Solving the Symbolic Regresson Problem with Tree-Adjunct Grammar Guided
Genetic Programming: The Compar ative Results

N.X.Hoa*, R.I. McKay?, and D. Essan’, R. Chau®
School of Computer Science,
University of New South Wales,
ADFA campus, Canberra, ACT 2600, Australia,
1 x.nguyen@student.adfa.edu.au
’rim,daryl @cs.adfa.edu.au
3 mirasa@rocketmail .com

Abstract - In this paper, we show some experimental
results of treeadjunct grammar guided genetic
programming [6] (TAG3P) on the symbolic regression
problem, a benchmark problem in genetic programming. We
compar e the results with genetic programming [9] (GP) and
grammar guided genetic programming [14] (GGGP). The
results show that TAG3P significantly outperforms GP and
GGGP on the target functions attempted in terms of
probability of success. Moreover, TAG3P still performed well
when the structural complexity of the target function was
scaled up.

. INTRODUCTION

Tree ajunct grammar guided genetic programming [6]
(TAG3P) is a grammar guided genetic programming
system that uses tree adjunct grammars aong with context
free grammars as means to set bias for the evolutionary
process. The preliminary results in [4], [5] indicated that
TAG3P works well on the symbdlic regression problem.
In this paper we experiment with GP, GGGP and TAG3P
on the symbalic regression problem with different target
functions to compare their performances and to observe
how well they solve the problem when the structura
complexity of the target function is scaled up. The
organization of the remainder of the paper is as follow. In
sedion 2, we give some basic concepts of GP, GGGP, and
TAG3P. Sedion 3 describes the symbalic regresson
problem. Section 4 contains our experimental setup. The
results will be given and discussed in section 5. Section 6
concludes the paper and discusses some future work.

1. BACKGROUNDS

In this sction, we briefly overview some basic
components and operations of the three different genetic
programming systems, namely, canonicd genetic
programming [9] (GP), grammar guided genetic
programming [14] (GGGP) and tree aljunct grammar
guided genetic programming [6] (TAG3P).

I1.1 Genetic Programming

Genetic programming (GP) can be dassified as an
evolutionary agorithm, in which computer programs are
the evolutionary targets. An ealy definition, model,
tedhniques and problems of genetic programming can be

0-7803-7282-4/02/$10.00 ©2002 | EEE

found in [9]. For a good survey of genetic programming, [1] is
recommended. A basic genetic programming system consists of
five basic components [9]: representation for programs (called
genome structure), a procedure to initiadize a population of
programs, a fitness to evaluate the performance of the program,
genetic operators, and parameters. In [9], the structure of
programs is the structured tree of S-expressons; fitness of a
program is evaluated by its performance main genetic operators
are reproduction, crossover, and mutation. Reproduction means
some programs are mpied to the next generation besed ontheir
fitness, crosover can be caried out between two tree-based
programs by swapping two of their sub-trees," and a treebased
program can be mutated by replacing one of its sub-trees by a
randomly generated tree. Parameters are population size,
maximum number of generations and probabilities for genetic
operators. The evolutionary process is as follows. At the
beginning, a population of treebased programs is randomly
generated. Then, the new population is created by applying
genetic operators to the individuals chasen from the existing
population based ontheir fitness. This process is repeated until
the desired criteria ae satisfied or the number of generations
exceals the maximum number of generation. GP has been used
successfully in generating computer programs for solving a
number of problemsin awide range of areas[1].

[1.2 Grammar Guided Genetic Programming

Grammar guided genetic programming systems are genetic
programming systems that use grammars to set syntadica
constraints on programs. The use of grammars also helps these
genetic programming systems to overcome the dosure
requirement in canonical genetic programming, which cannot
always be fulfilled [14].

