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�is paper proposes the African Bu	alo Optimization (ABO) which is a new metaheuristic algorithm that is derived from careful
observation of the African bu	alos, a species of wild cows, in the African forests and savannahs. �is animal displays uncommon
intelligence, strategic organizational skills, and exceptional navigational ingenuity in its traversal of the African landscape in search
for food. �e African Bu	alo Optimization builds a mathematical model from the behavior of this animal and uses the model to
solve 33 benchmark symmetric Traveling Salesman’s Problem and six di�cult asymmetric instances from the TSPLIB. �is study
shows that bu	alos are able to ensure excellent exploration and exploitation of the search space through regular communication,
cooperation, and good memory of its previous personal exploits as well as tapping from the herd’s collective exploits. �e results
obtained by using the ABO to solve these TSP cases were benchmarked against the results obtained by using other popular
algorithms. �e results obtained using the African Bu	alo Optimization algorithm are very competitive.

1. Introduction

�e growing need for pro�t maximization and cost min-
imization has never been greater in human history than
what we have today. �is need has made optimization a very
favoured area of scienti�c investigations. �is development
has led to the design of a number of optimization algorithms.
Some of the most popular algorithms are the Particle Swarm
Optimization [1], Ant Colony Optimization [2], Genetic
Algorithm [3], Arti�cial Bee Colony [4], and many others.
However, the above algorithms do have some drawbacks
ranging from premature convergence [5], delay in obtaining
results, easily being stuck in local minima, and complicated
�tness function to having many parameters that require
setting up [6]. An attempt to pro	er solutions to some of
the weaknesses of these algorithms is the motivation for the
development of the African Bu	alo Optimization (ABO).

�e ABO is a population-based stochastic optimization
technique that has its inspiration from the behaviour of
African bu	alos: a species of wild cows, similar to their
domestic counterparts that navigate their way through thou-
sands of kilometres in the African rain forests and savannahs

by moving together in a large herd of, sometimes, over a
thousand bu	alos.�eir migration is inspired by their search
for lush grazing lands. �ey tend to track the movement of
the rainy seasons when they can get lush grazing pastures. As
the seasons di	er from location to location in the vast African
landscape, the bu	alos are always mobile in pursuit of their
target pastures. In ABO, our interest is in how the bu	alos are
able to organize themselves in searching the solution space
with two basic modes of communications, that is, the alarm
“waaa” sounds to indicate the presence of dangers or lack of
good grazing �elds and, as such, asking the animals to explore
other locations that may hold greater promise. On the other
hand, the alert “maaa” sound is used to indicate favourable
grazing area and is an indication to the animals to stay on to
exploit the available resources.

�e Traveling Salesman Problem. �e Traveling Salesman’s
Problem (TSP) is the problem faced by a salesman who, start-
ing from a particular town, has the assignment of �nding the
shortest possible round trip through a given set of customer
towns or cities. �e salesman has a mandate to visit each city
once before �nally returning to the starting town/city. �e
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Travelling Salesman’s Problem (TSP) can be represented by
a complete weighted graph � = (�, �) with� being the set of
� nodes (cities) and � being the set of edges fully connecting
the nodes in the graph �. In this graph, each edge � is given
a weight ��� which represents the distance between cities �
and �. It may be important to emphasize that the distance
between towns/cities may be symmetric (where the distances
between the cities are the same in either going or returning
from the towns/cities) or asymmetric (where due to some
restrictions, possibly, due to one-way lanes or other reasons,
the distances of going from city 	 to city 
 may not be the
same). �e basic minimization equation for TSP is given �
towns and their coordinates, �nd an integer permutation � =
�1, �2, �3, . . . , �� with �� being the city “�”, our task is to
minimize the sum of the cities [7, 8]. Consider


 (�) =
�−1
∑
�=1

� (��, ��+1) + � (��, �1) . (1)

Here, �(��, ��+1) represents the distance between city “�” and
city � + 1 and �(��, �1) is the distance of city “�” and city
“1.” �e aim is to �nd the shortest path between the adjacent
cities in the form of a vector of cities.

�is paper is organized in this way: Section 1 intro-
duces the African Bu	alo Optimization and the Travelling
Salesman’s Problem; Section 2 presents a brief review of
relevant literature; Section 3 discusses the basic �ow of the
African Bu	alo Optimization (ABO) algorithm; Section 4
is concerned with how the ABO solves the TSP; Section 5
deals with the experiments and discussion of the results
of the symmetric TSP instances; Section 6 is concerned
with the experiments on the asymmetric TSP instances
and the discussions of the results; Section 7 examines the
performance of ABO vis-à-vis Neural Networks methods;
Section 8 draws conclusions on the study.

2. Literature Review

Nature-inspired algorithms (NAs) draw their inspiration
from the complex but highly organised attributes of nature.
Nature-inspired algorithms which are generally stochastic
became the hotbed of several researchers due to the ine�-
ciencies of the exact optimization algorithms (as the problem
size enlarges) like the Linear Programming, [9], Dynamic
Programming [10], �nite elements [11], and �nite volume
methods. In general NAs simulate the interplay and, some-
times, interdependence of natural elements such as plants,
animals, and rivers. �e most popular class of algorithms
among the NAs are the biology-inspired algorithms. A
handful of other NAs, however, are inspired by Chemistry or
Physics. Some of those algorithms inspired by Chemistry or
Physics include Harmony Search (HS) algorithm, Intelligent
Water Drop (IWD), Simulated Annealing (SA), and Black
Hole (BH) [12]. In this study, our interest is the biology-
inspired optimization algorithms.

