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ABSTRACT 

This research studies the feasibility of applying heuristic learning algorithm in 

artificial intelligence to address the traveling salesman problem. The research focuses 

on tour construction and seeks to overcome the weakness of traditional tour 

construction heuristics, which are of greedy and myopic nature. The advantage of tour 

construction heuristic is its simplicity in concept. However, the greedy and myopic 

nature of tour construction heuristic result in a sub-optimal solution, and the tour 

needs to be improved with much effort after it is built. The improvement is made 

using tour improvement heuristics, which improves tour by changing the tour 

configuration until a better solution is found. Traditional tour construction heuristics 

were not designed to modify the configuration of the tour, which is an important 

feature in tour improvement heuristics, during the tour construction process. This 

research investigates the application of a real time admissible heuristic learning 

algorithm that allows the tour configuration to change as the tour is built. The 

heuristic evaluation function of the algorithm considers both local and global 

estimated distance information. The search engine of the algorithm incorporates 

Delaunay triangulations of computational geometry as part of the search strategy. This 

helps to improve the search efficiency because computational geometry provides 

information about the geometric properties of nodes distributed in Euclidean plane, so 

that only promising nodes that are likely to be in the optimal tour are considered 

during the search process. 



A state space transformation process that defines state, state transition operator and 

state transition cost has been developed. The heuristic estimation of a state is 

computed using minimal spanning tree, and the set of relevant states for consideration 

at each state selection is identified through the application of Delaunay triangulations. 

Computational results show that the geometric distribution of nodes in the Euclidean 

plane influences the heuristic estimation, because it influences the computation of 

minimal spanning tree. Problems that exhibit distinct and well-separated clusters are 

advantageous to this approach because it is capable of producing good quality 

heuristic estimate. 

A restrictive search approach that could further reduce the search space of the 

heuristic learning algorithm has also been investigated. It is based on the 

characteristics of optimal tour in which nodes located on the convex hull are visited in 

the order in which they appear on the convex hull boundary. Using this characteristic 

together with the proximity concept of Voronoi diagram in computational geometry, 

some of the nodes that are unlikely to travel in the same direction as the optimal tour 

can be pruned. This approach could identify promising candidate edge set using only 

edges from one triangle selected from Delaunay triangulations, and the triangle is 

selected based on the direction the tour travels. The examples used in this research 

show that the saving in heuristic updates can be quite significant. 
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CHAPTER 1: INTRODUCTION 

This chapter provides an outline of the thesis. The chapter is organised as follows. 

Section 1 presents the statement of the problem. The research objectives are outlined in 

Section 2 and an overview of the research follows in Section 3. Section 4 outlines the 

organisation of this thesis. 

1.1 Statement of the problem 

In the traveling salesman problem (TSP), a salesman is to find the shortest tour of a 

finite number of cities by visiting each city exactly once and returning to the starting 

city. It provides an ideal platform for the study of combinatorial optimisation problems 

because many industrial optimisation problems can be formulated as TSP. Examples of 

such applications include vehicle routing, workshop scheduling, order-picking in a 

warehouse, computer wiring and drilling of circuit board problems. 

TSP is inherently intractable. It belongs to a group of problems known as NP-

complete. The combinatorial nature of the problem results in computational time to 

grow exponentially with problem size, and no efficient algorithm could be constructed 

to find optimal solution in polynomial time for problems that are NP-complete (Garey 

and Johnson, 1979). Therefore, researchers usually solve the problem by finding 

approximate solution with reasonable computation time. The common approach is to 

first construct the tour using tour construction heuristics and then tour improvement 

heuristic is applied to obtain a better solution. Tour construction heuristic is simple in 

concept. It works by adding city one at a time using some selection and insertion 
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criteria. Then, tour improvement heuristic is applied until a shorter tour is found. Tour 

improvement heuristic works by exchanging edges of the tour. This method allows 

tour configuration to change during the iterative tour improvement process. However, 

it can result in local optimal solution. Extensive research has been conducted to 

address this problem, and a number of global optimisation techniques, such as 

simulated annealing, genetic algorithm and tabu search, have been developed for this 

purpose. In contrast, little attempt has been made to construct an optimal tour in the 

first place, so that tour improvement heuristic needs not be applied after the tour is 

built. In addition, little research has been conducted to utilise the advancement in the 

area of artificial intelligence, in particular the heuristic learning principle, to address 

the TSP. 

Tour construction heuristic by itself is not useful because the solution is sub-optimal. It 

is a greedy approach. Part of the tour that is already built remains unchanged 

throughout the tour construction process, and no attempt is made to change the tour 

configuration as the tour is built. This characteristic is in contrast to the tour 

improvement heuristic which changes the configuration of the tour during the iterative 

improvement process until a shorter tour is found. In addition, tour construction 

heuristic is myopic. It often relies on local knowledge to construct a tour. The selection 

and insertion criteria in various tour construction heuristics rely on local distance 

information to determine which city is to be selected and added to the tour. Therefore, 

if the configuration of the tour can be changed during the tour construction process, 

similar to the approach of tour improvement heuristics, then it is more likely to result 

in optimal solution. 
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The aim of this research is to demonstrate the well-developed heuristic learning 

algorithm in artificial intelligence may present another approach in addressing TSP. A 

heuristic learning algorithm is applied so that a dynamic tour construction process that 

allows the tour configuration to change during the tour construction process can be 

developed. As the tour is constructed, the tour configuration changes through the 

heuristic learning process using the local and estimated global distance information of 

the tour. The heuristic learning process allows the heuristic estimates of the partially 

completed tour to be updated, and, at the same time, the forward search and 

backtracking operations in the algorithm allow addition and deletion of cities to and 

from the tour during the tour construction process. 

The combinatorial nature of the problem can result in the solution space to become 

exponential in relation to the problem size. Therefore, it is important to control the 

search space. An efficient search strategy that can reduce the search space is very 

important in this research. This research seeks to investigate a search strategy by 

exploiting the geometric properties of the cities. Computational geometry concepts of 

Delaunay triangulations and Voronoi diagram will be investigated for this purpose 

because they provide information about location and neighbourhood of nodes in the 

Euclidean plane. 

1.2 Objectives 

This research has three objectives. 

1. To investigate how the well-developed heuristic learning algorithm in artificial 

intelligence can be applied as an approach in addressing the traditional TSP. 
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2. To develop an approach to implement the heuristic learning algorithm so that 

TSP can be solved using dynamic tour construction. 

3. To demonstrate the computational geometric properties of Euclidean TSP can 

be utilised as part of the search strategy to reduce the search space. 

To achieve these objectives, the research addresses the following steps: 

1. Development of a transformation method that can facilitate the formulation of 

TSP into state-space problems. 

2. Development of an approach that incorporates computational geometry of 

Delaunay triangulation into the search process. 

3. Development of a step-by-step application procedure that incorporates heuristic 

learning approach with Delaunay triangulation as a search strategy. 

4. Investigation of factors that affect the performance of the proposed heuristic 

learning approach. 

5. Development of a restrictive search approach through the integration of 

knowledge with regard to the direction of the tour and the computational 

geometric property of Voronoi diagram in the heuristic learning approach. 

1.3 Overview of the research 

This research investigates the application of a heuristic learning algorithm called 

Search and Learning A* algorithm (SLA*) to solve TSP. SLA* is a real time 

admissible heuristic learning algorithm, which uses the heuristic evaluation function to 
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estimate the relative merit of different state to the goal state (Zamani, 1995). The 

heuristic estimate of a state represents an estimate of solution from that state to the 

goal state. The rationality of this algorithm is that, a state that is further away from the 

goal state should have a larger heuristic estimate. The feature of this algorithm is the 

application of heuristic learning principle to update and improve the initially 

underestimated heuristic estimates. This will lead to an improvement of state selection 

decision and an optimal solution when the goal state is reached. 

In order to apply the heuristic learning approach to overcome the greedy and myopic 

nature of the tour construction heuristics, TSP is transformed into a state-space 

problem. The heuristic evaluation function of the algorithm considers both local and 

estimated global distances. Local distance is the actual cost of moving from one state 

to another, and estimated global distance is the heuristic estimation of a state to the 

goal state. The heuristic learning mechanism allows the algorithm to update the 

heuristic estimates of the visited states, and hence modify the tour configuration along 

the search process. This way the tour configuration changes as a result of heuristic 

learning by utilising local and global distance information during the tour construction 

process. 

Search efficiency of the heuristic learning approach can be improved by considering 

only those edges that are likely to lead to an optimal tour. In order to reduce search 

space, the concept of Delaunay triangulation is used to construct candidate edge set in 

which only promising edges are selected during the search process. In addition, the 

concept of proximity using Voronoi diagram, and the direction of the tour are 

integrated in the search strategy to further reduce the search space. A learning 

threshold method will also be investigated to find approximate solution. This method 
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improves the computation time for large-sized problems at the sacrifice of the quality 

of the solution. 

1.4 Outline of the thesis 

The rest of the thesis is organised as follows. 

Chapter 2 presents the literature review, which covers various tour construction and 

tour improvement heuristics that are commonly used to solve TSP. Examples of tour 

construction heuristics examined include nearest neighbour heuristics, insertion 

heuristics and Christofides1 heuristics. The tour improvement heuristics investigates the 

local search approach as well as global optimisation techniques, which include 

simulated annealing, genetic algorithm and tabu search. The branch and bound method 

that has been successfully applied to solve large TSP will also be explored. 

Chapter 3 examines the tour construction process using the heuristic learning approach 

of SLA*. This chapter investigates the state-space transformation process to transform 

TSP into a state-space problem. The transformation process includes definitions of 

state, state transition operator, state transition cost and heuristic estimates. The concept 

of Delaunay triangulation will be examined, and is incorporated as part of the search 

strategy to find promising neighbouring cities in the tour construction process. The 

step-by-step application procedure to construct tour using the heuristic learning 

approach will be given. This is followed by an example to demonstrate the working of 

the algorithm. Finally, an approximation method using the principle of learning 

threshold will be examined. This is followed by three examples to demonstrate the 

step-by-step procedure of the algorithm. 
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Chapter 4 investigates the implementation of the heuristic learning approach to 

construct tour. Issues relating to computer implementation of the algorithm are 

discussed. The computational experiements were conducted on two sets of test 

problems: selected instances from the TSPLIB library and the randomly generated 

problems. Factors influencing the performance of the heuristic learning approach will 

be investigated and discussed. 

Chapter 5 examines the development of a restrictive search strategy. This chapter 

investigates the rationale behind the implementation of the restrictive search approach, 

which is used as a constrained search strategy to further reduce the search space. The 

factors considered are based on the concept of proximity in Voronoi diagram, direction 

of the tour and the search direction of a triangle from Delaunay triangulations. Each of 

the factors will be investigated. Three examples have been included to demonstrate the 

implementation of the restrictive search approach. 

Chapter 6 concludes the thesis with the discussion of possible future research 

direction. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

The nature of NP-completeness in TSP makes it unlikely that any algorithm can be 

guaranteed to find optimal solutions when the number of cities is large. In view of the 

computation difficulties various heuristics have been developed to solve the problem. 

This chapter presents a literature review of various heuristics methods. The literature 

review covers commonly used tour construction and tour improvement heuristics. In 

addition a number of global optimisation techniques, which can be used to overcome 

the local entrapment problems in local search heuristics, will also be examined. The 

branch-and-bound and branch-and-cut methods that have been successfully used to 

solve large TSP are also examined. 

This chapter is organised as follows: Section 2 discusses tour construction heuristics. 

This includes nearest neighbour, various insertion heuristics and Christofides' 

heuristic. Other tour construction methods such as space filling curve and neural 

network will also be outlined. Section 3 examines tour improvement heuristics. This 

includes local search heuristic as well as global optimisation heuristics that include 

simulated annealing, genetic algorithm and tabu search. The algorithm of each of these 

techniques and its associated advantages, disadvantages and performances will be 

discussed. Section 4 examines the application of the branch-and-bound and branch-

and-cut methods to solve large TSP. The conclusion follows in Section 4. 
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2.2 Tour construction heuristics 

Tour construction heuristic constructs a tour by progressively adding a city one at a 

time until a complete tour is formed. The part of the tour that is already built remains 

unchanged during the tour construction process. In this section, nearest neighbour 

heuristic, various insertion heuristics, Christofides' heuristic, space filling curve 

heuristic and neural network approach will be examined. 

2.2.1 Nearest neighbour heuristic 

Nearest neighbour heuristic is simple in concept. It randomly selects a city as the 

starting node of the path. The next city for inclusion is the unvisited city that is nearest 

to the last city. The process is repeated until all cities have been included. Finally the 

last city is joined to the first city to form a tour. 

2 
The running time of this heuristic is found to be proportional to n , represented as 

2 
0(n ) where n is the number of city (Golden et al, 1980). The expected tour length is 

of the order O(logn) times the optimal tour length for random distance problem 

(Johnson, 1990). The quality of the solution is strongly dependent on the choice of the 

starting city (Reinelt, 1994). One way to overcome this problem is to repeat the nearest 

neighbour heuristic for each possible starting city and the tour with the shortest 

distance is selected as the optimal tour (Rosenkrantz et al, 1977). But the running time 

3 
using this approach is proportional to n . 

Although the nearest neighbour heuristic is simple in concept, it has its weakness. By 

being greedy in the beginning stage of the tour construction process, the tour distance 

may increase considerably in length when the last city is joined to the first city. A 
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number of researchers have modified nearest neighbour heuristic to overcome this 

shortcoming. Burke (1994) uses a tour, instead of a path, during the construction 

process. Bentley (1992) uses double-ended nearest neighbour approach that allows the 

path to grow at both ends of the tour. This approach performs two nearest neighbour 

heuristics at each tail, and the path with the shorter distance is selected. Reinelt (1994) 

uses the approach of insertion of forgotten cities to avoid adding too many isolated 

cities at the end. The approach is not to let the degree of the free city to fall below a 

certain pre-specified level (such as 2 or 3). The degree of the free city refers to the 

number of adjacent cities that has not been included in the current path. If a city falls 

below the pre-specified level, then it is added immediately to the path. 

2.2.2 Insertion heuristics 

There are three important considerations in insertion heuristics (Lawler et al, 1985): 

the choice of starting city, a selection criterion to select the most appropriate city to be 

inserted, and an insertion criterion which determines which part of the tour to insert the 

city. Examples of insertion heuristics include random, nearest and farthest insertions. 

These insertion heuristics varies in the way the city is inserted in the tour. For 

example, the nearest insertion heuristic starts with a tour of two cities that are nearest 

to one another. Then an unvisited city that is nearest to the tour cities is selected. This 

city is inserted between two consecutive cities that result in the minimum increase of 

tour length. The procedure of farthest insertion heuristic is similar to the nearest 

insertion with the exception that it selects two cities that are located farthest to one 

another as the initial tour. Then an unvisited city that is farthest to the tour is selected. 

In random insertion, a random city that results in the minimum increase in tour length 

is selected. For each heuristic, the selection and insertion steps are repeated until all 
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cities have been included in the tour. Table 2.1 shows the running time and results of 

worst-case analysis of the nearest, farthest and random insertion heuristics for an n-city 

problem. In general farthest insertion and random insertion heuristics outperform 

nearest insertion heuristic, because both farthest and arbitrary insertion heuristics 

produce good global tour (Reinelt, 1994). 

Heuristics 

Nearest insertion 

Farthest insertion 

Random insertion 

Running time 

0(n2) 

0(n log n) 

0(n2) 

Worst case (length of tour/length of optimal tour) 

<2 

<21n(n) + 0.16 

<21n(n) + 0.16 

Table 2.1: Running time and worst case behaviour of various insertion heuristics 

(Golden etal. 1980) 

Gendreau et al (1992) integrates tour improvement within the insertion heuristic. The 

approach is called generalised insertion and unstringing and stringing procedure 

(GENIUS). The main feature of this approach is that insertion of a city does not 

necessary take place between two consecutive cities. However, the number of potential 

insertions is based on the neighbourhood of the city to be inserted to the tour. At the 

same time, an improvement is carried out in such a way that the improvement search is 

limited to the most promising moves. This way the reconnecting edge is able to join 

cities that are closest to one another. Their results show that the tour sometimes results 

in a shorter tour length compared to the standard insertion heuristics. 

