 22 

 

 

 
 
Figure 1. ORTEP view of the compact tetrameric resveratrol rotamer (–)-hopeaphenol (1).   

The C1 – C7 – C8 – C9 torsion angles for each ring system in 1 are: A -85.6(2)°; B 66.1(2)°; C 64.2 

(2)°; and D -88.8(2)° compared to the values of: A -83, -88°; B 60, 60°; C -60,60°; and D -83, -88° 

structure of the dibromodeca-O-methyl derivative (in the supporting information S7).50 
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Figure 2. ORTEP view of the extended tetrameric resveratrol rotamer vaticanol B permethyl ether 

(5) The C1–C7–C8–C9 torsion angles for each ring system in 5 are: A -98.9(5)°; B -59.8(6)°; C 

156.8(4)°; and D -138.9(5)°. 

.  
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Table 1. The YopE, YopH anti-infective and antibacterial activities of compounds 1–3  

Compound 
 IC50 (M)  
 YopE  YopH Antibacterial assay a 

      
1   8.8  2.9 Not active b  
2  12.5  4.5 Not active b  
3  9.9  3.3 Not active b  
Streptomycinc  38.0  31.0 36.0  
      

a Y. pseudotuberculosis optical density assay; b at 364 M; c commercially available antibiotic used 
as positive control. 
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