Biology-inspired algorithms (BAs) can be categorised
into three broad classes, namely, Evolutionary Algorithms
(EAs) that are inspired by natural evolutions, the Swarm
Intelligence (SI) which simulates the collective behavior in

plants and animals, and, thirdly, Ecology algorithms which
are concernedwith simulating the inter- and intracooperative
or competitive interactions within the ecosystem [13].

�e Evolutionary Algorithms (EAs), generally, simu-
late the iterative progress comprising growth, development,
reproduction, selection, and survival as seen in a population.
EAs are concerned with the feasible solutions that emanate
iteratively from generation to generation towards the best
solution. EAs employ �tness-based selection within the
population of solutions in a way that �tter solutions are
selected for survival into the next generation of solutions. In
this category of EAs are Genetic Programming (GP), Paddy
Field Algorithm (PFA), Evolutionary Strategies (ES), Genetic
Algorithm (GA), and the Di	erential Evolution (DE) [12]. It
may be necessary to state that experts have di	erent opinions
on the classi�cation of Di	erential Evolution as an Evolution-
ary Algorithm. �e classi�cation of DE as an Evolutionary
Algorithm stems from its use of “Evolution” as one of its
parameters (just like other EAs). A critical expert may not
class Di	erential Evolution as being bioinspired, actually [14].

�e second category of BAs is the Swarm Intelligence
(SI) algorithmswhich are concernedwith the collective social
behavior of organisms.�emotivation of Swarm Intelligence
is the collective intelligence of groups of simple agents such
as insects, �shes, birds, bacteria, worms, and other animals
based on their behavior in real life. As simple as these animals
are, they are able to exhibit exceptional intelligence whenever
they work collectively as a group. �ese algorithms track the
collective behavior of animals that exhibit decentralized, self-
organized patterns in their foraging duties. Examples of these
algorithms are the Bee Colony Optimization (BCO), Fire�y
Algorithm (FFA), Particle Swarm Optimization (PSO), Ant
Colony Optimization (ACO), Arti�cial Bee Colony (ABC),
Bacteria Foraging Algorithm (BFA), and so on [15].

�e third category of BAs is the Ecology algorithms
which are concernedwith the numerous inter- or intraspecies
competitive or cooperative interactions within the natural
ecosystems. �e ecosystem is made up of living organisms
along with their abiotic environment with which the organ-
isms interact such as water, air, and soil. Cooperation among
organisms includes division of labor and represents the core
of their sociality. Some of the interactions are cooperative and
others are competitive leading to a complex and harmonious
balancing within the ecosystem. Algorithms in this category
are the PS2O, Invasive Weed Colony Optimization, and
biogeography-based optimization [16].

�e development of the African Bu	alo Optimization
(ABO) is in response to the observed lapses in the existing
algorithms.�e ABO belongs to the Swarm Intelligence class
of algorithms based on the social behavior in animals with
the aim of achieving greater exploitation and exploration of
the search space, ease of use, and faster speed in achieving
the optimal result with its use of relatively fewer parameters
in solving combinatorial optimization problems.

2.1. Ant Colony Optimization (ACO). Ant Colony Optimiza-
tion algorithm is a population-based optimization technique
developed by Marco Dorigo and has been successfully
applied to solve several NP-hard combinatorial optimization



Computational Intelligence and Neuroscience 3

problems. �is algorithm was inspired by the behavior of
ant colonies, especially, by their foraging behavior in real
life. Usually ants, when leaving their nests, move randomly
around the areas surrounding their nests in search for food. If
any of the ants come across food, it �rst collects somepieces of
the food and, on its way back to the nest, deposits a chemical
substance called pheromones as a way of communicating to
its peers that there has been a breakthrough. Other nearby
ants, on perceiving the fragrance of the pheromone, under-
stand andmove towards the pheromone path. Once they dis-
cover the food source, they, in turn, drop fresh pheromones
as a way of alerting other ants. In amatter of time, several ants
pick this information and are on the pheromone path.

Another interesting part of the ants’ behavior is that as
they return to the nest, they optimize their route. In a short
while, the ants have created a shorter route to the food source
than the previous routes. Moreover, in case an obstruction is
put on the shorter route, making movements impossible, the
ants are able to �nd another short route among the available
options to evade the obstacle.�e highlights of this algorithm
include tapping into the indirect communication of a colony
of (arti�cial) ants using pheromone trails as a means of
communication, tracking their cooperative ability to solve a
complex problem, and harnessing their capacity to optimize
their routes from the food source to the nest and vice versa.

�ere have been several modi�cations of the ant colony
algorithms starting from the initial Ant System (AS), to Ant
Colony System (ACS), to Min-Max Ant System (MMAS),
and then to the Ant Colony Optimization (ACO) algorithms,
and so forth [17]. In ACO, a colony of ants in each iteration
constructs a solution probabilistically as ant � at node � selects
the next node� tomove on to.�e choice of node is in�uenced
by the pheromone trail value �.��(�) and the available heuristic���. In TSP, ��� = 1/���. So an ant moves from location � to
location � with the probability

���� (�) =
{{{{
{{{{{

⌈�.�� (�)⌉� � [�.��]�
∑�∈N�� [
��(�)]  � [���]

� if � ∈ N�� ,
0, otherwise.