2.2.3 Christofides' heuristic 

Christofides' heuristic uses minimal spanning tree as a basis to construct a tour. A 

spanning tree for a set of n cities is a collection of (n-1) edges that join all cities into a 

single connected tree (Johnson and Papadimitriou, 1985). Therefore a minimal 
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spanning tree is one with minimum cost. In this algorithm, the minimum length 

matching of the odd degree vertices are obtained from the minimal spanning tree. The 

tour is constructed by traversing the Euler cycle and selecting the cities in the order 

they are first encountered. However this approach only works if triangle inequality is 

satisfied. The running time is proportional to n , where n is the number of city, and the 

worst-case analysis shows that it is less than 1.5 times of the optimal tour (Reinelt, 

1994). 

2.2.4 Space filling curve heuristics 

Space filling curve heuristic is one of the recent tour construction heuristic developed, 

which can be used to map city locations in Euclidean plane to a unit circle using the 

inverse of a closed space-filling curve (Bartholdi and Platzman, 1988). A tour is 

formed by visiting the cities in the order of their images appeared on the circle. Its 

running time is of the order 0(nlogn), where n is the number of city, and worst-case 

analysis shows that it is 1.25 times the optimal tour for uniformly generated problems. 

This heuristic works well for non-uniformly generated problems and it performs 

particularly well with respect to the measure of the ratio of the longest link in the tour 

to the average link in the tour (Burke, 1994). The advantage of this approach is that it 

is fast and it can be used when the inter-city distance is unknown (Tate et al, 1994). 

2.2.5 Neural network approach 

Hopfield and Tank (1985) have shown that neural network can be used to solve TSP. 

This method works by dividing the network into a (n x n) two-dimensional array with 

0-1 states. However, the original Hopfield and Tank's approach is only able to solve a 

10-city problem. Yu and Jia (1993) applied a technique called the orthogonal array 
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table to overcome the shortcoming of Hopfield and Tank's approach. The use of 

orthogonal array table allows the most suitable parameters to be selected in search of 

better attracting regions that correspond to a better optimal solution (Yu and Jia, 1993). 

Problems with 10 and 30, 31, and 300 cities have been successfully solved using this 

approach. Angeniol et al (1988) implement another approach that is based on 

Kohonen's self-organising feature map (Kohonen, 1984). In this approach, a set of 

nodes is joined together dynamically in such a way that it can evolve continuously to 

claim each city in the tour. In another study, Burke (1994) uses a technique known as 

guilty net, which is based on Kohonen's self-organising feature maps, to solve non-

uniformly generated problems to optimality. 

2.3 Tour improvement heuristics 

This section examines local search heuristic and other non-operational research global 

optimisation techniques that include simulated annealing, genetic algorithm and tabu 

search. 

2.3.1 Local search heuristic 

Local search heuristic is a tour improvement heuristic which systematically tries to 

improve a tour after an initial complete tour is found. Most commonly used local 

search heuristics include 2-opt, 3-opt and Lin-Kernighan heuristics (Lin, 1965; Lin and 

Kernighan, 1973). Theoretically r-opt heuristic (where r = 2, 3, 4, ...) improves the 

tour by deleting r existing edges and replacing with r new edges. For example, if r = 2, 

then two edges in the tour are deleted and two new edges are reconnected in a different 

way to obtain a new tour. If the exchange reduces the total distance of the tour, then 

13 



that tour becomes the current solution. If it does not, then another attempt to exchange 

two more edges are carried out. This process is repeated until a tour with the shortest 

distance is found. The running time for r-opt heuristic is proportional to n , where n is 

the number of city (Golden et al, 1980). Theoretically the larger the number of edges 

exchanged, the better the solution is. However, this means the number of exchanges 

needs to be carried out will also increase rapidly and computation cost is increased too. 

Thus 2-opt and 3-opt are usually performed (Golden and Stewart, 1985). In deciding 

which edge to be exchanged, it has been suggested that computational time can be 

saved if the edge with the longest distance can be exchanged at the first instance 

instead of selecting the edges at random (Christofides and Eilon, 1972). 

Lin-Kernighan heuristic is regarded as the best improvement heuristic in the literature 

(Johnson, 1990). It is a variable depth r-opt in which the number of edges to be 

exchanged is decided dynamically at each iteration of improvement, and is not fixed 

(Lawler et al, 1985). Lin-Kernighan heuristic first employs breadth-first search and 

follows by depth-first search in deciding the number of edges of exchange at each 

iteration of improvement (Papadimitriou, 1992; Mak and Morton, 1993). It allows a 

tour length to increase during some stage of the improvement process if it opens up 

new possibilities for achieving considerable improvement later (Reinelt, 1994). For 

this reason it is able to find a better solution compared to r-opt heuristic. 

A major weakness of local search heuristic is its tendency to get stuck at local 

optimum because the heuristic searches for improvement is within the local 

neighbourhood. The quality of the solution relies on local configuration. One way to 

improve the chance of finding better local optimum is to repeat the improvement 

process many times with different initial tours. In another study, Gu and Huang (1994) 
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apply the search space smoothing technique to avoid entrapment of local optimum. A 

pre-processing smoothing technique is applied to transform the objective function to a 

series of simplified functions. Then r-opt is applied to the simpler functions. The 

quality of the solution depends on how the original problem is reduced at each step, 

and how the intermediate solution is used to achieve global optimum. This technique is 

similar in concept to simulated annealing that will be described later. 

Being trapped in local optimum is not the only drawback of local search heuristics. It 

has been proven that finding a local optimum using Lin-Kernighan heuristics for TSP 

is PLS-complete (polynomial-time local search) (Papadimitriou, 1992). In general, 

there is no guarantee to find a tour whose length is bounded by a constant multiple of 

optimal tour lengths, even if an exponential number of steps are allowed 

(Papadimitriou and Steiglitz, 1982). It is not known whether 2-opt and 3-opt are also 

PLS-complete, however it has been shown that for k>3, k-opt is also PLS-complete 

(Johnson, 1990). 

2.3.2 Simulated annealing 

The application of simulated annealing to solve optimisation problems was 

independently proposed by Kirkpatrick et al (1983) and Cerny (1985), and is based on 

the concept of the physical annealing process. The strength of simulated annealing lies 

in a process called uphill move. It allows a neighbourhood move that increases the 

value of the objective function with small and decreasing probability. The acceptance 

or rejection of an uphill move is determined using the Boltzmann probability function 

defined as Prob(E) = exp(-E/kT), where E is the change in energy, T is the temperature 

and k is the Boltzmann constant. The main feature of this approach is it allows the 
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system to jump out of local optimum by taking the uphill move that can lead to a new 

configuration or a new neighbourhood region so that a global optimum is found. 

The quality of the solution depends on the annealing schedule, which determines the 

rate of cooling (Press et al, 1992; Koulamas et al, 1994; Lourenco, 1995). It is during 

this cooling process that simulated annealing sometimes accepts a higher cost function 

than the current solution. This constitutes the uphill move that ensures the solution is 

not trapped in local optimum (Lawler et al, 1985; Press et al, 1992; Koulamas et al, 

1994; Lin and Hsueh, 1994; Jedrzejek and Cieplinski, 1995). Geometric cooling rule is 

usually used to determine the cooling rate (Lourenco, 1995). In general, 

experimentations are often required to determine how the temperature can be changed 

from higher to lower values as well as the amount of time it takes to reach equilibrium 

at that temperature. 

The advantage of simulated annealing is it is not restricted to the problem domain, 

especially if the annealing schedule can be designed appropriately in such a way that 

the temperature is cooled slowly enough. Geman and Geman (1984) show that if the 

temperature is reduced slowly enough, then simulated annealing statistically 

guarantees to find an optimal solution for any arbitrary problem and the solution 

reaches to ground state with a logarithmic schedule. However in practice logarithmic 

cooling can be too slow to reach. Thus the most important factor is to be able to reduce 

the temperature very slowly. However, this will increase the running time, especially if 

the cost function is expensive to compute. In addition, for problems with a smooth 

energy landscape, the use of simulated annealing may be unnecessary as local search 

heuristics may be sufficient. 
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In general, simulated annealing is capable of providing fairly good solutions with short 

computational time if an appropriate annealing schedule is used. To demonstrate this 

feature, Usami and Kitaoka (1997) experimented with 9 known examples of 100 cities 

from literature, and optimal solutions were obtained for 3 problems within 1 minute of 

calculation using Pentium 90 MHz processor. On average the tour length is found to be 

only 0.5% longer than the optimal tour. Experiments conducted by Johnson (1990) 

show that simulated annealing can find a better tour than 3-opt and Lin-Kernighan 

heuristics if sufficient time is allowed. However the increase in running time is 

enormous. 

Simulated annealing can be combined with other heuristics to improve its performance 

(Dowsland, 1995). Lin and Hsueh (1994) develop a hybrid method by combining 

nearest neighbour heuristic with low temperature simulated annealing. Their result is 

within 3 to 5 percent of the optimal value. 

2.3.3 Genetic algorithm 

Genetic algorithm is a global optimisation heuristic based on the principles of natural 

selection and population evolution (Holland, 1975). The principle is to identify high 

quality properties that can be combined into a new population so that the new 

generation of solutions are better than the previous population (Kolen and Pesch, 

1994). Unlike other heuristics that consider only one solution, genetic algorithm 

considers a population of feasible solutions. The algorithm consists of four 

components: selection, crossover, mutation and replacement. The algorithm can be 

described as follow. 
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The population are initialised by randomly generated feasible solutions. Each feasible 

solution is assigned a fitness value. This value is used to determine the probability of 

choosing a solution as the parent solution. An example of fitness value is the tour 

length, and the probability of selecting it as a solution is inversely proportional to the 

length. The solutions with high fitness values will be selected to breed with other 

parent solutions in the crossover step, which can be carried out by exchanging part of 

the tour with another. The aim is to combine good characteristics of parent solutions to 

create new children solutions. It is important in this step to determine an appropriate 

crossover point, such as which edges should be selected so that they can be passed to 

the children solutions. Solutions are mutated through the changes made to the children 

solutions. The aim of mutation step is to ensure diversity in the population. It is not 

necessary to perform mutation step to every solution. A portion of the solution can 

have one or more edges exchanged using some assigned probability. The last step is 

the replacement of current population in which the parent generation is replaced with 

the new population of children solutions. The process is repeated until a convergence 

criterion is satisfied. This can be achieved by repeating for a specific number of 

generations or until the population does not show any further improvement (Laporte et 

al, 1996). 

Crossover and mutation are two important steps in genetic algorithm. Crossover 

ensures better children solutions are generated in the new generation, and mutation 

ensures uphill move is allowed. These two steps form the strength of genetic 

algorithm. More importantly, genetic algorithm conducts the search of optimal solution 

based on the population; in contrast to a single feasible solution in other optimisation 

techniques. This allows genetic algorithm to take advantage of the fittest solution by 

assigning higher probability that can result in better solution. However, it is necessary 
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to use an appropriate fitness function so that the constraints of only one city can be 

visited at one time is taken into consideration. 

It is important to find good parameter settings in order for genetic algorithm to work. 

One of the factors is the determination of population size, because if the population is 

too small, a premature convergence may occur which leads to local optimum. On the 

other hand, if the population is too large, then there may be a significant increase in 

computation time because too many solutions need to be considered. Other factors 

include determination of the crossover point in parent solutions and strategies for 

mutation. The construction of crossover operators should not result in children 

solutions that are too far away from the parent solutions. Similarly, if too many edges 

are selected during the mutation step, it will also increase computation time as too high 

mutation may result in too much diversity. On the other hand, too low mutation may 

result in a sub-optimal solution. Evaluation of fitness values is also important, because 

a too simplistic fitness function may lead to convergence of local optimum. 

Generally genetic algorithm is used as a meta-heuristic that incorporates other 

improvement heuristics such as Lin-Kernighan heuristic. Kolen and Pesch (1994) 

included local search (2-opt and Lin-Kernighan heuristics) with genetic algorithm. 

Their results show that for large problem size, this technique performs better especially 

if there is severe time constraint imposed on the running time. In another study, Tate et 

al (1994) use genetic algorithm to improve tours that have been generated by space 

filling curves. Yip and Pao (1995) develop a technique called guided evolutionary 

simulated annealing that combines simulated annealing with simulated evolution. 

There are two levels of competition: competition-within and competition-between the 

families. Competition within the family is based on simulated annealing, and 
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competition between families measures the fitness of each family that determines the 

number of children that should be generated in the next generation. Experiments have 

been conducted using 10-city and 50-city problems, and results show that there is a 

100% convergence in all test problems. 

2.3.4 Tabu search 

In order to escape local optimum, a global optimisation technique such as simulated 

annealing allows tour length to increase during the process. However, no step is taken 

to prevent the heuristic from revisiting the same local optimum again. Tabu search is 

designed to overcome this problem (Glover, 1990). Tabu search employs short- and 

long-term memory strategies. Short-term memory consists of a tabu list that is used to 

determine if a move is allowed. Long-term memory is used to escape from the local 

optimum and redirect the search to other neighbourhoods. Knox (1994) calls this 

strategy a supervisory heuristic that guides the lower level heuristic performing the 

actual manipulations. 

Tabu restriction and aspiration are two important features in this approach. When 

evaluating the neighbourhood of a solution, some potential solutions are classified as 

tabu or inadmissible. This results in tabu restriction that forbids the move. A tabu 

move can become admissible when an aspiration criterion is satisfied, and it can 

override the tabu move. An example of aspiration criterion is when a tabu move can 

produce a tour that is better than the current best tour (Glover, 1990). 

Tabu list establishes a basis for deciding whether a move under consideration is 

forbidden or otherwise. For example, if 2-edge exchange is used, then a tabu list stores 

the edges that have been deleted. This way any future move that tries to introduce 
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those two edges to the tour is forbidden. Tabu search alternates between different types 

of neighbourhoods (Laporte et al, 1996). It does not stop at the first local optimum. 

The search only stops when a predetermined number of iterations or processing times 

have elapsed. When a local optimum is reached, the search will select a bad move that 

has not been previously examined (Knox, 1994). The principle is that the best move 

that is not tabu is selected, even though it may result in an increase in cost. This way 

the search alternates between different neighbourhoods and allows it to escape from 

poor local optimum and move to other local optimum nearby, resulting in reaching 

new neighbourhood (Laporte et al, 1996). There are different strategies to identify the 

size of the tabu list, Knox (1994) recommends the length of the tabu list be kept at 3n, 

where n is the number of cities. Another approach is to use frequency-based 

information such as the frequency with which a move occurs in the search. For 

example, in an attempt to diversify the search, frequently occurring moves can be 

classified as tabu (Glover and Laguna, 1993; Xu and Kelly, 1996). 

Results from Knox (1994) suggest that tabu search outperforms 2-opt and 3-opt when 

the size of the problems increases. The advantages of tabu search include 

independence of problem domain and flexible memory structure. However the success 

of the technique is dependent on selecting appropriate parameters for the tabu list. 