Using gammars to set syntactical constraints was first
introduced by Whigham [14] where context-freegrammars were
used. We shall refer Whigham’'s system as GGGP for the rest of
the paper. Basically, GGGP has the same components and
operations as in GP, however, there ae a number of significant
differences between the two systems. In GGGP, a program is
represented as its derivation treein the context free grammar.
Crossover between two programs can only be caried out by
swapping their two sub-derivation trees that start with the inner
nodes labelled by the same nontterminal symbd in the
grammar. In mutation, a sub-derivation tree is replacal by a

! The ideas of using tree-based representation of chromosomes and swapping
sub-trees as crossover operator was first introduced in [2].

randomly generated sub-derivation tree that is derived
from the same non-terminal symbol. GGGP demonstrated
positive results on the 6-multiplexer problem and
subsequently on awide range of other problems.

I1. 3 Tree Adjunct Grammar Guided Genetic Programming

Tree adjunct grammar guided genetic programming [6]
(TAG3P) uses tree adjunct grammars along with context
free grammars to set syntactical congraints as well as
search bias for the evolution of programs. In this
subsection we will first give the basic concepts of tree
adjunct grammars then the basic components of TAG3P.

11.3.1 Tree Adjunct Grammars

Tree-adjunct grammars are tree-rewriting systems,
defined in [7] asfollows:

Definition 1. a tree-adjunct grammar comprises of 5-
tuple (T, V, I, A, S), where T is a finite set of termind
symbols; V is afinite set of non-termina symbols (T n V
= [); SO V is a distinguished symbol caled the start
symbol. | isaset of trees called initia trees. Aninitid tree
is defined as follows: the root node is S; al interior nodes
are labelled by non-terminal symbols; each node on the
frontier islabelled by aterminal symbol. A isafinite set of
trees caled auxiliary trees, which can be defined as
follows: interna nodes are labelled by non-terminal
symbols; a node on the frontier is labelled by atermina or
non-termina symbol; there is a special non-termina node
on the frontier called the foot node. The foot node must be
labelled by the same (non-terminal) symbol as the root
node of the tree. We will follow the convention in [8] to
mark the foot node with an asterisk (*).

Thetreesin E= 1 0 A are called elementary trees. Initia
trees and auxiliary trees are denoted o and 3 respectively;
and a node labelled by a non-terminal (resp. terminal)
symbol is sometime called a non-termina (resp. termina)
node. An elementary tree is called X-type if its root is
labelled by the non-terminal symbol X.

The key operation used with tree-adjunct grammars is
the adjunction of trees. Adjunction can build a new
(derived) tree y from an auxiliary tree B and a tree a
(initial, auxiliary or derived). If atree a has a non-terminal
node labelled A, and B is an A-type tree then the
adjunction of B into a to produce y is as follows. Firstly,
the sub-tree a; rooted at A is temporarily disconnected
from a. Next, B is atached to a to replace this sub-tree.
Finally, a; is attached back to the foot node of B. yis the
fina derived tree achieved from this process. Adjunction is
illustrated in Figure 1.

The tree set of a TAG can be defined as follows[7]:

Teg={dl treet/tiscompleted andt is derived from
someinitid trees}

A treet is completed, if t is an initial tree or dl of the
leaf nodes of t are non-terminal nodes; and atreet is said
to be derived froma TAG G if and only if t results from an
adjunction sequence (the derivation sequence) of the form:
o Bi(an) BaAap)... Bn(a) , Where nis an arbitrary integer, o

0-7803-7282-4/02/$10.00 ©2002 | EEE

, Bi (iI=1,2..n) areinitial and auxiliary trees of G and & (i=1,2..n)
are node address where adjunctions take place. An adjunction
sequence may be denoted as (*). The language L generated by
aTAG isthen defined as the set of yields of all treesin Tg.
Le={w OT*/wistheyield of sometreet O Tg}

The set of languages generated by TAGs (caled TAL) is a
superset of context-free languages,; and is properly included in
indexed languages [8]. More properties of TAL can be found in
[8]. One specia class of tree-adjunct grammars (TAGS) is
lexicalized tree-adjunct grammars (LTAG) where each
elementary tree of a LTAG must have at least one termina
node. It has been proved that for any context-free grammar G,
there exists a LTAG G that generates the same language and
tree set with G (G« isthen said to strongly lexicalize G) [8].