(2)

Here, �.��(�) represents the pheromone trail, ��� represents
the local heuristic information � represents the iteration,
N�� represents the nodes ant � can go to, and  and " are
parameters that bias the pheromone trails. By the end of an
iteration, the pheromone trail on each edge �� is updated using
the following equation:

�.�� (� + 1) = (1 − #) ��.�� (�) + Δ�.��best (�) . (3)

In (3), �.��(�+1) represents the pheromone trail in iteration �+1;
# takes any values from 0.1 to 0.9. �e amount of pheromone
deposited by the best ant is represented by

Δ�.��best (�)

= {
{{

1

 (&best (�)) if the best ant used �� in iteration �
0, otherwise.

(4)

In (4), 
(&best(�)) represents cost of the best solution (&best(�)).

A critical examination of the Ant Colony Optimization
technique of solving optimization problems reveals that there
is little or no similarity between the ACO’s searchmechanism
and that of the ABO.�is could be due to their application of
di	erent search techniques in arriving at solutions: while the
ACO employs path construction technique, the ABO favours
path improvement search mechanism.

2.2. Particle Swarm Optimization. Particle Swarm Optimiza-
tion which was inspired by the social behavior of birds
�ocking or �sh schooling is one of the biology-inspired
computation techniques developed by Eberhart andKennedy
[18]. �is algorithm obtains solutions using a swarm of
particles, where each particle represents a candidate solution.
When compared to evolutionary computation paradigms, a
swarm is similar to a population and a particle represents an
individual. In searching for a solution, the particles are �own
through a multidimensional search space, where the position
of each particle is adjusted according to its own experience
and that of its neighbors. �e velocity vector drives the opti-
mization process as well as highlighting each particle’s experi-
ence and the information exchange within its neighborhood.
Just like the ABO, PSO has two controlling equations in its
search for solution and these are (5) and (6). Consider

V
�+1
�� = � (V��� + 01-1 (2��� − ����) + 02-2 (2�(�)�� − ����)) , (5)

where V�+1�� represents the present velocity, V��� is the previous
velocity, � is the constriction factor, 01 and 02 are the
acceleration coe�cients, -1 and -2 are random numbers,
2��� is the individual particles’ best position, ���� is the present
position, and 2�(�)�� is the swarm’s best position. �e next

equation in PSO that calculates the position of the swarm is

��+1�� = ���� + V
�+1
�� . (6)

In PSO algorithm, the particles move in the domain of
an objective function 
 : Θ ∈ 4�, where � represents the
variables to be optimized. Each particle, at a particular
iteration, is associated with three vectors:

(a) Present position, denoted by�:�is vector records the
present position of a particular particle.

(b) Present velocity, denoted by V: �is vector stores the
particle’s direction of search.

(c) Individual’s best position, denoted by 2: �is vector
records the particular particle’s best solution so far
since the search began (since the beginning of the
algorithm’s execution). In addition to these, the indi-
vidual particles relate with the best particle in the
swarmwhich PSO algorithm tracks, in each iteration,
to help direct the search to promising areas [19].

2.3. Arti	cial Bee Colony. �is algorithm, which is inspired
by the behavior of natural honey bee swarm, was proposed
by Karaboga and Akay in 2009 [20]. It searches for solution
through the use of three classes of bees: scout bees, onlooker
bees, and employed bees. Scout bees are those that �y over
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the search space in search for solutions (food source). �e
onlooker bees, on the other hand, are the ones that stay in
the nest waiting for the report of the scout bees while the
employed bees refer to the class of bees which, a�er watching
the waggle dance of the scout bees, opts to join in harvesting
the food source (exploitation). A particular strength of this
algorithm lies in its bee transformation capabilities. For
instance, a scout bee could transform to an employed bee
once it (the same scout bee) is involved in harvesting the food
source and vice versa.

Generally, the bees can change their statuses depending
on the needs of the algorithm at a particular point in time.
In this algorithm, the food source represents a solution to the
optimization problem.�e volume of nectar in a food source
represents the quality (�tness) of the solution.Moreover, each
employed bee is supposed to exploit only one food source,
meaning that the number of employed bees is the same as the
number of food sources. �e scout bees are always exploring
for new food sources V⃗� with higher nectar quantity and/or
quality (�tness) �⃗� within the neighbourhood. �e bees
evaluate the nectar �tness using

V�� = ��� + 0�� (��� − ���) , (7)

where � is a randomly chosen parameter index; 0�� is a
random number within a given range; ��� is a food source.

�e quality (�tness) of a solution 
���(6→��) is calculated
using the following equation:


��� (6→��) =
{{
{{{

1
1 + 
� (6→��)�, if 
� (6→��) > 0
1 + 
� (6→��) , if 
� (6→��) < 0.

(8)

From the foregoing discussion, it is clear that there is slight
similarity between (5) in PSO and (7) in ABO since each
algorithm subtracts a variable from the personal and indi-
vidual bests of the particles/bu	alos. For PSO, the subtracted
variable is the present position and for ABO, it is the
immediate-past explored location (the waaa values, 8.�).
However, the two equations are di	erent in several respects:
while the PSO uses � (being the constriction factor) or
9 (as inertia factor, in some versions of the PSO), there
are no such equivalents in ABO. Moreover, while the PSO
employs random numbers (-1 and -2), ABO does not use
random numbers, only learning parameters. Also, PSO uses
acceleration coe�cients (01 and 02); ABO does not. In the
case of the ABC, even though it employs the same search
technique in arriving at solutions, the algorithm procedures
are quite di	erent.