Table 2.2 summarises the features, advantages and disadvantages of tour improvement 

heuristics that have been discussed above. 
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Method 

r-opt 

Simulated 
annealing 

Genetic 
algorithm 

Tabu 
search 

Feature 

The use of neighbourhood 
structure in search of 
optimal solution 

The use of annealing 
schedule to search for 
global optimal solution 

The use of crossover and 
mutation in a population of 
feasible solutions 

The use of tabu restriction 
and aspiration criteria to 
forbid and override a move 
respectively 

Advantages 

Search within it its local 
neighbourhood 

Easy to implement 

Provide reasonable 
solutions 

Domain independence 

Robust 

Ease of modification 

Parallel nature 

Independent of problem 
domain 

Flexible memory structure 

Disadvantages 

Get stuck at a local 
optimum configuration 

Long running time needed 
for convergence 

Difficult to implement 
crossover operation to 
ensure that the problem 
structure is reflected during 
the crossover process 

Solution quality depends on 
appropriate management of 
tabu restriction and 
aspiration criteria 

Table 2.2: Summary of local and global optimisation techniques 

2.4 Branch and bound method 

Branch and bound is an exact method in Operation Research that can be used to find 

optimal solution. In general, the branch and bound method solves problems by 

breaking up feasible solutions into a collection of subproblems. The approach performs 

branching and bounding operations and testing of elimination rule (Gendron and 

Crainic, 1994). The branching process partitions the problem into subproblems, and 

the bounding process keeps track of the best candidate found so far based on the upper 

and lower bounds of the subproblem (Baker, 1974). The search space can be 

represented in a form of a tree, where the root represents the original problem and the 

children of a given node as the subproblems obtained by the branching process 

(Viswanathan and Bagchi, 1993). The subproblems generated from the branching 

process are mutually exclusive. While the tree is generated, each child of a given node 

is said to be in one of three states: generated, evaluated or examined (Gendron and 

Crainic, 1994). A generated subproblem is evaluated when a bounding process has 
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been applied. It is examined to determine whether a branching operation needs to be 

applied to it or whether the elimination rule is applied to show that it can be pruned 

off. Subproblems that do not lie within the bound are eliminated from further 

consideration. In each instance, lower and upper bounds are revised. The process is 

repeated until the optimal solution is found. A common approach to generate 

subproblems is to use the Carpaneto and Toth's branching rule (Carpaneto and Toth, 

1980). This branching rule generates subproblems by including and excluding certain 

edges during the branching process. In the branch and bound approach, the order of the 

tree is often depth-first search (Viswanathan and Bagchi, 1993). The disadvantage of 

this is possible erroneous decisions made cannot be corrected until late in the search 

process (Lawler et al, 1985). 

The performance of branch and bound algorithm depends on the quality of the lower 

and upper bounds. Experiments have shown that assignment problem can provide an 

excellent lower bound for asymmetric problem (Lawler et al, 1985; Miller and Pekny, 

1991). For symmetric problem, 1-tree is commonly used as lower bound (Reinelt, 

1994). The upper bound can be set at an arbitrary large value. Alternatively, the upper 

bound can be determined using heuristics. For example, Karp's patching algorithm 

(Karp, 1979), which is based on assignment problems with a patching operation that 

joins subtours into one by deleting and inserting edges in the subtours, is commonly 

used as upper bound (Miller and Pekny, 1991; Carpaneto et al, 1995; Zhang, 1999). 

Padberg and Rinaldi (1991) develop branch and cut algorithm to solve large symmetric 

TSP. The lower bound in this approach is obtained from linear programming 

relaxations. According to Padberg and Rinaldi (1991, p.62), the core of the algorithm 

is "the polyhedral cutting plane procedure that exploits a subset of the system of linear 
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inequalities defining the convex hull of the incidence vectors of the Hamiltonian cycles 

of a complete graph". There are four key elements in this algorithm: a heuristic 

procedure to find good upper bound, the quality and quantity of cuts generated, 

efficient use of linear programming solver, and an efficient tree search approach that 

combines branching with cutting plane. 

2.5 Conclusion 

This chapter has reviewed various commonly used heuristics to solve traveling 

salesman problem. From literature review, it can be seen that extensive research has 

focussed on designing and developing methods that are capable of improving tour so 

that an optimal solution is obtained. However, there has been relatively little research 

on using tour construction heuristics to obtain optimal solution. In fact, tour that is 

built using tour construction heuristics often needs to be improved using tour 

improvement heuristics so that a better solution can be found. The poor quality of 

solution obtained using tour construction heuristics can be attributed to these 

algorithms being greedy approaches. The tour configuration does not change during 

the tour construction process and the tour is often constructed using local distance 

information, which results in the approach being myopic. On the other hand, the key 

element of local search heuristics is to use edge-exchange method to change the tour 

configuration in such a way that other neighbourhood can be explored. This way a 

better solution can be found. Similarly in global optimisation heuristics, the aim is to 

ensure that other neighbourhood regions can be explored so that the solution is not 

locally optimal. 
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Literature review has also shown that traveling salesman problem can be solved to 

optimality using operations research method such as branch and bound. At the same 

time, researchers have used concepts in non-operations research area such as physical 

science (simulated annealing), biology (genetic algorithm) and artificial intelligence 

(neural networks) to solve the problem. However, there is little research in using 

heuristic learning algorithm to address the problem. In particular, using heuristic 

learning algorithm to investigate methods that allow tour configuration to change 

during the tour construction process and to address the greedy and myopic nature of 

tour construction heuristics. This research seeks to address these issues by 

demonstrating that the well-developed heuristic learning algorithm in artificial 

intelligence may present another approach in addressing the traveling salesman 

problem. In particular, the research aims to investigate the application of a heuristic 

learning algorithm to address the greedy and myopic natures of tour construction 

heuristics. 
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CHAPTER 3: TOUR CONSTRUCTION USING 

HEURISTIC LEARNING APPROACH 

3.1 Introduction 

In traditional tour construction heuristics, the tour is built from scratch and the node is 

added one at a time until a complete tour is found. This is a greedy approach in which 

part of the tour that is already built remains unchanged, and no attempt is made to 

change the tour configuration. In addition, this approach is myopic as it often relies on 

local distance information to build tour. Reinelt (1994) points out that in general, 

constructing a tour using only tour construction heuristics alone will not lead to 

optimal solution. It often needs to be improved using tour improvement heuristics such 

as 2-opt or Lin-Kernighan heuristics, which made improvement to the tour by 

exchanging edges until a shorter tour is found. This chapter investigates the application 

of a heuristic learning algorithm to address the greedy and myopic natures of tour 

construction heuristics. 

A heuristic learning algorithm called Search and Learning A* algorithm (SLA*) will 

be applied. The feature of SLA* is the application of heuristic learning to update and 

improve the initially under-estimated heuristic estimates, which will lead to the 

improvement of state selection decisions and an optimal solution when the goal state is 

reached. Before SLA* can be applied, the problem needs to be transformed to a state-

space representation. Therefore a state-space transformation process, which consists of 

state definition, transition cost and a state transition operator will be investigated. In 
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addition, the implementation of S L A * requires a non-overestimating heuristic estimate 

to be determined. The heuristic estimate of a state represents an estimate of solution 

from that state to the goal state, therefore a suitable method to compute the heuristic 

estimation is important and will be investigated. The heuristic learning mechanism of 

SLA* allows the algorithm to update the heuristic estimates of visited states, and thus 

modify the tour configuration along the search process. However, to prevent the search 

space from becoming too large when SLA* is implemented, a suitable search strategy 

based on the geometric properties of TSP will be explored. 

This chapter is organised as follows. Section 2 examines the Search and Learning A* 

algorithm (SLA*). Section 3 investigates implementation issues when SLA* is 

applied. The investigation includes identifying the state-space transformation process, 

and an appropriate method of computing non-overestimating heuristic estimate. A 

search strategy that utilises the concept of Delaunay triangulation will be examined. 

Section 4 outlines the step-by-step application procedure of SLA*-TSP algorithm 

(Search and Learning A* algorithm for Traveling Salesman Problems). An example is 

included to demonstrate the working of the algorithm. Section 5 examines the 

approach of finding approximate solutions by introducing the notion of learning 

threshold to SLA*-TSP. The conclusion follows in Section 6. 

3.2 Search and Learning A* algorithm 

Search and Learning A* algorithm (SLA*) is a real time admissible heuristic learning 

algorithm, which uses the heuristic evaluation function to estimate the relative merit of 

different states to the goal state (Zamani, 1995). The search path improvement feature 
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of S L A * requires the initial estimate of a state to be non-overestimating so that it m a y 

be improved during the search process. The algorithm of SLA* is described as follows. 

The rationality of this algorithm is that a state that is further away from the goal state 

should have a larger heuristic estimate. From a front state x, the state selection process 

is based on the minimum increment of the heuristic function f(y) = k(x,y) + h(y), 

where k(x,y) is the positive true edge cost from state x to its neighbouring state y, and 

h(y) is the heuristic estimate of state y. The algorithm will first identify the state with 

the minimum f(y), and then compares it with h(x) to decide if h(x) can be improved. If 

it does, heuristic learning is said to occur. This relationship can be expressed as h(x) > 

min (k(x,y) + h(y)}. Hence, if h(x) is not smaller than minimum f(y), then this 

relationship is true, and the state with minimum f(y) is added to the search path as the 

new front state. From this new state, the algorithm continues the search operation. If 

this heuristic relationship is not true, then h(x) is too much under-estimated and it can 

be updated to this minimum f(y), then the new h(x) is replaced with the minimum of 

{k(x,y) + h(y)}, and still remains as non-overestimating. 

Due to the fact that the selection criterion of a state is based on the heuristic estimate 

of its neighbouring states, the update of h(x), a larger value than before, may invalidate 

the selection of its previous state (x-1). In order to reflect the effect of the new h(x) to 

the search path, the algorithm conducts a backtracking operation by applying the above 

rationale to the state (x-1) to see if h(x-l) can be updated. If h(x-l) is updated, then its 

previous state (x-2) will need to be reviewed too. In this way, the states of the search 

path will be reviewed one by one in the reverse order. Along the way, any state whose 

heuristic estimate has been improved is detached from the path, because the 

improvement casts doubt on the validity of its previous minimum heuristic function 
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status. This review process continues until it reaches either the state whose heuristic 

estimate remains unchanged after it has been examined for heuristic learning, or the 

root state if the algorithm backtracks all the way to the root state, and then the 

algorithm resumes the search from this state. As a result, before the resumption of the 

search path, the algorithm would have completely updated the earlier path. Hence the 

search path that is to be developed subsequently, before the next heuristic learning, 

will be a minimum path. When the goal is reached, the path is an optimal path and 

represents a complete solution. This algorithm can be expressed in the following steps: 

Let k(x,y) be the positive edge cost from state x to a neighbouring state y, and 

h(x) be the non-overestimating heuristic estimate from state x to the goal 

state. 

Step 1: Put the root state on the backtrack list called OPEN. 

Step 2: Call the top-most state on the OPEN list x. If x is the goal state, stop; 

otherwise continue. 

Step 3: Evaluate [k(x,y) + h(y)] for every neighbouring state y of x, and find the state 

with the minimum value. Call this state x'. Break ties randomly. 

Step 4: If h(x) > [k(x,x') + h(x')], add x' to the OPEN list as the top-most state and 

go to step 2. Otherwise replace h(x) with [k(x,x') + h(x')]. 

Step 5: If x is not the root state, remove x from the OPEN list. 

Step 6: Go to step 2. 
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3.3 Implementation issues 

This section investigates the implementation issues of SLA* on Euclidean TSP, where 

cities are given as points in a two-dimensional plane and their distance is computed 

using Euclidean distance. In order to apply SLA*, a state-space transformation method 

that can formulate the problem into state-space problem must first be developed. A 

state-space transformation approach, which consists of state definition, state transition 

operator and state transition cost, will be examined. Next, a suitable method to 

compute the heuristic estimation will be investigated. Finally, a search strategy that 

utilises geometric properties of TSP is explored. The concepts of Delaunay 

triangulation will be examined and explored so that an efficient search approach can be 

developed. This is important to ensure that the search space does not become too large, 

which can influence the performance of the algorithm. 

3.3.1 State space transformation approach 

The state space transformation process includes state definition, state transition 

operator and state transition cost. 

Definition of state 

A state is defined as a tour, consisting of selected cities and the remaining unvisited 

cities of a given problem. The selected cities form a partially incomplete tour, which is 

a closed tour by connecting cities in the order of their selection and connecting the last 

city to the city of origin. A partial tour becomes a complete tour when all cities are 

included. 
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The status of a city at a given moment is in one of the following two sets: partial tour 

P, or unvisited cities U. The root state consists of the city of origin, which can be 

selected randomly. Let the city of origin be denoted as city 1, then the root state can 

be expressed as {(1,1),U}, with U=(2,3,...,n), and the goal state is {(l,2,...,n,l), 0}. A 

given state Si, can be represented as ((l,2,...,i,l),{U}), where i is the last city added to 

the tour and U is (i+l,i+2,...,n). 

State transition 

For a given state Si, {(1,2,.. .,i,l),(U)}, where i is the last city added to the partial tour, 

the transition to the next state Sj+i is through the selection of a city from the 

neighbouring cities of i, which are in the unvisited set U. The selection criterion is the 

minimum increment of tour length. 

State transition cost 

The transition cost from a parent state Sj to a child state S;+i is the increment in distance 

between states Si and Si+i, which is [d(i,i+l)+d(i+l,l)-d(i,l)] with d(i,j) = 

yl(xi - xj)2 +(yi-yj)2 being the Euclidean distance between two cities i(xi,yO and 

j(xj,yj). 

3.3.2 Heuristic estimation of each state 

A minimal spanning tree is a spanning tree that connects all nodes such that its cost is 

minimum (Lawler et al, 1985). Among the possible lower bound estimates of a partial 

tour, minimal spanning tree is used to compute the non-overestimating heuristic 

estimate. For a state Si, the heuristic estimate is the cost of the minimal spanning tree 

on the remaining (n-i) unvisited cities, where n is the number of cities. Either Prim's 
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algorithm (Prim, 1957) or KruskaPs algorithm (Kruskal, 1956) can be used to calculate 

the minimal spanning tree. In this research, Kruskal's algorithm is used. It works by 

maintaining a set of partial minimum spanning trees, and repeatedly adds the shortest 

edge so that it joins two trees together. If a cycle is formed, then this edge is ignored 

and the next shorter edge is added. The process is repeated until (n-1) edges are added 

to form the spanning tree, where n is the number of nodes. The running time of 

Kruskal's algorithm is 0((n+m)log(n+m)), where m and n are the number of edges and 

nodes respectively (Mehlhorn and Naher, 1999). 

3.3.3 Search strategy 

The size of the solution space of the traveling salesman problem is exponential in term 

of problem size, therefore it is necessary to control the search space so that it is not 

rapidly becoming too large. An efficient search strategy is very important. Otherwise, 

the number of possible tours to be considered will increase rapidly. The approach is to 

consider only those edges that are likely to result in an optimal tour, and useless edges 

that are unlikely to result in optimal tour should not be considered in the search 

process. The geometric properties of the point sets will be exploited for this purpose. 

One of the computational geometry concepts that can be used to obtain information 

about the structure of point sets is Delaunay triangulation. Therefore, a searching 

framework that is based on properties of Delaunay triangulation will be examined. In 

the following, the concept of Delaunay triangulation will be explained. However, the 

concept of Voronoi diagram, which is a geometric dual of Delaunay triangulation, will 

be examined first. 

The concept of Voronoi diagram is based on proximity of points in the plane. It 

partitions the plane into a set of polygons, called Voronoi regions, so that each polygon 
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consists of points closer to one than to any others. Reinelt (1994) defines Voronoi 

diagram as follows: the Voronoi diagram divides the set of points into a set of 

polygons of which the boundaries are perpendicular bisectors between two points. The 

Voronoi diagrams can be constructed using the divide and conquer algorithm, in 

(nlogn) time (O'Rourke, 1998). The algorithm is given in Figure 3.1. 

Step 1: Partition S into two subsets Si and S2 of approximate size. 

(This step can be done using median value of x-coordinates.) 

Step 2: Construct the Voronoi diagram of Si and S2 recursively. 

Step 3: Merge Voronoi diagram of Si and S2 to form the total 

diagram. 

Figure 3.1: Divide and conquer algorithm (O'Rourke, 1998) 

Voronoi diagram can be used to solve the nearest neighbour problem, and it allows the 

proximity question to be answered. Examples of applications that can be solved using 

Voronoi diagram include cluster analysis, collision detection, facility location, path 

planning, associative file sharing and others (Preparata and Shamos, 1985; 

Aurenhammer, 1991; O'Rourke, 1998). In cluster analysis, Voronoi diagram is used to 

partition a set of data into groups in which similar data are organised. In facility 

location problem, Voronoi diagram is used to identify a site in which a facility, such as 

a shop, can be built farthest from its nearest competitor. In collision detection, Voronoi 

diagram is used for proximity detection so that a robot can stop before a collision 

occurs. 