INVAS

Figure 1. Adjunction.

11.3.2 Tree Adjunct Grammar Guided Genetic Programming

In [6], we proposed a grammar guided genetic programming
system caled TAG3P, which uses a pairs consisting of a
context-free grammar G and its corresponding LTAG G to
guide the evolutionary process. The main idea of TAG3P is to
evolve the derivation sequence in Gy (genotype) rather than
evolve the derivation tree in G asin [14]. Therefore, it creates a
genotype-to-phenotype map. Asin GP [9], TAG3P comprises of
the following five main components:

Program representation: a modified version of the linear
derivation sequence (*), but the adjoining address of the tree 3;
isinthetree B3i.1. Thus, the genome structurein TAG3P islinear
and length-variant. Although the language and the tree set
generated by LTAGs with the modified derivation sequence is
yet to be determined, we have found pairs of G and Gie
conforming to that derivation form for a number of standard
problems in genetic programming [4], [5].

Initialization procedure: a procedure for initidizing a
population is given in [6]. To initidize an individual, TAG3P
starts with selecting a length at random; next, it picks up
randomly an o tree of G then a random sequence of 3 trees
and adjoining addresses. It has been proved that this procedure
can aways generate legal genomes of arbitrary and finite
lengths [6].

Fitness Evaluation: the same as in canonica genetic
programming [9].

Genetic operators. in [6], we proposed two types of
crossover operators, namely one-point and two-point crossover,
and three mutation operators, which are replacement, insertion

and dHetion. The aossover operators in TAG3P are
similar to those in genetic agorithms, however, the
crossover point(s) is chasen carefully so that only legd
genomes are produced. In replacanent, a gene is picked
up a random and the aljoining address of that gene is
replaced by another adjoining address (adjoining address
replacement); or, the gene itself is replaced by a
compatible gene (gene replacement) so that the resultant
genome is il valid. In insertion and deletion, a gene is
inserted into or deleted from the genome respectively.
With these caefully designed operators, TAG3P is
guaranteed to produce only legal genomes. Selection in
TAG3P is smilar to canonical genetic programming and
other grammar-guided genetic programming systems.
Currently, reproductionis not employed by TAG3P.

Parameters: minimum length o genomes,
MIN_LENGTH, maximum length o genomes
MAX_LENGTH, size of population - POP_SIZE,

maximum number of generations — MAX_GEN and
probabilities for genetic operators.

Some andysis of the advantages of TAG3P can be
foundin [4]-[6].

[I.4 Other Grammar Guided Genetic Programming Systems

Wong and Leung [15] used logic grammars to combine
inductive logic programming and genetic programming.
They have succealed in incorporating domain knowledge
into logic grammars to guide the evolutionary process of
logic programs.

Ryan and h's co-workers [13] proposed a system called
grammatica evolution (GE), which can evolve programs
in any language, provided that this language can be
described by a context-freegrammar. Their system differs
from Whigham’'s system in that it does not evolve
derivation trees directly. Instead, genomes in GE are
binary strings representing eight-bit numbers; each number
is used to make the choice of the production rule for the
non-termina symbol being processed. GE has been shown
to outperform canonical GP on a number of problems[10].

[11. SYMBOLIC REGRESSION PROBLEM

The symbdlic regression problem can be stated as
finding a functionin symbolic form that fits a given finite
sample of data [9]. In [9], the problem is restricted to
finding a function d one independent variable. Asin[9],
the function set for GP in this paper is{+, -, *, /, sin, cos,
Log, Exp}, and the termina set is{X}. The problem space
for GGGP and TAG3P can be described by a finitely
ambiguous context-freegrammar G and the crresponding
lexicali zed tree-adjunct grammar G as follows [4].