2.4. Information Propagation. In searching for solutions to
an optimization problem, the ACO employs the path con-
struction technique while the PSO, ABC, and the ABO use
the path improvement technique. However, while the PSO
uses the Von Neumann (see Figure 1) as its best technique
for information propagation [21], the ACO obtains good
results using the ring topology [22] and the ABO uses the
star topology which connects all the bu	alos together. �e
Von Neumann topology enables the particles to connect to

neighboring particles on the east, west, north, and south.
E	ectively, a particular particle relates with the other four
particles surrounding it. �e ABO employs the star topology
such that a particular bu	alo is connected to every other
bu	alo in the herd.�is enhancesABO’s information dissem-
ination at any particular point in time.

3. African Buffalo Optimization Algorithm

In using the ABO to pro	er solutions in the search space, the
bu	alos are �rst initialized within the herd population and
are made to search for the global optima by updating their
locations as they follow the current best bu	alo 2;max in
the herd. Each bu	alo keeps track of its coordinates in the
problem space which are associated with the best solution
(�tness) it has achieved so far. �is value is called 2?max.�
representing the best location of the particular bu	alo in
relation to the optimal solution. �e ABO algorithm follows
this pattern: at each step, it tracks the dynamic location of
each bu	alo towards the 2?max.� and 2;max depending on
where the emphasis is placed at a particular iteration. �e
speed of each animal is in�uenced by the learning parameters.

3.1. ABO Algorithm. �e ABO algorithm is presented below:

(1) Initialization: randomly place bu	alos to nodes at the
solution space.

(2) Update the bu	alos �tness values using

@.� + 1 = @.� + A?1 (2;max − 8.�)
+ A?2 (2?max.� − 8.�) , (9)

where 8.� and @.� represent the exploration and
exploitation moves, respectively, of the �th bu	alo
(� = 1, 2, . . . , C); A?1 and A?2 are learning factors;
2;max is the herd’s best �tness and 2?max.� the
individual bu	alo �’s best found location.

(3) Update the location of bu	alo � (2?max.� and 2;max)
using

8.� + 1 = (8.� + @.�)
±0.5 . (10)

(4) Is 2;max updating? Yes, go to (5). No, go to (2).

(5) If the stopping criteria are not met, go back to
algorithm step (3); else go to (6).

(6) Output best solution.

A closer look at the algorithm (the ABO algorithm)
reveals that (9) which shows the democratic attitude of the
bu	alos has three parts: the �rst @.� represents the memory
of the bu	alos past location. �e bu	alo has innate memory
ability that enables it to tell where it has been before. �is is
crucial in its search for solutions as it helps it to avoid areas
that produced bad results.�ememory of each bu	alo is a list
of solutions that can be used as an alternative for the current
local maximum location. �e second A?1(2;max − 8.�) is
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Star topology Ring topology Von Neumann topology

Figure 1: Information propagation topologies.

concerned with the caring or cooperative part of the bu	alos
and is a pointer to the bu	alo’s social and information-
sharing experience and then the third part A?2(2?max.�−8.�)
indicates the intelligence part of the bu	alos. So the ABO
exploits the memory, caring intelligent capabilities of the
bu	alos in the democratic equation (9). Similarly, (10) is the
waaa vocalization equation that propels the animals to move
on to explore other environments as the present area has been
fully exploited or is unfavourable for further exploration and
exploitation.

3.2. Highlights of the ABO Algorithm. �ey are as follows:

(1) Stagnation handling through regular update of the
best bu	alo 2;max in each iteration.

(2) Use of relatively few parameters to ensure speed fast
convergence.

(3) A very simple algorithm that require less than 100
lines of coding e	ort in any programming language.

(4) Ensuring adequate exploration by tracking the loca-
tion of best bu	alo (2;max) and each bu	alo’s per-
sonal best location (2?max.�).

(5) Ensuring adequate exploitation through tapping into
the exploits of other bu	alos A?1(2;max − 8.�).

3.3. Initialization. �e initialization phase is done by ran-
domly placing the �th bu	alo in the solution space. For ini-
tialization, some known previous knowledge of the problem
can help the algorithm to converge in less iterations.

3.4. Update Speed and Location. In each iteration, each
bu	alo updates its location according to its formermaximum
location (2?max) and some information gathered from the
exploits of the neighboring bu	alos. �is is done using (9)
and (10) (refer to the ABO algorithm steps (2) and (3) above).
�is enables the algorithm to track the movement of the
bu	alos in relation to the optimal solution.

4. Using ABO to Solve the Travelling
Salesman’s Problem

�eABOhas the advantage of using very simple steps to solve
complex optimization problems such as the TSP. �e basic
solution steps are as follows:

(a) Choose, according to some criterion, a start city for
each of the bu	alos and randomly locate them in
those cities. Consider

�E2 = 8�
1E2@�
2E2
∑��=1 8�
1E2@�
2E2

E2 = ±0.5.
(11)

(b) Update bu	alo �tness using (9) and (10), respectively.

(c) Determine the 2?max.� and max.

(d) Using (11) and heuristic values, probabilistically con-
struct a bu	alo tour by adding cities that the bu	alos
have not visited.

(e) Is the 2;max updating? Go to (f). No, go to (a).

(f) Is the exit criteria reached? Yes, go to (g). No, return
to (b).

(g) Output the best result.