Delaunay triangulation is the geometric dual of Voronoi diagram. Therefore, the 

structure of Delaunay triangulation is very closely related to Voronoi diagram. The 

duality of Voronoi diagram and Delaunay triangulation implies that the edges of 
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Delaunay triangulation are orthogonal to their corresponding Voronoi edges (Reinelt, 

1994). It can be constructed based on the largest empty circle property derived from 

Voronoi diagram, which states no other point in the point sets should fall in the interior 

of the circumcircle of any triangle in the triangulation (Aurenhammer, 1991; 

O'Rourke, 1998). The running time of this approach is of the order O(nlogn), where n 

is the number of points (O'Rourke, 1998). The procedure of the largest empty circle is 

shown in Figure 3.2. 

Step 1: Compute the Voronoi diagram VR(Pj) for all i = 1,2,...,n. 

Step 2: Compute the convex hull H. 

Step 3: For each Voronoi vertex v do 

if v is inside H then compute radius of circle centred 

on v and update maximum value. 

Step 4: For each Voronoi edge e do 

compute the intersection of e with the convex hull 

boundary, call this point p, 

compute radius of circle centred on p and update 

maximum value, 

Step 5: Return maximum value. 

Figure 3.2: Largest empty circle algorithm (O'Rourke, 1998) 

There are two important properties of Delaunay triangulations that are related to this 

research: the boundary of Delaunay triangulation is the convex hull of the point sets, 

and minimal spanning tree is a subset Delaunay triangulation (Aurenhammer, 1991; 

O'Rourke, 1998). For an n-city problem, there are at most (3n-6) edges and (2n-4) 

triangles formed by Delaunay triangulation (Reinelt, 1994). Although in general 

Delaunay triangulation does not contain a traveling salesman tour, it has been shown 
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that there is a high probability that the edges appear in the optimal tour of TSP are also 

edges of Delaunay triangulation (Aurenhammer, 1991; Stewart, 1992; Krasnogor et al, 

1995; Phan, 2000). Therefore, Delaunay triangulation can provide good information 

about the location of promising edges to be considered as part of the optimal tour. It is 

obvious that one can utilise Delaunay triangulation as a search strategy to locate 

promising neighbouring city that will lead to optimal tour. Figures 3.3 and 3.4 show 

Voronoi diagram and Delaunay triangulation of an 8-city problem respectively. 

Figure 3.3: Voronoi diagram of an 8-city problem 

Figure 3.4: Delaunay triangulation of an 8-citv problem 
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3.4 The proposed heuristic learning algorithm -

SLA*-TSP 

This section describes SLA* algorithm that takes account of Delaunay triangulation as 

part of the search strategy. This algorithm was developed using the state space 

transformation process and the heuristic estimation approach using minimal spanning 

tree identified in the previous section. In the algorithm, the completed tour length for 

state Si is computed rather than the heuristic estimate of S,. This allows the estimated 

tour length to be compared. However, the result is the same as that when the heuristic 

estimate is computed. The algorithm, acronym as SLA*-TSP (Search and Learning 

Algorithm for Traveling Salesman problems), is given as follows: 

Let Sj be the 1th state with its tour Pj(l,2,...,i,l), where 1 is the city of origin and i 

is the last city of the tour. Its heuristic estimate h(i) is the minimum 

spanning tree of the remaining (n-i) cities. Sj is the goal state when i = n. 

d(i,j) be the Euclidean distance between city i and city j. 

H(i) be the estimated tour length for Si, which consists of the tour pj and h(i). 

Step 0: Apply Delaunay triangulation algorithm to find neighbouring nodes for each 

city. 

Step 1: Locate the city of origin as the one with the smallest x-coordinate; choose 

the city with the largest y-coordinate to break ties. 

Step 2: Put the root state on the backtrack list called OPEN. 
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Step 3: Call the top-most state on the O P E N list S;. If S; is the goal state, stop. 

Otherwise continue. 

Step 4: Find the (i-H)* city with min{[d(l,2)+d(2,3)+.. .+d(i-l,i)+d(i,i+l)+d(i+l,l)] 

+h(i+l)} from neighbouring cities of i; break ties randomly. If no 

neighbouring city of i can be found, go to step 6. 

Step 5: If {[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)} > min{[d(l,2)+d(2,3)+...+d(i-

l,i)+d(i,i+l)+d(i+l,l)] + h(i+l)}, add Si+i to the OPEN list as the top-most 

state; otherwise replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)]. 

Step 6: Remove Si from OPEN list if it is not the root state. 

Step 7: Go to step 3. 

3.4.1 Example 

An example of an 8-city problem (see Figure 3.4, page 35) is included in this section to 

demonstrate the working of SLA*-TSP. This section describes the procedures when 

the algorithm is applied. The problem is obtained from Gendreau et al (1992). The 

complete search process in finding an optimal solution is summarized in Table 3.1. In 

the table, each row represents one attempt to locate a tour as far as possible without 

incurring heuristic learning. The search path in each row is disrupted as soon as the 

estimated tour length of a newly selected state is greater than that of its parent state. 

Thus the last state of each row is the one that has a larger estimated tour length and 

causes the backtracking. When this happens, the algorithm will update the estimated 

tour length of its parent state. The upper entry in each cell represents a state, and the 

lower entry is the estimated tour length of that state. The search process consists of 
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both forward searching and backward updating. In order to maintain the simplicity of 

the table, only the forward searching part in each row is presented. The heuristic 

updating and the backtracking process of the algorithm is not shown, instead an 

asterisk ("*") is used to indicate the state where backtracking ends and the new round 

of forward search begins. The following describes the steps and procedures when 

SLA*-TSP is applied. 

Iteration 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

Root | Level-1 
state 
(4,4) * 
13070 
(4,4)* 
15891 
(4,4)* 
18548 
(4,4)* 
19348 
(4,4)* 
20415 
(4,4)* 
20424 
(4,4)* 
20740 
(4,4)* 
20982 

(4,4)* 
21037 
(4,4) 
21037 
(4,4)* 
21054 
(4,4)* 
21429 
(4,4) 
21429 
(4,4)* 
21445 
(4,4)* 
21650 
(4,4)* 
21678 
(4,4)* 
22171 
(4,4)* 
22274 
(4,4)* 
22300 

(4,1,4) 
15891 
(4,1,4) 
15891 
(4,1,4) 
18548 
(4,7,4) 
19348 
(4,5,4) 
20415 
(4,8,4) 
20424 
(4,3,4) 
20740 
(4,3,4) 
20982 

(4,5,4) 
21037 
(4,8,4)* 
21037 
(4,8,4) 
21054 
(4,1,4) 
21429 
(4,1,4) 
21429 
(4,1,4) 
21445 
(4,3,4) 
21650 
(4,8,4) 
21678 
(4,5,4) 
22171 
(4,3,4) 
22274 
(4,8,4) 
22300 

Level-2 

(4,1,7,4) 
15740 
(4,1,7,4) 
18548 
(4,7,8,4) 
22569 
(4,5,3,4) 
20360 
(4,8,5,4) 
21037 
(4,3,5,4) 
20360 
(4,3,5,4) 
20982 

(4,5,8,4) 
2 1 0 3 7 ^ 
(4,8,5,4) 
21037 
(4,8,5,4) 
21054 
(4,1,7,4) 
21429 
(4,1,7,4) 
21429 
(4,1,7,4) 
21445 
(4,3,5,4) 
21650 
(4,8,5,4) 
21678 
(4,5,3,4) 
22171 
(4,3,5,4) 
22274 
(4,8,5,4) 
22300 

Level-3 

(4,1,7,8,4) 
18548 
(4,1,7,8,4) 
18548 

(4,5,3,2,4) 
22171 

(4,3,5,8,4) 
20982 
(4,3,5,8,4) 
20982 

(4,5,8,7,4) 
23310 
(4,8,5,3,4) 
20982 
(4,8,5,3,4) 
21054 
(4,1,7,8,4) 
21429 
(4,1,7,8,4) 
21429 
(4,1,7,8,4) 
21445 
(4,3,5,8,4) 
21650 
(4,8,5,3,4) 
21678 
(4,5,3,2,4) 
22171 
(4,3,5,8,4) 
22274 
(4,8,5,3,4) 
22300 

Level-4 

(4,1,7,8,5,4) 
18464 

(4,3,5,8,2,4) 
21650 

(4,8,5,3,2,4) 
21054 
(4,8,5,3,2,4) 
21054 
(4,1,7,8,2,4) 
21429 
(4,1,7,8,2,4)* 
21429 
(4,1,7,8,5,4) 
21445 
(4,3,5,8,2,4) 
21650 
(4,8,5,3,2,4) 
21678 
(4,5,3,2,8,4) 
20353 
(4,3,5,8,2,4) 
22274 
(4,8,5,3,2,4) 
22300 

Level-5 

(4,1,7,8,5,3,4) 
18409 

(4,8,5,3,2,6,4) 
21678 
(4,1,7,8,2,5,4) 
20744 
(4,1,7,8,2,3,4)* 
21142 
(4,1,7,8,5,2,4) 
21445 
(4,3,5,8,2,6,4) 
22274 
(4,8,5,3,2,6,4) 
21678 
(4,5,3,2,8,6,4) 
23384 
(4,3,5,8,2,6,4) 
22274 
(4,8,5,3,2,6,4) 
22300 

Level-6 

(4,1,7,8,5,3,2,4) 
16964 

(4,1,7,8,2,5,3,4) 
16793 
(4,1,7,8,2,3,5,4) 
16263 
(4,1,7,8,5,2,3,4) 
16643 

(4,8,5,3,2,6,7,4) 
21210 

(4,3,5,8,2,6,7,4) 
21806 
(4,8,5,3,2,6,7,4) 
22300 

Level-7 

(4,1,7,8,5,3,2,6,4) 
24122 

(4,1,7,8,2,5,3,6,4) 
26402 
(4,1,7,8,2,3,5,6,4) 
26236 
(4,1,7,8,5,2,3,6,4) 
26252 

(4,8,5,3,2,6,7,1,4) 
22300 

(4,3,5,8,2,6,7,1,4) 
28896 
(4,8,5,3,2,6,7,1,4) 
22300 

Table 3.1: Summarised search process for 8-city problem 
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Initially the neighbouring edges for each city in the problem are identified using 

Delaunay triangulations (see Figure 3.4, page 35). In this example, the city of origin is 

selected using the minimum x-coordinate. Therefore the city of origin is city 4: the 

corresponding root state is {(4,4),U}5 and its heuristic estimate to the goal state is the 

minimal spanning tree of the remaining unvisited cities U (i.e. cities 1,2,3,5,6,7,8), 

which is 13070. For simplicity, from hereafter only the tour part of a state is shown, 

and its unvisited states U is not given. The selection of the next city to join the tour is 

made from the five neighbouring cities (1,3,5,7,8) of city 4 obtained from the edges of 

Delaunay triangulations. Thus the corresponding front states are: (4,1,4), (4,3,4), 

(4,5,4), (4,7,4) and (4,8,4). Step 4 of the algorithm makes the selection by finding the 

state with the smallest estimated tour length. As shown in row 1, state (4,1,4) is 

selected with a smaller value of 15891 = 10785 (heuristic) + 5106 (tour), which is 

greater than 13070 of its parent state (4,4). Step 5 of the algorithm updates the parent 

state with this new value 15891, and backtracks to its parent state (4,4). 

In row 2, the algorithm starts from (4,4). It again selects (4,1,4), and because of no 

heuristic updating involved, the state (4,1,4) becomes the new front state. For the state 

selection of the next round, the candidate edge set shows that promising neighbouring 

cities include 1, 4 and 7, as shown in Figure 3.4. Since the last city that was added to 

the tour is 1, then the states to be considered are those of its neighbouring cities 4 and 

7. City 4 is not eligible because it was in the tour already. Hence, the next state to 

consider is (4,1,7,4). Its estimated tour length is 15740 = 7154 (heuristic) + 8586 

(tour). This value is not greater than 15891 of its parent state, hence state (4,1,7,4) 

becomes the new front state. From city 7 (which was the last city added to the partial 

tour), only cities 6 and 8 are eligible for consideration. The estimated tour lengths of 

these two corresponding states are 23093 and 18548 respectively. State (4,1,7,8,4) is 
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selected for having a smaller value of 18548. However, this value is larger than 15740 

of its parent state (4,1,7,4). Hence, the estimated tour length of (4,1,7,4) is updated to 

18548, and the algorithm backtracks to (4,1,4). From (4,1,4), the state (4,1,7,4) is 

selected with an estimated tour length of 18548, which updates that of (4,1,4) to 

18548. The algorithm then backtracks to the root state (4,4). The selection of state 

(4,1,4) leads to the update of the estimated tour length of state (4,4) from 15891 to 

18548. 

Row 3 shows the search from the newly updated state (4,4). The search path shows 

states (4,1,4), (4,1,7,4), (4,1,7,8,4), (4,1,7,8,5,4), (4,1,7,8,5,3,4), (4,1,7,8,5,3,2,4) and 

stops at (4,1,7,8,5,3,2,6,4). At state (4,1,7,8,5,3,2,6,4), its estimated tour length 24122 

is greater than 16964 of its parent state (4,1,7,8,5,3,2,4). This causes the algorithm to 

backtrack. The algorithm backtracks all the way to the root state (4,4), and its 

estimated tour length is updated to 19348. With this new value, row 4 shows the next 

search path. 

In row 4, there are three possible child states: (4,7,1,4), (4,7,6,4) and (4,7,8,4). The 

state (4,7,1,4) is pruned from consideration because city 1 does not have an unvisited 

neighbouring city to allow the state generation to continue. Thus, there are only two 

possible child states: (4,7,6,4) and (4,7,8,4). It is found that state (4,7,8,4) with tour 

estimated tour length of 22569 is the state with the minimum estimated tour length. 

This value is greater than 19348 of its parent state, and causes the algorithm to 

backtrack. The algorithm backtracks to the root state (4,4), and its estimated tour 

length is updated to 19348. With this new value, row 5 shows the next search path. 

The same procedure is followed and steps are repeated until there is no more 

backtracking and heuristic learning, in which case optimal solution is found. Table 3.1 
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shows the summarised search process. The table shows that the algorithm takes 19 

forward search trials to reach an optimal solution of 22300 with the optimal tour being 

(4,8,5,3,2,6,7,1,4). 

3.5 SLA*-TSP with learning threshold 

For problems where optimal solutions with reasonable computation time and cost are 

not feasible, the next best approach is to find approximate solutions of known quality. 

Search and learning A* algorithm with learning threshold is an algorithm that produces 

solutions guaranteed to be within a specific range of optimal solution (Zamani, 1995). 

SLA* with learning threshold can be applied to TSP with the knowledge that one can 

predict the quality of the approximate solution, because the solution found is within the 

range of this learning threshold. The algorithm works by employing learning threshold 

as an agent that delays the backtracking operations. The rationale of SLA*-TSP with 

learning threshold is explained as follows. 

Before the algorithm with learning threshold is applied, one needs to decide the quality 

of the desired approximate solution. This is measured by how far the approximate 

solution should be positioned away from the optimal solution. This range will be the 

value of the learning threshold to be included in SLA*-TSP. The concept of learning 

threshold is used to delay the backtracking operations. In SLA*-TSP, backtracking 

takes place as soon as the minimum value of heuristic estimate of the front state 

exceeds its parent state. When this occurs, heuristic learning is said to have taken 

place. In the case of SLA*-TSP with learning threshold, backtracking may not 

necessary take place when heuristic learning occurs. Instead, it will only take place 

when the accumulated heuristic learning exceeds the learning threshold. Therefore 
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every time a heuristic learning takes place, the learning threshold is reduced by the 

amount of heuristic learning incurred. In this case, the value of the learning threshold 

is constantly being updated, and backtracking only takes place when the heuristic 

learning exceeds the updated value of learning threshold. Then backtracking operation 

occurs, and it will stop either until the root state is reached or until the heuristic 

learning no longer exceed the updated value of learning threshold. When the 

accumulated heuristic learning does not exceed the updated value of learning 

threshold, forward search operations continue. This way, the learning threshold acts as 

a guide to initiate the backtracking operations by comparing it with the accumulated 

heuristic learning. 

In summary, backtracking is activated only when the accumulated heuristic learning 

exceeds the prescribed learning threshold. The learning threshold approach allows 

approximate solution with known quality to be determined, and more importantly the 

maximum amount of sacrifice is known before hand. 