The context-free grammar for the symbolic regression
problem: G = (N={EXP, PRE, OP, VAR,}, T= {X, dn,
cos, log, ep, +, -, *, /, (,)},P{EXP}} where @ is the
exponentia function, and the rule set P={ EXP- EXP OP
EXP, EXP- PRE (EXP), EXP- VAR, OP-+, OP-, -,

0-7803-7282-4/02/$10.00 ©2002 | EEE

OP-*, OP-/, PRE- in, PRE-cos, PRE-log, PRE- ep,
VAR X}.

The tree adjunct grammar for the symbolic regression
problem: Gi= {N={ EXP, PRE, OP,VAR},T={ X, sin, cos, log,
ep,+, -, *, 1, ()}, 1, A)wherelOd A isasin Figure 2.

a EXP By /E‘{ Bzi/EK Bs%f\ B /EXIP\
VAlR EX‘P 0P EXpt EX‘P ‘OP EXP EIP 0||D XP* Elxp OlP EXpr
| |

X V/‘\R + VA‘R V/TR * V‘AR |
X X X X
B EXP B EXP B EXP By EXP
EXP* OP E)‘(P EXP* O‘P E‘XP EXP* OllD E‘XP EXP* OP ETP
+‘ VAR - VAR * VAR ‘/ VAR
| | | I
X X X X
By EXP By EXP By EXP By EXP
PRE (EXP*) PRE (EXP*) PRE (EXP*) PRE (EXP*)

sin c0s ep log
Figure 2 Elementary trees for Ge.

A variation of the simple symboalic regresson above is known
as the trigonometric identities problem [9], where the basic
trigonometric function of the target function does not appear in
the function set. We will follow [9] in setting the function set
for GPis{+, -, *, /, sin}, and the termina set is {X, 1.0}. The
target functionis cos(2X) asin [9]. The mntext free grammar G
and its corresponding LTAG G for GGGP and TAG3P are &
follows[5].

The context-free grammar for the problem of finding
trigonometric identities:. G = (N, T, P, {EXP}). Where
N={EXP, PRE, OP, VAR, NUM} is the set of non-terminal
symbals; T={X, sin, +, -, *, /, (,), 1.0}, P, { EXP}) is the set of
terminal symbals, EXP is the start symbadl; and the rule set
P={EXP-EXP OP EXP, EXP- PRE(EXP), EXP-VAR,
EXP- NUM, OP- +, OP- -,0OP- * OP- /,PRE- sin,
VAR- X, NUM - 1.0}.

The tree-adjunct grammar for the problem of finding
trigonometric identities Gie= (N, T, I, A). Where N={EXP,
PRE, OP, VAR, NUM} isthe set of non-terminal symbols; T={
X, sin, +, -, *,/,(,), 1.0} isthe set of termina symbadls; and |
and A arethe sets of initial and auxiliary trees respectively. The
set of the elementary trees| 0 A isasin Figure 3.

IV.EXPERIMENTAL DESIGN

Five eperiments were conducted. In the first four
experiments, we tried all three systems on the symbalic
regression problem with four different target functions namely,
Fi=X+X, Fo=XC+X 24X, Fa=X X 3+X2X, and
FaaX XXX 54X

The dm of the experiments was not only to compare the
abilities of GP, GGGP and TAG3P in inducing the target

function from the sampled data but aso to observe their
efficiency when the structural complexity of the target
function was increased. It should be noted that each F;
above (i=2,3,4) can be represented as Fi;* X+X.

a;; EXP a, EXP Be: EXP
VAR NUM PRE (EXP*)
)I(1I.0 sIn
B EXP Bu: EXP LIPS EXP B EXP

EXP OP EXP* EXP OP EXP* EXP OP EXP* E)l(P OP EXP*

I |
N vou NUM ¥

I
1.0 1.0 1.0 1.0
B EXP Biss EXP B EXP P EXP

NUM I/

EXP* OP EXP EXP* OP EXP EXP* (l)P EXP EXP* OP EXP
I
+ NUM - NUM * NUM [NUM

I I I I
10 10 10 10

Figure3. Elementary trees for G the 3:-Bs are the same as the 1-Bs in
Figure 2.