Here, A?1 and A?2 are learning parameters and are 0.6 and
0.4, respectively, E2 takes the values of 0.5 and −0.5 in
alternate iterations, @ is the positive reinforcement alert
invitation which tells the animals to stay to exploit the
environment since there are enough pastures, and 8 is the
negative reinforcement alarm which tells the animals to keep
on exploring the environment since the present location is not

productive. For bu	alo �, the probability ?� of moving from
city � to city � depends on the combination of two values,
namely, the desirability of the move, as computed by some
heuristic indicating the previous attractiveness of that move
and the summative bene�t of themove to the herd, indicating
how productive it has been in the past to make that particular
move.�e denominator values represent an indication of the
desirability of that move.
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Table 1: TSPLIB datasets.

1st experimental datasets 2nd experimental datasets ATSP dataset NN comparative datasets

Berlin52 Att48 R48p Eil51 KroA100 B FL1400

St70 St70 Ft70 Eil76 KroA200 D1655

Eil76 Eil76 Kro124p Eil101 KroB100

Pr76 Pr152 Ftv70 Berlin52 KroB150

Kroa100 Gil262 P43 Bier127 KroB200

Eil101 Rd400 Ftv170 Ch130 KroC100

Ch150 Pr1002 Ch150 KroD100

Tsp225 D1291 Rd100 KroE100

Fnl4461 Lin105 Rat575

Brd14051 Lin318 RL1323

4.1. ABO Solution Mechanism for the TSP. �e ABO applies
theModi�edKarp Steele algorithm in its solution of the Trav-
elling Salesman’s Problem [23]. It follows a simple solution
step of �rst constructing a cycle factor F of the cheapest
weight in the G graph. Next, it selects a pair of edges taken
from di	erent cycles of the G graph and patch in a way
that will result in a minimum weight. Patching is simply
removing the selected edges in the two cycle factors and then
replacing them with cheaper edges and in this way forming
a larger cycle factor, thus, reducing the number of cycle
factors in graphG by one.�irdly, the second step is repeated
until we arrive at a single cycle factor in the entire graph
G. �is technique �ts into the path improvement technique
description [24]. ABO overcomes the problem of delay in
this process through the use of two primary parameters to
ensure speed, namely, A?1 and A?2, coupledwith the algorithm
keeping a track of the route of the 2;max as well as 2?max.�
in each construction step.

5. Experiments and Discussion of Results

In this study, the ABO was implemented on three sets of
symmetric TSP datasets and a set of asymmetric TSP (ATSP)
ranging from 48 to 14461 cities from TSPLIB95 [25]. �e �rst
experiment was concerned with the comparison of the per-
formance of ABO in TSP instances with the results obtained
from a recent study [26] involving Berlin52, St70, Eil76, Pr76,
KroA100, Eil101, Ch150, and Tsp225.�e second set of exper-
iments was concerned with testing ABO’s performance with
another recently published study [27] on Att48, St70, Eil76,
Pr152, Gil262, Rd400, Pr1002, D1291, Fn14461, and Brd14051.
�e third experiment examinedABO’s performance in asym-
metric TSP instances.�e fourth set of experiments involved
comparing ABO results with those obtained using some
popular Arti�cial Neural Networks methods [28]. �e TSP
benchmark datasets are presented in Table 1.

5.1. Experimental Parameters Setting. For the sets of exper-
iments involving PSO, the parameters are as follows: popu-
lation size: 200; iteration (Hmax): 1000; inertia weight: 0.85;
�1: 2; �2: 2 rand1(0, 1) rand2(0, 1). For the HPSACO, the
experimental parameters are as follows: population: 200;
iteration (Hmax): 1000; inertia weight: 0.85; �1: 2; �2: 2; ants

(N): 100; pheromone factor ( ): 1.0; heuristic factor ("): 2.0;
evaporation coe�cient (#): 0.05; pheromone amount: 100.
For the experiments involving other algorithms, in this study,
Table 2 contains the details of the parameters used.

5.2. Experiment Analysis and Discussion of Results. �e
experiments were performed using MATLAB on Intel Duo
Core i7-3770CPU, 3.40 ghzwith 4GBRAM.�eexperiments
on the asymmetric Travelling Salesman’s Problems were
executed on a Pentium, Duo Core, 1.80Ghz processor and
2GB RAM desktop computer. Similarly, the experiments on
theArti�cial Neural Networks were executed usingMicroso�
Virtual C++, 2008, on an Intel Duo Core, i7, CPU. To
authenticate the veracity of the ABO algorithm in solving the
TSP, we initially carried out experiments on eight TSP cases.
�e city-coordinates data are available in [29].�e results are
presented in Table 3.

InTable 3, the “AverageValue” refers to the average �tness
of each algorithm, and the “relative error” values are obtained
by calculating

(Average value − Best value

Best value
) × 100. (12)

As can be seen in Table 3, the ABO outperformed the other
algorithms in all test instances under investigation.�eABO,
for instance, obtained the optimal solution to Berlin52 and
Eil76. No other algorithmdid. Besides this, theABOobtained
the nearest-optimal solution to the remaining TSP instances
compared to any other algorithm. In terms of the average
results obtained by each algorithm, the ABO still has the
best performance. It is rather surprising that the Hybrid
Algorithm (HA) which uses a similar memorymatrix like the
ABO could not pose a better result. �is is traceable to the
use of several parameters since the HA is a combination of
the ACO and the ABC: the two algorithms that have some of
the largest numbers of parameters to tune in order to obtain
good solutions.