The algorithm of SLA*-TSP with learning threshold is described as follows: 

Let Si be the 1th state with its tour Pj( 1,2,... ,i, 1), where 1 is the city of origin and i 

is the last city of the tour. Its heuristic estimate h(i) is the minimum 

spanning tree of the remaining (n-i) cities. Sj is the goal state when i = n. 

d(i,j) be the Euclidean distance between city i and city j. 

H(i) be the estimated tour length for Si, which consists of the tour pi and h(i). 

t = initial learning threshold 

42 



Step 0: Apply Delaunay triangulation algorithm to find neighbouring nodes for each 

city. 

Step 1: Randomly select a city as the city of origin. 

Step 2: Put the root state on the backtrack list called OPEN, and initialise learning 

threshold t' to the initial learning threshold (i.e. t' = t), and set search mode = 

forward. 

Step 2: Call the top-most state of the OPEN list Si. If Si is the goal state, stop. 

Otherwise continue 

Step 3: Find the (1+1)* city with min{[d(l,2)+d(2,3)+.. .+d(i-l,i)+d(i,i+l)+d(i+l,l)] 

+h(i+l)} from neighbouring cities of i; break ties randomly. If no 

neighbouring city of i can be found, remove Sj from the OPEN list if it is not 

the root state, and return to step 2. 

Step4: Let learning = min{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,i+l)+d(i+l,l)] +h(i+l)}-

{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)}. If no learning has occurred (i.e. 

learning < 0), then add Si+i to the OPEN list as the top-most state and return 

to step 2. 

Step 5: If search mode = forward and heuristic learning has occurred but the value of 

the learning is less than or equal to the learning threshold t' (i.e. learning > 0 

and learning < t'), then update t' by deducting the amount of learning that has 

taken place (i.e. t'= {f- learning}) and replace h(i) with [d(i,i+l)+d(i+l,l) + 

h(i+l) - d(i,l)], add Si+i to the OPEN list as the top-most state, and return to 

step 2. 
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Step 6: If search mode = forward and heuristic learning has occurred but the value of 

the learning is more than the learning threshold t' (i.e. learning > 0 and 

learning > t'), then replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)] and 

set the search mode = backtrack. Remove Sj from the OPEN list if it is not 

the root state, and return to step 2. 

Step 7: If search mode = backtrack and learning has occurred (i.e. learning > 0), then 

replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)], remove S; from the 

OPEN list if it is not the root state, and return to step 2. 

Step 8: If search mode = backtrack and no learning has occurred (i.e. learning < 0), 

then set search mode = forward and initialise learning threshold to the initial 

learning threshold (i.e. t' = t), add Si to the OPEN list as the top-most state, 

and return to step 2. 

3.5.1 Examples 

The same 8-city problem is used to demonstrate the working of SLA*-TSP with 

learning threshold. Tables 3.2, 3.3 and 3.4 show the search process of the 8-city 

problem with a learning threshold equals to 10%, 20% and 30%, respectively from the 

optimal solution. The optimal solution for the 8-city problem is 22300 (see Section 

3.4.1). Therefore, the learning threshold prescribed for each of the three cases are 

t=2230, t=4460 and t=6690, respectively. To simplify the presentation, as in Table 3.1, 

only forward search operations are shown in the tables. It takes eleven forward search 

operations to find the optimal tour of (4,8,5,3,2,6,7,1,4) with length equal to 22300 

when the learning threshold is at 10%. In Table 3.3, with the learning threshold is 

20%, the solution found is also an optimal solution and it only takes five forward 
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operations. With learning threshold of 3 0 % , although the solution found is not an 

optimal solution (tour length obtained is 24006), it is within the predicted range and it 

is 30%o away from the optimal solution. 

Iteration 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Root 
state 
(4,4) * 
13070 
(4,4)* 
15891 
(4,4)* 
18548 
(4,4)* 
19348 
(4,4)* 
20415 
(4,4)* 
20424 
(4,4)* 
20740 
(4,4)* 
21037 
(4,4)* 
21429 
(4,4)* 
21445 
(4,4)* 
22300 

Level-1 

(4,1,4) 
15891 
(4,1,4) 
15891 
(4,1,4) 
18548 
(4,7,4) 
19348 
(4,5,4) 
20415 
(4,8,4) 
20424 
(4,3,4) 
20740 
(4,5,4) 
21037 
(4,1,4) 
21429 
(4,1,4) 
21445 
(4,8,4) 
22300 

Level-2 

(4,1,7,4) 
15740 
(4,1,7,4) 
18548 
(4,7,8,4) 
22569 
(4,5,3,4) 
20360 
(4,8,5,4) 
21037 
(4,3,5,4) 
20360 
(4,5,8,4) 
21037 
(4,1,7,4) 
21429 
(4,1,7,4) 
21445 
(4,8,5,4) 
22300 

Level-3 

(4,1,7,8,4) 
18548 
(4,1,7,8,4) 
18548 

(4,5,3,2,4) 
22171 
(4,8,5,3,4) 
20982 
(4,3,5,8,4) 
20982 
(4,5,8,7,4) 
23310 
(4,1,7,8,4) 
21429 
(4,1,7,8,4) 
21445 
(4,8,5,3,4) 
22300 

Level-4 

(4,1,7,8,5,4) 
18464 

(4,5,3,2,8,4) 
20353 
(4,8,5,3,2,4) 
21054 
(4,3,5,8,2,4) 
21650 

(4,1,7,8,2,4) 
21429 
(4,1,7,8,5,4) 
21445 
(4,8,5,3,2,4) 
22300 

Level-5 

(4,1,7,8,5,3,4) 
18409 

(4,5,3,2,8,6,4) 
23384 
(4,8,5,3,2,6,4) 
21678 
(4,3,5,8,2,6,4) 
22274 

(4,1,7,8,2,5,4) 
20744 
(4,1,7,8,5,2,4) 
21445 
(4,8,5,3,2,6,4) 
22300 

Level-6 

(4,1,7,8,5,3,2,4) 
16964 

(4,8,5,3,2,6,7,4) 
21210 
(4,3,5,8,2,6,7,4) 
21806 

(4,1,7,8,2,5,3,4) 
16793 
(4,1,7,8,5,2,3,4) 
16643 
(4,8,5,3,2,6,7,4) 
22300 

Level-7 

(4,1,7,8,5,3,2,6,4) 
24122 

(4,8,5,3,2,6,7,1,4) 
22300 
(4,3,5,8,2,6,7,1,4) 
28896 

(4,1,7,8,2,5,3,6,4) 
26402 
(4,1,7,8,5,2,3,6,4) 
26252 
(4,8,5,3,2,6,7,1,4) 
22300 

Table 3.2: Search process with learning threshold equal to 1 0 % of optimal solution (p=2230) 

Iteration 

1 

2 

3 

4 

5 

Root 
state 
(4,4) * 
13070 
(4,4)* 
18548 
(4,4)* 
19348 
(4,4)* 
20415 
(4,4)* 
20424 

Level-1 

(4,1,4) 
15891 
(4,1,4) 
18548 
(4,7,4) 
19348 
(4,5,4) 
20415 
(4,8,4) 
20424 

Level-2 

(4,1,7,4) 
15740 
(4,1,7,4) 
18548 
(4,7,8,4) 
22569 
(4,5,3,4) 
20360 
(4,8,5,4) 
21037 

Level-3 

(4,1,7,8,4) 
18548 
(4,1,7,8,4) 
18548 

(4,5,3,2,4) 
22171 
(4,8,5,3,4) 
20982 

Level-4 

(4,1,7,8,5,4) 
18464 

(4,5,3,2,8,4) 
20353 
(4,8,5,3,2,4) 
21054 

Level-5 

(4,1,7,8,5,3,4) 
18409 

(4,5,3,2,8,6,4) 
23384 
(4,8,5,3,2,6,4) 
21678 

Level-6 

(4,1,7,8,5,3,2,4) 
16964 

(4,8,5,3,2,6,7,4) 
22210 

Level-7 

(4,1,7,8,5,3,2,6,4) 
24122 

(4,8,5,3,2,6,7,1,4) 
22300 

Table 3.3: Search process with learning threshold equal to 2 0 % of optimal solution (p=4460) 

Iteration 

1 

2 

3 

Root 
state 
(4,4) * 
13070 
(4,4)* 
19348 
(4,4)* 
20415 

Level-1 

(4,1,4) 
15891 
(4,7,4) 
19348 
(4,5,4) 
20415 

Level-2 

(4,1,7,4) 
15740 
(4,7,8,4) 
22569 
(4,5,3,4) 
20360 

Level-3 

(4,1,7,8,4) 
18548 

(4,5,3,2,4) 
22171 

Level-4 

(4,1,7,8,5,4) 
18464 

(4,5,3,2,8,4) 
20353 

Level-5 

(4,1,7,8,5,3,4) 
18409 

(4,5,3,2,8,6,4) 
23384 

Level-6 

(4,1,7,8,5,3,2,4) 
16964 

(4,5,3,2,8,6,7,4) 
22916 

Level-7 

(4,1,7,8,5,3,2,6,4) 
24122 

(4,5,3,2,8,6,7,1,4) 
24006 

Table 3.4: Search process with learning threshold equal to 3 0 % of optimal solution (p=6690) 
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Table 3.3 is used to demonstrate how the learning threshold has influenced the forward 

search and backtracking processes. In this example, the learning threshold is set at 

4460 and the city of origin is city 4. The selection of the next city to the tour is made 

from five neighbouring cities (1,3,5,7,8) of city 4. Therefore the corresponding states 

are: (4,1,4), (4,3,4), (4,5,4), (4,7,4) and (4,8,4). The selection of the state with 

minimum heuristic function is state (4,1,4) with the estimated value of 15891. A 

heuristic learning value of 2821 (the difference between the estimated tour length of 

the neighbouring state of (4,1,4) and (4,4)) has occurred. If no learning threshold has 

been set, then the algorithm will force backtracking to occur and the heuristic estimate 

of state (4,4) will be updated. However, with learning threshold, this allows the 

forward search process to continue. This is because the value of heuristic learning is 

less than the value of learning threshold. The estimated tour length of state (4,4) will 

be updated from 13070 to 15891. As heuristic learning has occurred, the learning 

threshold is now updated to 1639 (that is 15891-13070). From state (4,1,4), the 

neighbouring states to be generated is (4,1,7,4). Its estimated tour length is 15470 and 

this is not greater than the 15891, thus no heuristic learning takes place. Hence forward 

search process continues and the learning threshold remains at 1639. 

From the state of (4,1,7,4), there are two possible neighbouring cities (cities 6 and 8) 

that can be added to the tour. Hence, the two corresponding front states are (4,1,7,6,4) 

and (4,1,7,8,4). The estimated tour length of state (4,1,7,6,4) is 23093 and that of state 

(4,1,7,8,4) is 18548. The state with the minimum value to be selected is state 

(4,1,7,8,4), with an estimated tour length of 18548. This value is greater than the 

estimated tour length of (4,1,7,4), thus heuristic learning is said to have occurred. The 

amount of heuristic learning in this case is 2808. This value is greater than the updated 

learning threshold value of 1639. Therefore backtracking is activated and the algorithm 
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backtracks to state (4,1,7,4), (4,1,4) and (4,4) and the estimated tour length is updated 

to 18548. 

In row 2, the algorithm starts from (4,4) and selects (4,1,4), (4,1,7,4), (4,1,7,8,4). The 

learning threshold is reset to the initial learning threshold of 4460. No heuristic 

learning has taken place up to this state. From state (4,1,7,8,4), three possible front 

states are generated: (4,1,7,8,2,4), (4,1,7,8,5,4) and (4,1,7,8,6,4). It is found that state 

(4,1,7,8,5,4) with the estimated tour length of 18464 is the state with the minimum 

estimated tour length. As the estimated tour length of the front state is less than the 

estimated tour length of its parent state, no heuristic learning has occurred. The state 

(4,1,7,8,5,4) is now the front state. From this state, the search process continues. From 

the state (4,1,7,8,5,4), two possible front states are generated: (4,1,7,8,5,2,4) and 

(4,1,7,8,5,3,4). The state with the minimum estimated tour length is (4,1,7,8,5,3,4). 

Once again the estimated tour length of the front state (4,1,7,8,5,3,4) is 18409. This 

value is less than the estimated tour length of its parent state, therefore no heuristic 

learning has occurred and forward search process continues. 

From the front state (4,1,7,8,5,3,4), two possible child states are generated: 

(4,1,7,8,5,3,2,4) and (4,1,7,8,5,3,6,4). At this point, the state with the minimum 

estimated tour length is state (4,1,7,8,5,3,2,4). This state with estimated tour length of 

16964 is selected as the front state, and no heuristic learning has occurred up to this 

point. The forward search process continues and there is only one front state generated: 

(4,1,7,8,5,3,2,6,4). The estimated tour length of this state is 24122. This value is 

greater than the estimated tour length of its parent state (4,1,7,8,5,3,2,4). The heuristic 

learning that has taken place is equal to 7158, a value greater than the learning 

threshold of 4460. Therefore, the backtracking process is activated and the algorithm 
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backtracks to the root state and its estimated tour length is updated to 19348. With this 

new value, row 3 shows the next search process. The process continues until the 

solution of (4,8,5,3,2,6,7,1,4) with the estimated tour length equals to 22300 is found. 

3.6 Conclusion 

In this chapter, the main features of Search and Learning A* algorithm have been 

examined. The formulation of a traveling salesman problem into a state space problem 

is achieved by defining the state, state transition operator and state transition cost. The 

contribution of this chapter is the development of the state-space transformation 

process so that heuristic learning algorithm of SLA* can be applied to construct tours 

dynamically. This approach of constructing tour allows the tour configuration to 

change during the tour construction process. This is made possible by the backtracking 

and heuristic updating processes, which allow cities to be added and deleted during the 

tour construction processes. The application of heuristic evaluation function of the 

algorithm allows both local and global estimated distance information to be used. This 

way SLA*-TSP is not relying on local knowledge alone to build tour. This research 

has developed the SLA*-TSP approach which aims to overcome the greedy and 

myopic nature of traditional tour construction through the process of dynamic tour 

construction. The example presented in this chapter has shown that, the backtracking 

and forward search processes have repetitively led to the deletion and addition of cities 

from and to the tour through the consideration of both local and the global estimated 

distance information. 

This chapter has also demonstrated that when the geometric properties of Delaunay 

triangulations is incorporated into the search strategy of SLA*-TSP, the performance 
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of SLA*-TSP is greatly enhanced through the reduction of solution space selection. 

This is because Delaunay triangulations identify only promising cities to be considered 

by a given state, and by ensuring that edges that will not lead to optimal solution are 

pruned during the search process. 

The SLA*-TSP with learning threshold algorithm was also examined. This approach 

produces approximate solution of known quality, and it is particularly useful when the 

problem to be solved is too large with respect to computational resources. 
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CHAPTER 4: THE FACTORS INFLUENCING 

THE PERFORMANCE OF SLA*-TSP 

4.1 Introduction 

This chapter discusses the implementation of SLA*-TSP and the experimental results. 

SLA*-TSP was written in C++ and implemented using LEDA software library 

(Library of Efficient Data Types and Algorithms). LEDA is an object-oriented C++ 

class library consisting of various combinatorial and geometric data types and 

algorithms (Mehlhorn and Naher, 1999). It was applied in this research for defining 

data structures, computing Delaunay triangulation, minimal spanning tree and 

Euclidean distance between two nodes. 

The factors influencing the performance of the SLA*-TSP approach will be 

investigated. The investigation will be based on computation experiments, which will 

be made on two sets of test problems: selected instances from the TSPLIB library 

(Reinelt, 1991) and randomly generated problems. In the computation experiments, 

only problems with x- and y-coordinates are tested. All distances are computed using 

the Euclidean distance function. The performance of SLA*-TSP algorithm with 

learning threshold will also be investigated with these problems. 

This chapter is organised as follows. Section 2 discusses the issues in implementation 

of SLA*-TSP. In section 3, results of the test problems from TSPLIB library and 

randomly generated problems are discussed. The limitations and scope of the 
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experiments are also outlined in this section. In both categories of problems, SLA*-

TSP with and without learning threshold will be applied. The presentations are based 

on the results obtained from each category of problems. Analysis and discussions of 

the factors influencing the performance of the algorithms are included in this section 

too. Finally, the conclusion follows in Section 4. 