In the fifth experiment, al three systems were
experimented on the trigonometric identities problem with
cos(2X) as the target function. The aim was to derive the
three aternative identities, namely, 1-2sin’(X),
cos(2X+172) and cos(1v2-2X). Table 1 summarises the
experimental design for the three systems.

V.RESULTS

In each experiment, 150 runs were conducted; 50 runs
for each system. During these runs GP, GGGP and
TAG3P used the same data set. The number of successful
runs for each system is summarised in table 2.

In the first experiment, the three system discovered the
exact solution amost al the time. One of the reasons for
this success is tha the structural complexity of the target
function is small. Figure 4 depicts their cumulative
frequencies. GP and TAG3P found the solution at quite
early generations whereas GGGP found the solution
somewhat later.

The cumulative frequencies in the second experiment
were shown in Figure 5. The efficiency of TAG3P was
maintained when the target function was changed from F;
to F. In contrast, the probability of success for GP and
GGGP decreased dramatically. In this experiment, GGGP
slightly outperformed GP.

Figure 6 shows the cumulative frequencies of al three
systems for target function F3 in the third experiment.

Once again, there was a big fal in the probability of
success of GP and GGGP where the target function was
made slightly more complex in structure. On the contrary,
TAG3P dill handled the increase in the structurd
complexity of the target function.

The cumulative frequencies for function F4 are recorded
in Figure 7. The results confirm those for F3: TAG3P

0-7803-7282-4/02/$10.00 ©2002 | EEE

Objective

Find a function of one independent
variable and one dependant variable
that fits a given sample of 20 (x;, Vi)
data points, where the target functions
are F;-F,4, cos(2X).

Termina Operands

X (the independent variable) in
experiments 1 to 4; {X, 10} in
experiment 5.

Termina Operators

The binary operators are +,-,*,/. The
unary operators are sin, cos, exp and
log in experiment 1 to 4; and it is only
sin in experiment 5.

Fitness Cases The sample of 20 points in the interval
[-1..+1] in experiments 1 to 4, and in
theinterval [0..217 in experiment 5.

Raw fitness The sum, taken over 20 fitness cases, of
the errors.

Standardized Same as raw fitness.

Fitness

Hits The number of fitness cases for which

the error less than 0.01.

Genetic Operators

Tournament selection, one-point
crossover and gene replacement for
TAG3P. Tournament selection, normal
crossovers and mutations for GP and
GGGP.

Parameters

The crossover probability for GP,
GGGP, TAG3P is 0.9. The mutation
probability for GP and GGGP is 0.1.
Replacement probability for TAG3P is
0.01 for experiments 1 to 4 and 0.05 for
experiment 5. Tournament size is 3.
MAX_GEN is 30 in experiments 1 to 4
and 200 in experiment 5.
POP_SIZE=500.

Success predicate

An individual scores 20 hits.

Tablel. Experimental setups for GP, GGGP and TAG3P.

Target functions | GP GGGP TAG3P
F1 47(94%) 46(92%) 50(100%)
F2 30(60%) 32(64%) 50(100%)
F3 21(42%) 24(48%) 48(96%)
Fa 9(18%) 14(28%) 42(84%)
Cos(2x) 0(0%) 10(20%) 18(36%)

Table2. Number of successful runsfor three systemsin five experiments.

significantly outperformed GP and GGGP and still worked well
when the target function was once again made more complex in
terms of structural complexity.

In the last experiment, we tried al three systems on the
trigonometric identities problem. The target function was cos
(2X). This target function is harder to induce than in the last
four experiments because the function cos was excluded from
the function set in this experiment. Conseguently, the number of
successful runs for GP, GGGP and TAG3P was lower. Figure 8

depicts the cumulative frequencies of the three systems.