�e dominance of the ABO can also be seen in the use
of computer resources (CPU time) where it is clearly seen
that the ABO is the fastest of all four algorithms. In Berlin52,
for instance, the ABO is 58,335 times faster than the ACO;
1,085 times faster than the ABC; 30,320 times faster than
the Hybrid Algorithm (HA). �is trend continues in all the
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Table 2: Experimental parameters.

ABO ACO ABC HA CGAS

Parameter Values Parameters Values Parameters Values Parameters Values Parameter Values

Population 40 Ants K∗ Population K∗ Population K∗ Generation 100

@.� 1.0 " 5.0 Lij rand(−1, 1) " 5.0 " 2.0

2;max/2?max 0.6 # 0.65 9ij rand(0, 1.5) # 0.65 # 0.1

A?1/A?2 0.5  1.0 SN NP/2  1.0 4M 0.33

8.� 1.0 O̧ 200 Limit K∗SN Lij rand(−1, 1) Crossover rate 1.0

N/A — qo 0.9 Max cycle number 500 9ij rand(0, 1.5) qo 0.9

N/A — N/A — Colony 50 SN NP/2 LN 0.3

N/A — N/A — N/A — Limit K∗SN L# 0.2

N/A — N/A — N/A — Max cycle number 500 �min �max/20
N/A — N/A — N/A — Colony 50 �max 1 − (1 − #)
N/A — N/A — N/A — O̧ 200 N/A —

N/A — N/A — N/A — qo 0.9 N/A —

Total number of runs 50 50 50 50 50

Table 3: Comparative experimental result.

Problem Number of cities Optima Method Best Mean Rel. err. (%) Time (s)

Berlin52

ABO 7542 7616 0% 0.002

ACO 7548.99 7659.31 1.52 116.67

52 7542 ABC 9479.11 10,390.26 37.72 2.17

HA 7544.37 7544.37 0.03 60.64

St70

ABO 676 678.33 0.15 0.08

ACO 696.05 709.16 4.73 226.06

70 675 ABC 1162.12 1230.49 81.73 3.15

HA 687.24 700.58 3.47 115.65

Eil76

ABO 538 563.04 0% 0.03

76 538 ACO 554.46 561.98 3.04 271.98

ABC 877.28 931.44 70.78 3.49

HA 551.07 557.98 2.31 138.82

Pr76

108159 ABO 108167 108,396 0.007% 0.08

76 ACO 115,166.66 116,321.22 7.55 272.41

ABC 195,198.9 205,119.61 89.65 3.50

HA 113,798.56 115,072.29 6.39 138.92

Kroa100

21282 ABO 21311 22163.8 0.4% 0.00

100 ACO 22,455.89 22,880.12 7.49 615.06

ABC 49,519.51 53,840.03 152.94 5.17

HA 22,122.75 22,435.31 5.40 311.12

Eil101

629 ABO 640 640 1.7% 0.027

101 ACO 678.04 693.42 7.96 527.42

ABC 1237.31 1315.95 104.88 5.17

HA 672.71 683.39 6.39 267.08

Ch150

6528 ABO 6532 6601 0.06% 0.032

150 ACO 6648.51 6702.87 2.61 1387.65

ABC 20,908.89 21,617.48 230.93 8.95

HA 6641.69 6677.12 2.21 698.61

Tsp225

3916 ABO 3917 3982 0.03 0.09

225 ACO 4112.35 4176.08 8.22 4038.75

ABC 16,998.41 17,955.12 365.2792 16.68

HA 4090.54 4157.85 7.74 2037.33



8 Computational Intelligence and Neuroscience

Table 4: Comparative optimal results.

TSP instance Optima
ABO PSO ACO HPSACO

Best Avg Err. % Best Avg Err. % Best Avg Err. % Best Avg Err. %

att48 33522 33524 33579 0.16 33734 33982 0.63 33649 33731 0.62 33524 33667 0.16

st70 675 676 678.33 0.15 691.2 702.6 2.40 685.7 694.7 1.59 680.3 698.6 0.79

eil76 538 538 563.04 0.00 572.3 589.1 6.38 550.7 560.4 2.36 546.2 558.1 1.52

pr152 73682 73730 73990 0.07 75361 75405 2.28 74689 74936 1.37 74165 74654 0.66

gil262 2378 2378 2386 0.00 2513 2486 5.68 2463 2495 3.57 2413 2468 1.47

rd400 15281 15301 15304 5.00 16964 17024 11.01 16581 16834 8.51 16067 16513 5.14

pr1002 259045 259132 261608 0.03 278923 279755 7.67 269758 271043 4.14 267998 269789 3.46

d1291 50801 50839 50839 0.07 53912 54104 6.12 52942 53249 4.21 52868 52951 4.07

fnl4461 182566 182745 183174 0.10 199314 199492 9.17 192964 194015 5.70 191352 192585 4.81

brd14051 469385 469835 479085 0.10 518631 519305 10.49 505734 511638 7.74 498471 503594 6.20

test cases under investigation. To solve all the TSP problems
here, it took ABO a cumulative time of 0.279 seconds to
ACO’s 7456 seconds; ABC’s 43.11 seconds; and HA’s 3362.27
seconds. �e speed of the ABO is traceable to e	ective
memorymanagement technique since the ABO uses the path
improvement technique as against the ACO that uses the
slower path construction method. �e di	erence in speed
with the ABC that uses similar technique with ABO is due
to the ABC’s use of several parameters. �e speed of the
HA could have been a	ected by the combination of the path
construction and path improvement techniques coupled with
the use of several parameters.