4.2 Implementation of SLA*-TSP using LEDA 

The implementation of SLA*-TSP using LEDA involves the issues of data types. 

LEDA is a software library of combinatorial and geometric data types and algorithms 

(Mehlhorn and Naher, 1999). It provides a set of basic data types, such as string and 

stream, as well as parameterised data types, such as stack, array and list. It also 

provides geometric and graph algorithms (such as Delaunay triangulations and 

minimal spanning trees) that can be used in this research. It was selected based on its 

simplicity in data structure, its ability to be used with C++ compiler and a sizable 

collection of data types and computational geometric libraries that can be used. Since 

the implementation base of LEDA is C++, therefore SLA*-TSP is also implemented 

using C++. 

The input of data set is based on x- and y-coordinates of the cities, and the data type 

point is used to denote the city in two-dimensional plane. It is represented by Cartesian 

coordinates (x,y). The LEDA data types used in the implementation of SLA*-TSP are 

parameterised. A parameterised graph denoted by GRAPH is of type graph (the data 

type graph consists of a list of nodes and a list of edges) whose nodes and edges 

contain additional user-defined data (Mehlhorn and Naher, 1999). A parameterised 

graph is used because it can dynamically allow information to associate with new 
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nodes and edges without restriction. This provides greater flexibility and more efficient 

access of information stored in the nodes and edges. In the implementation of SLA*-

TSP, the declaration of parameterised graph is in the form of GRAPH<point, int> G. 

This creates an instance of G in which a string variable is associated with every vertex 

of G and an integer is associated with every edge of G. Delaunay triangulation is 

represented as GRAPH<point, int> DT. Minimal spanning tree is computed at the 

same time because it is a subgraph of Delaunay triangulation. This data type allows 

dynamic generation of Delaunay triangulation and computation of minimal spanning 

tree as the search process progresses. Another parameterised data type used in the 

program is list, list<E>, where E is the element in the list. It is used to store a 

sequence of items. In the implementation, list is used to store the sequence of cities in 

the partially completed tour. 

The minimum heuristic estimate is stored using the parameterised data type stack, 

stack<E>, where E is the element in the stack. A stack uses the principle of last-in-

first-out in which insertion and deletion of the elements only take place at the top of 

the stack. The elements stored in the stack is of data type GRAPH<point, int>. With 

forward search, the state with the minimum heuristic estimate is put at the top of the 

stack. This operation is performed using the operator S.pushQ. When in backtracking, 

the top element of the stack is deleted. The operation is performed using the operator, 

S.popO which deletes and returns the new top element. This approach is used to keep 

track of backtracking and heuristic updating. 

Heuristic estimate of a state is only saved after it has been updated during the 

backtracking process. The updated heuristic estimate is saved in a lookup table along 

with the partially completed tour. This allows the value of the heuristic estimate to be 
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referenced to the state in the search process. For states whose heuristic estimates are 

not found in the lookup table, they are calculated using the minimal spanning tree. The 

calculated value will be discarded if the proposed path was not used. However, if the 

proposed path is encountered again in the search process, the minimal spanning tree 

will be calculated again. Appendix A shows the listing of the program for the above 

implementation. 

4.2.1 Pruning 

One of the issues that need to be addressed in applying SLA*-TSP is to reduce the 

search space so that it is efficient. The following two approaches are used in the 

program to prune away states that are not promising in producing an optimal tour. In 

the first approach, when the child states are generated in the forward search, a dead­

end state that will not lead to the generation of more subsequent child states is pruned 

from the search process. This can happen when the last city added in the partial tour 

does not have an unvisited neighbouring edge of Delaunay triangulation. When this 

occurs, the child state is pruned from the search space, as the forward search process 

cannot be continued. 

The second approach is based on the rationale that the shortest closed path through n 

nodes is always a simple polygon. Therefore, an optimal TSP tour should not contain 

paths that intersect with one another, because intersection of paths will lead to a longer 

tour length. Thus in the second approach, when the generated child state results in a 

disjoint set of triangulation in the problem (a disjoint set of triangulation is one that 

divides the problem into two separate distinct sets of triangulations), then this child 

state will be pruned from the search space. 

53 



To illustrate the first approach, consider the example of 8-city problem in Figure 4.1. 

Assume that the current state is (4,7,4). According to Delaunay triangulation, three 

possible child states can be generated: (4,7,1,4), (4,7,6,4) and (4,7,8,4). The child state 

(4,7,1,4) will be pruned from the search space and only two states (4,7,6,4) and 

(4,7,8,4) will be generated as child states, because city 1 does not have any 

neighbouring city connected by the edges of Delaunay triangulation to allow forward 

search process to continue. 

Figure 4.1: Delaunay triangulation of an 8-city problem 

The following example explains how the second approach works using the same 

problem. Assume that the current state is (4,1,7,8,5,4). Then two possible child states 

are to be generated: (4,1,7,8,5,3,4) and (4,1,7,8,5,2,4). The child state (4,1,7,8,5,3,4) 

will be pruned, because it will generate the following two child states (4,1,7,8,5,3,2,4) 

and (4,1,7,8,5,3,6,4). Each of the child states consists of intersection paths that will not 

lead to an optimal tour. 
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4.3 Factors influencing the performance of SLA*-TSP 

This section investigates the factors influencing the performance of the SLA*-TSP 

algorithm. The computation experiments were made on two sets of test problems: 

selected instances from the TSPLIB library (Reinelt, 1991) and randomly generated 

problems. All tests were run on a SUN SPARC server 20. Results and discussions 

from test problems obtained from TSPLIB will first be presented. This is followed by 

results and discussions on randomly generated problems. 

4.3.1 Limitation and scope of the experiment 

For memory saving purpose, only test problems from TSPLIB that have x- and y-

coordinates are selected, where the distance between two cities is computed using the 

Euclidean distance function. The input in this form is required for the computation of 

Delaunay triangulations. This has restricted the choice of test problems that can be 

selected from TSPLIB. There are only ten problems in the set that have x- and y-

coordinates with problem size less than one hundred nodes. These include problems 

with 14, 16, 22, 48, 51, 52, 70, 76 and 96 nodes (there are two problems with 76 

nodes). Out of these ten problems, insufficient memory were encountered for problems 

that have more than twenty-two nodes. This problem is a result of using lookup table 

to store the states and its value of updated heuristic estimates at each backtracking 

step, and constrained the experiments to problems of a very small size. 

Although the experiments were conducted on relatively small size problems, the aim is 

to analyse the results from these problems and investigate the search behaviour of the 

approach. Hence, the factors that influence the performance of SLA*-TSP algorithm 

may still be applicable to problems of larger sizes. 
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4.3.2 Test problems obtained from TSPLIB 

This section presents the empirical test results from the selected problems in TSPLIB. 

In this section, the method is first presented. Then, results of SLA*-TSP without 

learning threshold are reported. Factors that influence the performance of SLA*-TSP 

will be examined as the results are reported. This is followed by presentation of results 

obtained from SLA*-TSP with learning threshold. 

Method 

The four problems that have been tested were named using the convention in TSPLIB 

- name follows by the number of cities in the problem. They are BURMA 14, 

ULYSSES 16, ULYSSES22 and OLIVER30. The empirical tests consist of running the 

algorithm for each starting point and the selection of the shortest tour as the optimal 

solution. For comparison purposes, solutions using nearest neighbour heuristic and 

Lin-Kernighan heuristic using the Concorde program (Applegate et al, 1998) were 

calculated. 

SLA*-TSP was first applied to these problems without the learning threshold, then it 

was applied with the learning threshold. The learning threshold was set at 10%, 30%, 

50%, 70% and 90% of the optimal solution. 

Results and discussions 

SLA*-TSP without learning threshold 

This section presents the empirical test results in terms of computation time and the 

solution obtained. Table 4.1 shows the results of the four problems using SLA*-TSP, 

nearest neighbour heuristic and the Lin-Kernighan heuristics. The tour length and the 
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C P U time (in seconds) that were obtained using each method are displayed in the table 

too. The results in tour length show that the heuristic learning algorithm of SLA*-TSP 

produces better solution than the nearest neighbour heuristic, and is better or as good 

as that obtained from the Lin-Kernighan heuristic. However, SLA*-TSP performs 

poorly in computation time compared with both nearest neighbour and Lin-Kernighan 

heuristics. 

Problem 

BURMA14 

ULYSSES 16 

ULYSSES22 

OLIVER30 

SLA*-TSP 

Tour length 

30.8785 

74.1989 

75.401 

423.741 

C P U time 
(in sec) 

43 

782 

5222 

2033 

Nearest-neighbour 

Tour length 

37.7108 

88.5888 

90.58963 

586.1363 

C P U time 
(in sec) 

0 

0 

0 

0 

Lin-Kernighan 

Tour length 

31.4536 

74.1989 

76.6657 

423.741 

C P U time 
(in sec) 

0.05 

0.20 

0.40 

0.17 

Table 4.1: Results of four test problems 

The poor performance of SLA*-TSP in computation time can be attributed to dynamic 

tour construction and inefficient data retrieval in the program. In SLA*-TSP approach, 

a tour is constructed by allowing addition and deletion of cities to and from the tour. 

This dynamic tour construction continuously updates along the search process. On the 

other hand, nearest neighbour heuristic, which is a greedy approach, does not change 

the tour configuration. This is because in the greedy approach, the part of the tour 

already built remains unchanged during the tour construction process. Therefore, it can 

be seen that dynamic construction of the tour can lead to a better solution. However, 

constant updating of the partial tour through the process of backtracking and updating 

of heuristic estimates can result in a much higher computation cost. The use of the 

lookup table in keeping track of the updated heuristic estimates and its state may have 

contributed toward the longer computation time. The size of the lookup table increases 

as the search process progresses as more heuristic estimates are updated during the 
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backtracking processes. Although binary search is used in the program to retrieve the 

value of the updated heuristic estimates from the lookup table, the retrieval time can 

still grow substantially. 

The performance of SLA*-TSP is not entirely influenced by the number of nodes 

alone. The heuristic estimate is another important factor to consider. This factor can be 

measured as the ratio of the initial heuristic estimate of the root state to the optimal 

solution. If the ratio is high, then the quality of the heuristic estimate is good, and it 

can be expected that fewer backtracking and heuristic updates are necessary. 

Otherwise, from a lower base, more backtracking and heuristic updates will be 

required before the optimal solution is found. Therefore if the initial heuristic estimate 

is too much under-estimated, a longer computation time is to be expected. Table 4.2 

shows a comparison of the number of heuristic updates in relation to the quality of the 

heuristic estimate, which is measured as the ratio of initial heuristic estimates of the 

root state to the tour length of the optimal solution. Column 2 shows the number of 

heuristic updates required and column 3 shows the ratio: 0.65, 0.63, 0.61 and 0.80 

respectively. 

Problem 

BURMA14 

ULYSSES 16 

ULYSSES22 

OLIVER30 

Number of heuristic updates 

5601 

101005 

425565 

96446 

Ratio = initial heuristic estimate of 
the root state/optimal solution 

0.65 

0.63 

0.61 

0.80 

Table 4.2: Ratio of initial heuristic estimate of root state to the tour length 

In Table 4.2, the number of heuristic updates required by OLIVER30 is 96446, and the 

number of heuristic updates required by ULYSSES 16 and ULYSSES22 (which have 

fewer nodes compare to OLiVER30) are 101005 and 425565 respectively. The quality 
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of the heuristic estimates of the latter two problems (0.63 and 0.61, respectively) is 

relatively poor compared to OLIVER30, which has a ratio of 0.80. From the CPU 

time in Table 4.1, one can see that it takes a shorter time for OLIVER30 to reach 

optimal solution. 

When the initial value of heuristic estimate is high, then it will take fewer heuristic 

updates to reach the optimal solution. Therefore, one can conjecture that the quality of 

the heuristic estimate can influence the performance of the algorithm. 

SLA*-TSP with learning threshold 

This section reports the results of the above four problems when SLA*-TSP with 

learning threshold is applied. Table 4.3 shows the results with 10%, 30%, 50%, 70% 

and 90%o of learning thresholds. Column 2 shows the levels of the learning threshold 

expressed in percentage form as well as the actual value of learning threshold applied 

in each level. Column 3 shows the CPU time (in seconds) required to find the solution. 

Column 4 shows the number of heuristic updates it takes to reach the solution, and 

column 5 shows the percentage of saving in heuristic updates, which is calculated as 

NumberOfHeuristicUpdateWithLearningThreshold . f , f 
NumberOfHeuristic Update WithoutLeaningThreshold 

each learning threshold is not displayed. Instead, the penalty on the solution, which is 

,, SolutionFound - OptimalSolution. . , , . . , 
expressed as (1H - ), is shown and is given in column 

OptimalSolution 

6. In Table 4.3, the first row of each problem (rows with learning threshold = 0%) has 

been included for comparison purposes. 
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Problems 

BURMA14 

ULYSSES 16 

ULYSSES22 

OLIVER30 

Leaning threshold 
% 

0% 
10% 
30% 
50% 
70% 
90% 
0% 
10% 
30% 
50% 
70% 
90% 
0% 
10% 
30% 
50% 
70% 
90% 
0% 
10% 
30% 
50% 
70% 
90% 

actual 
value 

0 
3.09 

9.26 

15.44 

21.61 

27.79 

0 
7.42 

22.26 

37.10 

51.94 

66.78 

0 
7.54 

22.62 

37.70 

52.78 

67.86 

0 
42.37 

127.12 

211.87 

296.62 

381.37 

CPU 
time 

(in sec) 

43 
9 
4 
0 
0 
0 
782 
286 
19 
2 
2 
2 
5222 

584 
4 
0 
0 
0 
2033 

590 
9 
11 
11 
11 

Number of 
heuristic 
updates 

5601 

1621 

34 
51 
0 
0 
101005 

36282 

1739 

168 
168 
168 
425565 

40191 

122 
9 
1 
0 
96446 

19096 

232 
443 
507 
507 

Saving in heuristic 
updates with learning 

threshold 

-

71% 
99% 
99% 
100% 

100% 

-

64% 
98% 
100% 

100% 

100% 

-

91% 
100% 

100% 

100% 

100% 

-

80% 
100% 

100% 

99% 
99% 

Penalty on the 
solution 

1.00 

1.03 

1.28 

1.28 

1.15 

1.15 

1.00 

1.01 

1.19 

1.07 

1.07 

1.07 

1.00 

1.02 

1.04 

1.09 

1.07 

1.07 

1.00 

1.09 

1.21 

1.16 

1.13 

1.13 

Table 4.3: Results of all four problems when learning threshold is applied 

It is apparent that when the learning threshold is applied, the number of heuristic 

updates required to reach the solution is significantly reduced compared with the case 

where learning threshold is not applied. The savings obtained by the four problems 

range from 64% to 91% and 98% to 100% when learning threshold of 10% and 30% 

are respectively applied. With a 30% learning threshold, the saving range from 90% to 

100%. It is interesting to compare the saving of heuristic updates and penalty on the 

solution. At 10% learning threshold, for BURMA 14, the saving is 71%, but the penalty 

on the solution is only 3%. Similarly for problem ULYSSES 16, the saving is 64%, and 

the penalty on the solution is only 1%. Similar trends can be observed for problems 

ULYSSES22 and OLIVER30. It can be seen that the number of heuristic updates 
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decreases as the learning threshold becomes larger. In each case, the saving in heuristic 

updates is quite significant while the penalty on solution is relatively small. SLA*-TSP 

with learning threshold could produce an approximate solution that is within the range 

of the specified threshold from optimal solution. Results from the experiment show 

that the penalty on the solution is within the range of the learning threshold set. In each 

case the number of heuristic updates is reduced with the increase in learning threshold. 

The saving of the heuristic updates can be attributed to the reduced frequency in 

responding to the backtracking process, which is not invoked until the cumulative 

heuristic update reaches the prescribed learning threshold. Therefore, one can 

conjecture that if an approximate solution is sufficient for a problem, then SLA*-TSP 

with learning threshold may be applied with reasonable computation time and 

computer memory resources. This approach may be useful when one is faced with 

large and complex problems that require excessive computation resources. 