Probability of Success

Probability of Success

Probability of Success

—o- GP
10 -o0- GGGP
— TAG3P
il N
0 5 10 15 20 25 30
Generation

Figure 4. Cumulative frequencies of GP, GGGP and TAG3Pin
experiment 1, where the target function is X?+X.

90
a0
70
n}
60 T
e c'7/
50 o 1
i} D|:|‘
_—
40 D/—/’D
u|
30 j
[u}
a0 / D/
7 -0- GP
10 -0- GGGP
— TAGIP
] \ \ \
15 20 25 30
Generation

Figure 5. Cumulative frequencies of GP, GGGP and TAG3Pin
experiment 2, where the target function is X3+X?+X.

100 T T T T

90 -

80

T0r

B0

a0

a
40+ 05"
D—//
a0t T
x|
-0- GP
ol -0- GGGP
— TAGIP
Y O : : :
] 5 10 15 20 25 a0

Generation

Figure 6. Cumulative frequencies of GP, GGGP and TAG3Pin
experiment 3, where the target function is X*+X3+X?+X.

0-7803-7282-4/02/$10.00 ©2002 | EEE

w
o

0= GP
—0- GGGP
— TAG3P

o
o
T

= i m =
o o o o
T T T T

Probability of Success

o)
o
T

20F

n)
Ly o

a 5 10 15 20 25 30
Generation

Figure 7. Cumulative frequencies of GP, GGGP and TAG3P in experiment 4,
where the target function is X>+X+X3+X2+X.

100

o0 GP
gn H -0- GGGP B
— TAG3IP
a0 B

0 b

BO | q

a0 N

o} .

Frohahility of Success

a0

0]
o—f
O

a o 4

nplo O n L L L Fig R SR o O S o, W WY o W R
u] 20 40 B0 a0 100 1200 140 160 180 200
Generation

Figure 8. Cumulative frequencies of GP, GGGP and TAG3P in experiment 5,
where the target function is cos(2X).

GGGP and TAG3P discovered al the three dternative
representations of the cos(2X) function mentioned in the
previous section. For GGGP, 1 out of 10 successful runs
discovered the exact representation 1-2sin’(X), and the rest
found approximate representations of cos(2X+1v2) and cos(Tv2-
2X). Here we consider a function F as an approximate
representation of the two above functionsif it is of the form cos
(2X+A) or cos (A-2X) (where A is a constant close to 172) it
scores al 20 hits, and its raw fitnessis smaller than 0.02. Of the
18 successful runs for TAG3P, the number of exact and
approximate representations found by were 2 and 16
respectively.

One of the reasons for the good performance of TAG3P on
the above problems lies with the superior capability of TAG3P
in preserving and combining building blocks [4], [5]. Building
blocks [11], [12] are sub-trees, which are not completed.
Functionaly, they can be viewed as some potential modules.

For example, the @omic building blocks for the target
functions in the first four experiments could be X+t and
X*t, where t is a parameter representing the incomplete
portion of the tree, which are exadly 3; and B3 in Figure 2
[4]. During the evolutionary process, these building blocks
are preserved and combined to make even better building
blocks. For instance, if 31, Bsand sz are brought together in
a diromosome then the rresponding blocks in the
phenotype space will be X+X?+t after adjunction takes
place The atomic building blocks in TAG3P for the
trigonometric identities was foundin [5] as sin(2x+1+ t),
sin(2x+sin(Y/sin(1) + t), sin(2x+1+1l/sin(1)+ t), sin(1-2x+
t), sin(sin(l/sin(1))-2x+ t), and sin(l/sin(1)+1-2x + t),
which result from short sequences of some beta trees in
Figure 3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have empiricdly shown that, with al
the target functions attempted, TAG3P outperforms GP
and GGGP significantly onthe symbalic regresson and its
slightly modified version, namely, trigorometric identities.
The results aso show that the performance of TAG3P
compared to GP and GGGP scdes better as the structural
complexity of the target functionisincreased.