5.3. ABO and Other Algorithms. Encouraged by the
extremely good performance of the ABO in the �rst
experiments, more experiments were performed and the
results obtained compared with those from PSO, ACO, and
HPSACO from another recently published study [27]. �e
HPSACO is a combination of three techniques, namely, the
Collaborative Strategy, Particle SwarmOptimization, and the
Ant Colony Optimization algorithms. �e datasets used in
this experiment are from the TSPLIB95 and they are Att48,
St70, Eil76, Pr152, Gil262, Rd400, Pr1002, D1291, Fn14461,
and Brd14051. �e results are presented in Table 4.

Table 4 further underscores the excellent performance of
ABO. �e ABO obtained the optimal solution to Eil76 and
Gil262 and very near-optimal solution in the rest of test cases.
It is obvious from the relative error calculations that the ABO
obtained over 99% accuracy in all the TSP instances here
except the di�cult rd100where it obtained 95%. It isworthy of
note that the 95% accuracy of the ABO is still superior to the
performance of the other comparative algorithms in this TSP
instance. �e cumulative relative error of the ABO is 5.68%
to the PSO’s 61.83%, the ACO’s 39.81%, and the HPSACO’s
28.28%. Clearly, from this analysis, the ABO has a superior
search capability.�is is traceable to its use of relatively fewer
parameters than most other Swarm Intelligence techniques.
�e controlling parameters of the ABO are just the learning
parameters (A?1 and A?2).

In designing the ABO, the authors deliberately tried to
avoid the “Frankenstein phenomena” [30], that is, a case

of developing intricate techniques with several parame-
ters/operators that, most times, the individual contributions
of some of such parameters/operators to the workings of the
algorithm are di�cult to pinpoint. �e ability to achieve this
“lean metaheuristic” design (which is what we tried to do in
designing the ABO) is a mark of good algorithm design [30].

6. ABO on Asymmetric TSP Test Cases

Moreover, we had to experiment on some ATSP test cases
to verify the performance of the novel algorithm on such
cases. �e results obtained from this experiment using ABO
are compared with the results obtained from solving some
benchmark asymmetric TSP instances available in TSPLIB95
using the Randomized Arbitrary Insertion algorithm (RAI)
[31], Ant Colony System 3-opt (ACS), Min-Max Ant System
(MMAS), and Iterated Local Search (ILS) which is reported
to be one of the best methods for solving TSP problems.
�ese ATSP instances are ry48p, �70, Kro124p, �v70, p43,
and �v170 [32].

Table 5 shows the comparative results obtained by apply-
ing �ve di	erent algorithms to solving a number of bench-
mark asymmetric TSP instances with the aim of evaluating
the performance of the African Bu	alo Optimization (ABO)
algorithm. �e �rst column lists the ATSP instances as
recorded in the TSPLIB; the second column indicates the
number of cities/locations/nodes involved in each instance;
the third indicates the optimal solutions, then followed by the
performances of the di	erent algorithms in at most 50 test
runs.

A quick look at the table shows the excellent performance
of the ILS and theMMASwith both obtaining 100% results in
the only four cases available in literature that they solved.�e
ABO performed very well achieving over 99% in all test cases
but one. �e ABO has approximately the same performance
with RAI and the ACS obtaining about 99% optimal results
in virtually all cases. It is signi�cant to note, however, that
the ABO performed better than ACS and RAI in �70 which
was said to be a di�cult ATSP instance to solve in spite of its
relatively small size [33].

Next, the authors examined the speed of each algorithm
to achieve result since one of the aims of the ABO is to
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Table 6: Comparative speed of algorithms.

TSP cases Number of cities

ABO MIMM-ACO MMAS CGAS RAI

Avg time
(secs)

Avg time
(secs)

Avg time
(secs)

Avg time
(secs)

Avg time
(secs)

Ry48p 48 0.07 7.83 7.97 12.35 1.598

Ft70 70 0.05 9.85 10.15 15.32 7.068

Kro124p 100 0.08 33.25 23.4 78.52 30.34

Ftv70 71 0.09 64.53 61.25 69.64 7.376

P43 43 0.1 8.35 9.38 0.997 0.997

Ftv170 171 0.65 108.28 96.73 276.1 276.1

solve the problem of delay in achieving optimal solutions
since speed is one of the hallmarks of a good algorithm
[34]. In Table 6, we compare the speed of the ABO with
those of the recently publishedModel InducedMax-Min Ant
Colony Optimization (MIMM-ACO), Min-Max Ant System
(MMAS)CooperativeGenetic Ant Systems (CGAS) [35], and
RAI.

Table 6 displays the exceptional capacity of the novel
African Bu	alo Optimization (ABO) to obtain optimal or
near-optimal solutions at record times. It took the ABO
less than a second (precisely 0.95 seconds) to solve all
the benchmark cases under investigation to MIMM-ACO’s
232.09 seconds; MMAS’s 208.88 seconds; CGAS’ 452.927
seconds; and RAI’s 323.4 seconds. Undoubtedly, the ABO
outperformed the other algorithms in its quest to obtain
results using very limited CPU time and resources. �is
brought aboutABO’s use of very few parameters coupledwith
straightforward �tness function.�e exceptional speed of the
ABO compared with its competitive ability to obtain very
competitive results recommends the ABO as an algorithm of
choice when speed is a factor.