Another observation that can be made from solutions with learning threshold is that the 

solution seems to plateaus after a certain range of learning threshold. Figure 4.2 shows 

the graph on penalty on the solution with respect to learning thresholds. It can be seen 

that the quality of the solution deteriorates as the learning threshold increases. 

However, the solution does improve slightly and then plateau off as the learning 

threshold increases. 
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Figure 4.2: Graph showing penalty on the solution in term of learning threshold 

In the current implementation of the program, only small sized problems can be solved 

within reasonable time. Large sized problems could not be solved within reasonable 

computation time due to inefficient memory handling. Table 4.4 shows the results of 

running SLA*-TSP with learning threshold for seven test problems from TSPLIB. The 

optimal solution for each problem is given by TSPLIB. It can be seen that the 

computation time has been greatly reduced and the solution found is within the range 

of the learning threshold. The results from Table 4.4 indicate that the solution plateaus 

when the learning threshold reaches around 70% of the optimal solution. By 

incorporating learning threshold to the SLA*-TSP approach, the algorithm was able to 

find an approximate solution to the problem with a desired range of certainty. 

In summary, the SLA*-TSP with learning threshold approach can improve the 

computation time for large-sized problems at the sacrifice of the optimal solution. The 

advantage in using this approach is the maximum amount of sacrifice is known before 

hand. 

«SL 

20% 4 0 % 6 0 % 
Learning threshold 

80% 100% 
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Problem 

ATT48 

EIL51 

BERLIN52 

EIL76 

RAT99 

EIL101 

LIN105 

Learning 
threshold 

30% 
50% 
70% 
90% 
20% 
30% 
50% 
70% 
90% 
30% 
50% 
70% 
90% 
30% 
50% 
70% 
90% 
30% 
50% 
70% 
90% 
30% 
50% 
70% 
90% 
55% 
60% 
70% 
90% 

CPU time (in sec) 

17 
12 
15 
15 
34 
41 
2 
2 
2 
224 
55 
10 
6 
169 
95 
96 
96 
10 
11 
10 
10 
13 
14 
11 
11 
189 
192 
191 
190 

Number of heuristic 
updates 

157 
130 
135 
135 
356 
691 
0 
0 
0 
3699 

832 
112 
49 
4055 

2327 

2346 

2346 

10 
6 
0 
0 
22 
45 
0 
0 
7393 

7512 

7516 

7388 

Penalty on the solution 

1.27 

1.30 

1.29 

1.29 

1.15 

1.12 

1.15 

1.15 

1.15 

1.22 

1.33 

1.31 

1.33 

1.13 

1.13 

1.13 

1.13 

1.27 

1.28 

1.27 

1.27 

1.22 

1.22 

1.24 

1.24 

1.37 

1.40 

1.40 

1.37 

Table 4.4: Computation results for selected TSPLIB problem instances 

4.3.3 Randomly generated problems 

The aim of this experiment is to investigate the performance of SLA*-TSP in relation 

to the pattern in which the nodes are distributed in the Euclidean plane. The 

investigation will be conducted using randomly generated problems. The clusters can 

be dispersed and well separated, in which case the distance between different clusters 

(called inter-cluster distance) can be significant. On the other hand, the clusters can be 

close to one another, in which case the inter-cluster distance is insignificant. 
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In this section, the method is first presented. Then, the results of SLA*-TSP without 

learning threshold are reported. Discussion of results will also be included. This is 

followed by presentation of results using SLA*-TSP with learning threshold. 

Method 

The test approach is adapted from Laporte et al (1996), and the test problems consist of 

nodes located within a (0,100) square. The square is divided into 16 equal rectangles 

(see Figure 4.3). Six nodes are randomly generated within each rectangle according to 

a uniform distribution. The nodes were selected from four rectangles within the square 

and each test problem consists of twenty-four nodes. Each problem is named using the 

number matching each rectangle in the square. For example, pl_4_16_13 refers to 

nodes obtained from rectangles 1,4, 16 and 13. 

4 

3 

2 

1 

8 

7 

6 

5 

12 

11 

10 

9 

16 

15 

14 

13 

Figure 4.3: Structure of problems tested 

Five problems have been selected in this experiment: pl_6_ll_16, p3_7_ll_15, 

pl_2_3_4, pl_8_9_16, pl_4_16_13. Each problem shows a different characteristic in 

which the clusters are located in the square. For example, the nodes in problems 

pl_4_16_13 and pl_8_9_16 show a characteristic of clusters that are dispersed and 

well separated. On the other hand, the clusters in problems pl_2_3_4, p3_7_l 1_15 and 

pl_6_H_16 are located close to one another. In terms of distance between clusters, 

problems pl_4_16_13 and pl_8_9_16 both demonstrate significant inter-cluster 

distance, comparing to the other three problems. 
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Results and discussions 

SLA*-TSP without learning threshold 

This section presents the test results in terms of CPU time, number of heuristic updates 

and the quality of the heuristic estimate, which is expressed as the ratio of the initial 

heuristic estimate of the root state to the optimal solution. The results shown were 

averaged over ten different instances for each type of problem. Table 4.5 shows the 

results obtained when SLA*-TSP without learning threshold is applied. Column 2 

shows the CPU time in second, column 3 shows the number of heuristic updates 

required, and column 4 shows the ratio. 

Problem 

pi 6 11 16 

p3 7_11_15 

pi 2 3 4 

pi 8 9 16 

pl_4_16_13 

C P U time 
(in sec) 

4675 

4747 

3909 

474 

141 

Number of heuristic 
updates 

321201 

295200 

257204 

26527 

7159 

Ratio = initial heuristic estimate of the root 
state/optimal solution 

0.5896 

0.6547 

0.6280 

0.6908 

0.7564 

Table 4.5: Results without learning threshold 

It is obvious that the ways nodes are grouped in different clusters can influence 

Delaunay triangulations. Minimal spanning tree is a subset of Delaunay triangulation 

(Aurenhammer, 1991), thus the behaviour of clustering can influence the quality of the 

heuristic estimate, which is computed using minimal spanning tree. Figure 4.4 and 4.5 

show Delaunay triangulations for problems pl_4_16_13 and pl_2_3_4 respectively. 

These two problems were selected to contrast the Delaunay triangulations formed. The 

nodes in problem pl_4_16_13 are grouped into distinct and well-separated clusters. 

The Delaunay triangulations produced can be described as 'wide' and 'fat'. On the 

other hand, the clusters in problems pl_2_3_4 are close to one another, and the 
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Delaunay triangulations produced can be described as 'elongated', 'narrow' and 

'skinny'. The descriptions used to described Delaunay triangulations as 'fat' and 

'skinny' follow the convention used in Aurenhammer (1991), de Berg et al (1997) and 

O'Rourke (1998). 

Figure 4.4: Delaunay triangulation for pi 4 16 13 

Figure 4.5: Delaunay triangulation for pi 2 3 4 

The last column of Table 4.5 shows that the ratio for problems pl_4_16_13 and 

pl_8_9_16 is higher, comparing to the other three problems. In addition, the number 

of heuristic updates for these two problems is comparatively smaller comparing to the 
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other three problems. This result can be explained by the way the nodes are grouped 

into clusters. The clusters in problems pl_4_16_13 and pl_8_9_16 are more dispersed 

and well-separated. In contrast, the clusters in each of the problems pl_2_3_4, 

p 1_6_11 16 and p3_7_ll_15 are situated near to one another. In problems where 

clusters are distinct and well-separated, the edges that connect different clusters could 

be longer. These long edges between the clusters would form part of the minimal 

spanning tree, because minimal spanning tree must connect all nodes. Therefore, when 

the clusters are dispersed and located far from one another, it will result in a higher 

heuristic estimate. On the other hand, in problems where clusters are situated near one 

another, the edges between clusters are shorter. This could result in a lower value of 

heuristic estimate. When the heuristic estimate is comparatively low, it will take more 

heuristic updates and backtracking to reach the optimal solution. Therefore, one can 

conjecture that SLA*-TSP approach is suitable for problems that exhibit distinct and 

well-separated clusters. This is because long edges between the clusters will always 

form part of the edges in minimal spanning tree, and it will result in a higher value of 

initial heuristic estimate of the root state, which can lead to better performance. 

Reinelt (1992) shows that Delaunay triangulation can provide a better candidate set for 

problems in which nodes are located in several clusters. This is because edges that 

connect different clusters are included in the triangulations. This research uses 

Delaunay triangulations to define the candidate edge set and the results from this 

experiment are consistent with the findings from Reinelt (1992). 

SLA*-TSP with learning threshold 

This section presents the results of the above five problems when SLA*-TSP with 

learning threshold is applied. The learning threshold is applied at five different levels: 
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1 0 % , 30%), 50%), 70%) and 90%. The results presented here were averaged over ten 

different instances for each problem, and are reported in terms of number of heuristic 

updates, computation time and the quality of the heuristic estimate. Table 4.6 shows 

the number of heuristic updates and saving in heuristic updates when learning 

threshold is applied. For each problem, the first column shows the number of heuristic 

updates, and the second column shows the saving achieved (expressed in percentage). 

Tables 4.7 and 4.8 show the CPU time and the solution quality respectively. In Tables 

4.6 and 4.7, results without learning threshold (i.e. rows with learning threshold = 0%) 

are included for comparison purposes. 

The quality of the solution did not suffer (penalty on the solution is zero) when 10% of 

the learning threshold is applied, whereas the savings in heuristic updates range from 

60% to 77%). When 30% of the learning threshold is applied, penalty on the solution 

range from 2% to 5% with the savings ranging from 89% to 98%. In each problem, 

100%) of saving is achieved in terms of heuristic updates when the learning threshold 

reaches 50%. In terms of penalty on the solution, it can be seen that the penalty of 

solution ranges from 8% to 17% at 50% of learning threshold. Therefore, in each case, 

the saving in terms of heuristic updates and computation time are quite significant. 

Learning 
Threshold 

0% 
10% 
30% 
50% 
70% 
90% 

Heuristic updates 

pi 2 3 4 

Number 

257204 

59417 
r 5812 

83 
20 
6 

Saving 
-

11% 

98% 
100% 
100% 
100% 

pl_6_ll_16 
Number Saving 

321201 
74912 
4550 

300 
49 
42 

-

71% 
98% 
100% 
100% 
100% 

p3_7_ll_15 
Number Saving 
29520d 
70190 
2971 
276 
59 
58 

76% 
99% 
100% 
100% 
100% 

pl_4_16_13 
Number 
7159 
2339 
164 
243 
10 
2 

Saving 
-

67% 
98% 
97% 
100% 
100% 

pl_8_9_16 
Number 
26527 
10695 
2855 
1017 
114 
41 

Saving 
-

60% 
89% 
96% 
100% 
100% 

Table 4.6: Number of heuristic updates and saving (expressed in %) with different 
levels of learning thresholds 
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Learning 
Threshold 

0% 
10% 
30% 
50% 
70% 
90% 

CPU time (in sec) 

pl_2_3_4 

3909 

841.9 

116.7 

2.5 
0.6 
0.4 

pl_6_ll_16 

4675 

1132.4 

87.3 

7.6 
1.7 
1.5 

p3_7_ll_15 

4747 

1116 

67.3 

6.6 
1.5 
1.5 

pl_4_16_13 

141 
47.4 

5.4 
6.9 
0.6 
0.5 

pl_8_9_16 

474 
197.7 

61.5 

24.2 

2.8 
1.2 

Table 4.7: C P U time with different levels of learning thresholds 

Learning 
Threshold 

10% 
30% 
50% 
70% 
90% 

Solution Quality 

pl_2_3_4 

1.00 

1.04 

1.11 

1.08 

1.11 

pl_6_ll_16 

1.00 

1.02 

1.08 

1.11 

1.08 

p3_7_ll_15 

1.00 

1.02 

1.17 

1.18 

1.19 

pl_4_16_13 

1.00 

1.03 

1.09 

1.07 

1.10 

pl_8_9_16 

1.00 

1.05 

1.10 

1.09 

1.09 

Table 4.8: Quality of solution with different levels of learning thresholds 

Figures 4.6, 4.7 and 4.8 show the relationship between different levels of learning 

thresholds with respect to the number of heuristic updates, CPU time and penalty on 

the solution respectively. The graph shows that computation time and heuristic updates 

decrease significantly with the increase in learning threshold. The quality of the 

solution initially deteriorates when the learning threshold is applied. However, the 

solution generally plateaus when the learning threshold reaches about 50% of the 

optimal solution (with the exception of pl_4_16_13). The results again show that 

SLA*-TSP with learning threshold approach can improve the computation time if the 

exact solution is not required. 
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Figure 4.6: The number of heuristic updates vs. learning threshold 
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Figure 4.7: Performance of CPU time vs. learning threshold 
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Figure 4.8: Quality of solution vs. learning threshold 

4.4 Conclusion 

In this chapter, the process of implementation of the SLA*-TSP approach is discussed. 

The SLA*-TSP algorithm has been implemented using L E D A in C++. The major 

weakness of the current implementation is inefficient memory handling. It is believed 

that if the data structures and the current design of the lookup table can be improved, 

then problems of larger size can be solved. Further investigation needs to carry out to 

improve the design of data structures so that memory can be handled more efficiently. 

One possible improvement to the memory management is to use the tree structure, and 

not the lookup table, to store the state and the value of the updated heuristic estimate. 

The results show the main factor that influences the performance of SLA*-TSP is the 

value of the initial heuristic estimate. If the initial value of the heuristic estimate of the 

root state is close to the optimal solution, then fewer backtracking and heuristic 

updates will be required to reach the optimal solution. The way nodes are grouped into 

clusters in the Euclidean plane also influences the quality of the heuristic estimate. A 
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better performance of SLA*-TSP can be achieved for problems that exhibit distinct 

and well-separated clusters, because this type of problem produces a higher quality of 

heuristic estimate. Therefore, the closer the value of the heuristic estimate is to the 

optimal solution, the better the performance of SLA*-TSP. 

Finally, the results also show that SLA*-TSP with learning threshold approach can 

improve the computation time for large-sized problems at the sacrifice of the quality of 

the solution. By incorporating learning threshold to the SLA*-TSP approach, the 

algorithm is able to find an approximate solution to the problem with a known quality. 

The advantage of this approach is that the maximum amount of sacrifice is known 

before hand. This feature is particularly important in practical situations when the 

exact solution is not required but the speed of computation is critical. 
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CHAPTER 5: A RESTRICTIVE SEARCH 

APPROACH 

5.1 Introduction 

The SLA*-TSP approach developed in Chapter 3 allows the tour configuration to 

change during the tour construction process. The use of Delaunay triangulation as a 

search strategy allows promising edges to be identified from which the state transition 

operator takes edges with priority. However, this approach still leads to a 

comparatively large search space. This is evidenced in the small sized problems that 

can be solved in Chapter 4. This chapter discusses the implementation of a restrictive 

search approach that could further reduce the number of candidate edges during the 

search process. This represents an improvement over the search strategy using the 

Delaunay triangulations, which was defined in Chapter 3. The approach is to define the 

candidate edge set using edges from only one triangle selected from Delaunay 

triangulations. The criteria for selecting the triangle are based on the concept of 

proximity in Voronoi diagram, the direction of the tour and the search direction of the 

triangle. 

This chapter is organised as follows. Section 2 explains the rationale behind the factors 

that can be used to further reduce the search space. Section 3 presents the restrictive 

SLA*-TSP algorithm that incorporates the restrictive search strategy. Three examples 

are provided to demonstrate the implementation of this approach in Section 4, and 

Section 5 concludes the chapter. 
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5.2 Identifying proximity and utilising knowledge of 

direction in tour construction 

This section examines the rationale behind the development of a restrictive search 

approach which is used as a constrained search strategy to further reduce the search 

space in SLA*-TSP approach. The method selects only one triangle from Delaunay 

triangulations using the proximity properties of Voronoi diagram, the travelling 

direction of the tour and the search direction of the triangle. Before these factors are 

examined, the following terms will be used throughout the chapter. An external node 

is a node that is on the convex hull, and an internal node is one that is not on the 

convex hull. A node is located to the right side of the current node if its x-coordinate is 

larger than the x-coordinate of the current node, and a node is to the left side of the 

current node if its x-coordinate is smaller than the x-coordinate of the current node. 