In [3], we used TAG3P with tree ajoining address
replacement as the mutation operator to solve the symbalic
regression poblem, where the target function was Fs. The
result was not as good as in this paper (probability of
success was 64%). This was a result of premature
convergence In this paper, we used a more disruptive
replacement operator, gene replacement. Consequently, we
increased the diversity of the population and got much
better results. In future, we will be investigating further
more disruptive operators and mechanisms for diversity
maintenance

The aurrent version of TAG3P uses a restricted (linea)
form of the derivation sequence, which is sufficient for
many context-freelanguages, but not al. We are currently
developing a TAG-based GP system with the most general
form of derivation sequence so as to make TAG3P
universal for problems with a ontext-freeseach space

References

[1] W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone,
Genetic Programming: An Introduction, Morgan Kaufmann
Pub, 19%8.

[2] N.L.Cramer, “A representation for the Adaptive Generation
of Simple Sequential Programs, Procealings of an
International Conference on Genetic Algorithms and the
Applicdions, pp. 183 — 187, Lawrence Erlbaum Asciates,
July 1985.

[3] F. Gruau, “On Using Syntactic Constraints with Genetic
Programming”, Advances in Genetic Programming, The
MIT Press, pp. 377-3%4, 1996.

[4] N.X. Hoal, “Solving The Symbolic Regression Problem with
Tree-Adjunct Grammar Guided Genetic Programming: The

0-7803-7282-4/02/$10.00 ©2002 | EEE

Preliminary Resilts’, Proceedings of The 5" Autraliasia-Japan Co-
Joint Workshop an Evolutionary Computation, pp. 52-61, 2001.

[5] N.X. Hoai, “Solving Trigonometric Identities with Tree Adjunct
Grammar Guided Genetic Programming”, To appear in the
Proceedings of The First International Workshop on Hybrid
Intelligent Systems (HIS 01), Adelaide, Austrdia, 11-12 Dec
2001.

[6] N.X. Hoai and R.I. McKay, “A Framework for Tree Adjunct
Grammar Guided Genetic Programming”, Proceedings of the Post-
graduate ADFA Conference on Computer Science (PACCS 01),
pp. 93-99, 2001.

[71 AK. Joshi, L.S. Levy, and M. Takahashi, “Tree Adjunct
Grammars’, Journal of Computer and System Sciences, Vol. 10:1,
pp. 136-163, 1975.

[8 AK. Joshi and Y. Schabes, “Tree Adjoining Grammars’,
Handbook o Formal Languages, Springer-Verlag, pp. 69-123,
1997.

[9] J.Koza, Genetic Programming, The MIT Press 1992

[10] M. O'Neill and C. Ryan, “Grammatical Evolution: A Steady State
Approadh”, Proceedings of the Second International Workshop on
Frontiersin Evolutionary Algorithms, pp. 419-423, 1998.

[11] R. Poli and N.F. McPhee, “Exad Schema Theory for GP and
Variable Length Gas with Homologous Crossover”, GECCO, San

Fransisco, pp. 104-111, 2001.

[12] J.P. Rosca and D.H. Balard, “Genetic Programming with
Adaptive Representations’, Technica Report 489, The University
of Rochester, Feb 1994.

[13] C. Ryan, JJ. Cdllin, M. O'Nelill, “Grammatica Evolution:
Evolving Programs for an Arbitrary Language”, Lecture Note in
Computer Science 1391, Proceedings of the First European
Workshop on Genetic Programming, Springer-Verlag, pp. 83-95,
1998.

[14] P. Whigham, “Grammaticdly-based Genetic Programming’,
Proceedings of the Workshop on Genetic Programming: From
Theory to Red-World Applicaions, Morgan Kaufmann Pub pp
3341, 19%.

[15] M.L. Wong and K.S. Leung, “Evolving Reaursive Functions for
Even-Parity Problem Using Genetic Programming”, Advances in
Genetic Programming, The MIT Press pp. 221-240, 1996.