7. Comparing ABO to Neural Network
Solutions to TSP

Moreover, following the popularity and e�ciency of Neural
Networks in obtaining good solutions to the Travelling Sales-
man’s Problem [36], the authors compared the performance
of African Bu	alo Optimization to the known solutions of
some popular Neural Network algorithms. �ese are Ange-
niol’s method, Somhom et al.’s method, Pasti and Castro’s
method, and Masutti and Castro’s method. Comparative
experimental �gures are obtained from [28].

From the experimental results in Table 7, it can be
seen that only the ABO obtained the optimal solutions
in Eil51 and Eil76, in addition to jointly obtaining the
optimal result with Masutti and Castro’s method in Berlin52.
Aside from these, ABO outperformed the other meth-
ods in getting near-optimal solutions in Bier127, KroA100,
KroB100, KroB100, KroC100, KroD100, KroE100, Ch130,
Ch150, KroA150, KroB150, KroA200, KroB150, KroB200
Rat575, rl1323, �1400, �1400, and Rat783. It was only in Eil101
that Masutti and Castro’s method outperformed ABO.�is is

a further evidence that ABO is an excellent performer even
when in competition with Neural Networks methods.

8. Conclusion

In general, this paper introduces the novel algorithm, the
African Bu	alo Optimization, and shows its capacity to solve
the Traveling Salesman’s Problem.�e performance obtained
from using the ABO is weighed against the performance
of some popular algorithms such as the Ant Colony Opti-
mization (ACO), Particle Swarm Optimization (PSO), Arti-
�cial Bee Colony Optimization (ABO), Min-Max Ant Sys-
tem (MMAS), and Randomized Insertion Algorithm (RAI);
some hybrid methods such as Model Induced Max-Min
Ant ColonyOptimization (MIMM-ACO), Hybrid Algorithm
(HA), and Cooperative Genetic Ant Systems (CGAS); and
some popular Neural Networks-based optimization meth-
ods. In total, 33 TSP datasets cases ranging from 48 to 14461
cities were investigated and the ABO results obtained were
compared with results obtained from 11 other optimization
algorithms and methods. �e results show the amazing
performance of the novel algorithm’s capacity to obtain
optimal or near-optimal solutions at an incredibly fast rate.
�e ABO’s outstanding performance is a testimony to the
fact that ABOhas immense potentials in solving optimization
problems using relatively fewer parameters than most other
optimization algorithms in literature.

Having observed the robustness of theABO in solving the
Travelling Salesman’s Problems with encouraging outcome,
it is recommended that more investigations be carried out
to ascertain the veracity or otherwise of this new algorithm
in solving other problems such as PID tuning, knapsack
problem, vehicle routing, job scheduling, and urban trans-
portation problems.
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Table 7: ABO versus NN results.

TSP
instance Optima

ABO
Angeniol’s
method

Somhom et al.’s
method

Pasti and Castro’s
method

Masutti and Castro’s
method

Best Mean Best Mean Best Mean Best Mean Best Mean

eil51 426 426 427 432 442.90 433 440.57 429 438.70 427 437.47

eil76 538 538 563.04 554 563.20 552 562.27 542 556.10 541 556.33

eil101 629 640 640 655 665.93 640 655.57 641 654.83 638 648.63

berlin52 7542 7542 7659.31 7778 8363.70 7715 8025.07 7716 8073.97 7542 7932.50

bier127 118282 118297 118863 120110 128920.33 119840 121733.33 118760 121780.33 118970 120886.33

ch130 6110 6111 6307.14 6265 6416.80 6203 6307.23 6142 6291.77 6145 6282.40

ch150 6528 6532 6601 6634 6842.80 6631 6751 6629 6753.20 6602 6738.37

rd100 7910 7935 7956 8088 8444.50 8028 8239.40 7947 8253.93 7982 8199.77

lin105 14379 14419 14452.7 14999 16111.37 14379 14475.60 14379 14702.23 14379 14400.17

lin318 42029 42101 42336 44869 45832.83 43154 43922.90 42975 43704.97 42834 43696.87

kroA100 21282 21311 22163.8 23009 24678.80 21410 21616.77 21369 21868.47 21333 21522.73

kroA150 26524 26526 27205 28948 29960.90 26930 27401.33 26932 27346.43 26678 27355.97

kroA200 29368 29370 30152 31669 33228.33 30144 30415.67 29594 30257.53 29600 30190.27

kroB100 22141 22160 22509 24026 25966.40 22548 22622.50 22596 22853.60 22343 22661.47

kroB150 26130 26169 26431 27886 29404.53 26342 26806.33 26395 26752.13 26264 26631.87

kroB200 29437 29487 29534 32351 33838.13 29703 30286.47 29831 30415.60 29637 30135.00

kroC100 20749 20755 20881.7 22344 23496.13 20921 21149.87 20915 21231.60 20915 20971.23

kroD100 21294 21347 21462 23076 23909.03 21500 21845.73 21457 22027.87 21374 21697.37

kroE100 22068 22088 22702 23642 24828.03 22379 22682.47 22427 22815.50 22395 22715.63

rat575 6773 6774 6810 8107 8301.83 7090 7173.63 7039 7125.07 7047 7115.67

rat783 8806 8811 8881.75 10532 10721.60 9316 9387.57 9185 9326.30 9246 9343.77

rl1323 270199 270480 278977 293350 301424.33 295780 300899.00 295060 300286.00 300770 305314.33

�1400 20127 20134 20167 20649 21174.67 20558 20742.60 20745 21070.57 20851 21110.00

d1655 62128 62346 62599.5 68875 71168.07 67459 68046.37 70323 71431.70 70918 72113.17
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