The proximity property of Voronoi diagram presents another useful concept in 

reducing the search space. As pointed out in Chapter 3, Delaunay triangulation and 

Voronoi diagram are dual structures. This means both contain the same information 

although they are represented in different forms (O'Rourke, 1998). As discussed 

previously, Delaunay triangulation is used to identify promising candidate edges 

during the search process, therefore Voronoi diagram should contain similar 

information that can be used to identify the promising candidate edge set. A Voronoi 

diagram is a computational geometric structure that represents proximity information 

about a set of points (Aurenhammer, 1991). The Voronoi diagram divides the nodes 

into a set of polygons (called sites) of which the boundaries are perpendicular bisectors 

between two nodes. The Voronoi polygon around each site consists of nodes that lie 

closer to that site than to any other site. Finding the nearest neighbouring node means 
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identifying the boundary of the Voronoi region, because any point that lies inside the 

region is its nearest neighbour (O'Rourke, 1998). Thus the boundary of the Voronoi 

region can be used to identify nodes that are closer to that site than to others. Using 

this principle, we can construct Voronoi diagram with only external nodes. This way, 

the proximity information can be used to identify internal nodes that are nearer to one 

particular external node than another. 

A reduced candidate edge set called proximity candidate edge set can be defined as 

nodes that are located both in the candidate edge set derived from Delaunay 

triangulation (as explained in Chapter 3) and candidate edge set derived from Voronoi 

diagram. The intersection of these two sets is the proximity candidate edge set, which 

can be used to select candidate neighbouring city to be included in the tour with 

priority. If there is no other internal node in the same Voronoi region as the external 

node, then the intersection of the two sets is null. In this case, let the proximity 

candidate edge set to be the same as the candidate edge set from Delaunay 

triangulation for that node. This procedure is only applied to external nodes because 

the Voronoi diagram is constructed using the external nodes only. For all other internal 

nodes, the proximity candidate edge set is the same as that defined in Chapter 3, which 

is based on the edges derived from Delaunay triangulation. The procedure of finding 

the proximity candidate edge set is given in Figure 5.1. 
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procedure find_proximity_candidate_edge_set 

begin 

1. Apply the algorithm of Delaunay triangulation to all nodes in the problem. For each node x, 
if node y is connected to node x via the edge of Delaunay triangulation, then y is included in 
the candidate set for node x. Call this candidate edge set Dx. 

2. Apply the algorithm of the Voronoi diagram to find the Voronoi regions for external nodes 
only. 

3. For each external node x on convex hull, if internal node y is in the same Voronoi region as 
x, then y is included into the Voronoi candidate edge set for x. Call this candidate edge set 
Vx. 

4. If no other internal node is in the same Voronoi region as x, then let Vx = 0. 

5. For each external node x, find the intersection of Dx and Vx, {Dx n Vx}. Call this the 
proximity candidate edge set Px. 

6. IfPx = 0, then let PX = DX. 

7. For all other internal node y, let Py = Dy. 

end 

Figure 5.1: Find proximity candidate edge set procedure 

Figure 5.2 shows an 8-city problem, which will be used to explain how the procedure 

of find_jproximity_candidate_edge_set works. Figure 5.3 shows the Voronoi diagram 

that is constructed using external nodes (1, 4, 3, 6, 7). Figure 5.4 shows the diagram 

that combines Figures 5.2 and 5.3. In this diagram, the boundary of Voronoi region is 

displayed in bold. To demonstrate how the above procedure works, consider node 3. 

Based on the edges of Delaunay triangulation its candidate edge set is D3 = {2, 4, 5, 

6}. Its candidate edge set using the proximity approach of Voronoi diagram as 

explained above is V3 = {5, 2, 8}. Therefore the proximity candidate edge set P3 = {D3 

n V3} = {2, 5}. Nodes 4 and 6 are in the candidate edge set derived from Delaunay 

triangulation, however they are not in the same Voronoi region as node 3. Although 

node 8 is in the same Voronoi region as node 3, but it is not in the candidate edge set 

D3, therefore it will be discarded. This shows that only nodes 2 and 5 will form the 

proximity candidate edge set for node 3, and the number of promising neighbouring 

nodes to be selected during the state transition process is reduced from four in D3 to 
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two in P3. 

Figure 5.2: Delaunay triagulation of an 8-city problem 

Figure 5.3: Voronoi diagram for external nodes only 

Figure 5.4: Combined Delaunay triagulation and Voronoi diagram 

The second factor to consider is the travelling direction of a given tour. It is known 

that in any optimal TSP tour, nodes that are located on the convex hull are visited in 
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the order in which they appear on the convex hull boundary. Otherwise, it will contain 

intersection of paths that will not lead to optimal solution (Lawler et al, 1985; Reinelt, 

1994; Cesari, 1996). One of the properties of Delaunay triangulation is, its boundary 

forms the convex hull (Aurenhammer, 1991). Thus for a node on the boundary of 

convex hull, it is joined to two other neighbouring nodes on the convex hull through 

the edges of Delaunay triangulation. Using the search strategy as defined in the SLA*-

TSP approach in Chapter 3, both edges are included for consideration during the 

search process. However, it is only necessary to consider only one of these two nodes, 

depending on the direction the tour travels. If the tour travels in a clockwise direction, 

then it is more likely that this node will go to the node on its left side, and not to the 

node on its right side. Similarly if the tour travels in an anti-clockwise direction, then it 

will travel to the node on its right side, and not to its left. In this case, the node to its 

left can be pruned from the search space. 

The example in Figure 5.2 is used to illustrate the above idea. In this example, the 

convex hull is made up of nodes (1, 4, 3, 6, 7). Each node on the convex hull is 

connected to two other nodes on the boundary of the convex hull. At node 3, it is 

joined to nodes 4 and 6 through the edges of Delaunay triangulation. Node 4 has its x-

coordinate smaller than node 3, and is to the left of node 3; node 6 is hence located to 

the right of node 3. As explained above, one of these nodes can be pruned from the 

search space depending on the direction the tour travels. If the direction the tour travels 

is anti-clockwise, then node 3 is likely to travel to node 6, and it is not necessary to 

consider node 4. On the other hand, if the direction of the tour is clockwise, node 3 can 

only travel to node 4, rather than node 6. This way only one of the nodes needs to be 

selected during the search process and the other node can be excluded from the search 

space. 
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A s discussed above, some nodes can be discarded from the search space depending on 

the direction the tour travels. The restrictive search approach proposed in this chapter 

is designed to select the candidate neighbouring city via the edges of only one triangle 

from the Delaunay triangulations. The triangle to be selected depends on the direction 

the tour travels. The following rule can generally be applied to assist in identifying the 

triangle. Before the procedure is examined, the following terms will be defined first. A 

node can be divided into quadrants, and they are labelled as first, second, third and 

fourth in a clockwise direction (see Figure 5.5). A right-to-left order refers to searching 

the triangle from the current node by travelling to the node on its left. A left-to-right 

order refers to searching the triangle from the current node by travelling to the node on 

its right. 

4th 
quadrant 

Anti- clo ckwis e 
direction 

3rd 
quadrant 

1st 
quadrant 

current 
node 

>* 

2nd 
quadrant 

Clockwise 
direction 

<C 1 O 
right-to-left order left-to-right order 

Figure 5.5: Direction of searching for triangle 

The procedure to search for the triangle is based on the overall direction of the tour: 

clockwise or anti-clockwise. Assuming the case where the direction of travel is 

clockwise, if there exists candidate neighbouring nodes to the left of the current node, 

then the search of the triangle will be made in a right-to-left order from the third 

quadrant in a clockwise direction. Otherwise, the search will be carried out in a left-to-

right order starting from the first quadrant in a clockwise direction if the candidate 
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neighbouring nodes are to its right. In the other case where the direction of travel is 

anti-clockwise, if there are candidate neighbouring nodes to its right, then the search of 

the triangle is made in a left-to-right order starting from the second quadrant in anti­

clockwise direction. Otherwise, the search is carried out in a right-to-left order starting 

from the fourth quadrant in anti-clockwise direction if there are candidate 

neighbouring nodes to its left. 

The following 4-city example shown in Figure 5.6 is used to explain the above idea. If 

the tour is travelling in a clockwise direction and the tour starts with node 2, then the 

complete tour will be 2-1-4-3-2. On the other hand, a tour that is travelling in an anti­

clockwise direction will visit the nodes in the order of 2-3-4-1-2. In both cases, the 

tour is the same however the order the cities travel is different. Thus if the tour starts 

with node 2 and the tour travels in a clockwise direction, then the search of triangle 

will be performed in a right-to-left manner from the third quadrant because there is one 

node to the left of node 2. This means the search of the next node to be added to node 

2 will begin from the third quadrant of node 2 in a clockwise direction. This way it will 

select neighbouring nodes based on triangle 2-1-4. 

Figure 5.6: Example 1 to illustrate the search direction 

It is important to note that it is the overall direction of the tour that decides which way 

to search for the candidate neighbouring nodes. To illustrate this point, assuming the 

tour now starts at node 4 and the direction of the tour is clockwise (see Figure 5.7). 
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There are neighbouring nodes on both sides of node 4, which of the above rule should 

be applied? In this case, the search should begin from the first quadrant of node 4, and 

not the third quadrant, in a clockwise direction. If the search were to begin from the 

third quadrant, then the tour formed is 4-1-2-3-4, which travels in anti-clockwise 

direction. On the other hand, by starting the search from the first quadrant, then the 

tour formed is 4-3-2-1-4, which is in a clockwise direction. 

Figure 5.7: Example 2 to illustrate the search direction 

Finally, the question still remains as to which triangle from Delaunay triangulation is 

to be selected during the tour construction process. It is reasonably clear that if 

possible, one should avoid long edges when searching for optimal tour, because too 

many long edges in the tour will not lead to shorter tour. Therefore the proximity 

candidate edge set provides useful information that can be used in identifying the 

triangle. Convex hull provides a good initial subtour, and internal nodes inside the 

convex hull can be inserted between the external nodes to form a tour in the order in 

which the tour travels along the boundary of the convex hull. If there are internal nodes 

between two external nodes, then it is clear that they will be inserted between the 

external nodes by following the direction of the tour. By using the characteristic of the 

convex hull described above, and at the same time, taking the advantage of direction of 

travels, it is proposed in this research to select the first triangle (by following the 

search direction as defined above) that has both neighbouring nodes in the proximity 
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candidate edge set, and both nodes must not have been selected before. If the triangle 

contains nodes that have been selected before, then the search will continue to the next 

adjoining triangle until a triangle that satisfies the above condition is found. In the 

event no triangle is found, then it is required to start the search process again to find 

the first triangle that has at least one of its neighbouring nodes in the proximity 

candidate edge set. The procedure to find the triangle is summarised in procedure 

find_triangle in Figure 5.8. 

procedure find_triangle 

begin 
1). For each node i, find proximity candidate edge set P; using procedure 

find_j>roximity_candidate_edge_set. 

2). For each node, divide the node into four quadrants. In a clockwise direction name the 
quadrants: first, second, third and fourth. 

3). Determine the direction of the tour: clockwise or anti-clockwise. 

4). If the direction of the tour is clockwise, do rule 1 or 2: 
Rulel 
If there are more unvisited candidate neighbouring nodes to its left, start the 
search in a right-to-left order from the third quadrant. 
Rule 2 
If there are more unvisited candidate neighbouring nodes to its right, start the 
search in a left-to-right order from the first quadrant. 

G o to step (6). 

5). If the direction of the tour is anti-clockwise, do rule 3 or 4: 
Rule 3 
If there are more unvisited candidate neighbouring nodes to its right, start the 
search in a left-to-right order from the second quadrant. 
Rule 4 
If there are more unvisited candidate neighbouring nodes to its left, start the 
search in a right-to-left order from the fourth quadrant. 

G o to step (6). 

6). Let i be the last city added to the tour, follow the search direction defined above to find 
the first triangle that has both candidate neighbouring nodes in P;. If not found, then 
return to start the search process again to find the first triangle that has at least one 
candidate neighbouring node in Pj. 

end 

Figure 5.8: Procedure of find triangle 

The procedure to find triangle as described above is simple in concept. However we 

may face a situation where sub-optimal solution is obtained because a very limited 
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number of candidate edges are considered during the search process. It is possible that 

in situation where there are a large number of internal nodes grouped near to one 

another, the rules as defined in the procedure find_triangle may not be that easy and 

straightforward to apply. In circumstances like this, it would be advantageous to 

include more candidate neighbouring nodes from more than one triangle so that all 

promising edges that are likely to be in the optimal tour are not omitted during the 

restrictive search process. Therefore, it is suggested that the search for triangle should 

be augmented to include all triangles either to its left or right depending on the 

direction the tour travels. This way, the overall direction of the tour still plays an 

important role in deciding which triangles are to be selected. The rule to search for the 

triangle may be modified as follows when one wants to augment the search space to 

include candidate neighbouring nodes from more than one triangle. If the tour travels 

in a clockwise direction, then start the search for triangles in a left-to-right manner so 

that all triangles located to its right are selected. Similarly, if the tour travels in an anti­

clockwise direction, then start the search in a right-to-left manner so that all triangles 

to its left are included for consideration. This is a cautious approach to ensure all 

promising edges that are likely to form the optimal tour are not excluded from 

consideration during the tour construction process. It is necessary to maintain a 

balance between reducing the search space and at the same time ensuring that all 

possible promising neighbouring nodes are included for consideration during the 

search process. 

The search space of the restrictive search approach proposed in this chapter is much 

smaller comparing to the approach of SLA*-TSP in Chapter 3. By combining the 

properties associated with the proximity concept of Voronoi diagram, the direction of 

the tour and the way the triangle is searched, together with the characteristic of optimal 
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tour and convex hull, the restrictive approach is able to consider only neighbouring 

nodes that are most likely to result in optimal tour. 

5.3 Restrictive SLA*-TSP approach 

This section presents the modified procedure of SLA*-TSP approach by incorporating 

the procedure for finding proximity candidate edge set and triangle as described in 

Section 5.2. The step-by-step application procedure is the same as that presented in 

Chapter 3, except steps 0 and 4. Step 0 is replaced with procedure 

find_j)roximity_candidate_edge_set to find the candidate neighbouring nodes. Step 4 

of the algorithm has been modified, by including the procedure find_triangle as part of 

the search strategy. The modified procedure of the SLA*-TSP that includes the new 

search strategy as defined above is called the restrictive SLA*-TSP approach, and is 

given below: 

Let Si be the 1th state with its tour Pi(l ,2,...,i,l), where 1 is the city of origin and i 

is the last city of the tour. Its heuristic estimate h(i) is the minimum 

spanning tree of the remaining (n-i) cities. Si is the goal state when i = n. 

d(i,j) be the Euclidean distance between city i and city j. 

H(i) be the estimated tour length for Si, which consists of the tour Pi and 

h(i). 

Step 0: Apply procedure find_proximity_candidate_edge_set. 

Step 1: Locate the city of origin as the one with the smallest x-coordinate; choose 

the city with the largest y-coordinate to break ties. 
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Step 2: Put the root state on the backtrack list called O P E N . 

Step 3: Call the top-most state on the OPEN list Sj. If Sj is the goal state, stop. 

Otherwise continue. 

Step 4: Use the search strategy defined in procedure find_triangle to find the (i+1) 

city with min{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,i+l)+d(i+l,l)] +h(i+l)} from 

neighbouring cities of i; break ties randomly. If no neighbouring city of i can 

be found, go to step 6. 

Step 5: If {[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)} > min{[d(l,2)+d(2,3)+...+d(i-

l,i)+d(i,i+l)+d(i+l,l)] + h(i+l)}, add Si+i to the OPEN list as the top-most 

state; otherwise replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)]. 

Step 6: Remove Si from OPEN list if it is not the root state. 

Step 7: Go to step 3. 

5.4 Examples 

Three examples are included in this section to demonstrate the implementation of the 

restricted SLA*-TSP approach. The first example is the 8-city problem, which was 

given in Chapter 3. The second example is a 14-city problem (BURMA 14) that was 

used in the computation experiment in Chapter 4. The third example is a randomly 

generated 12-city problem. Finally a discussion in terms of performances with the two 

approaches: SLA*-TSP and restrictive SLA*-TSP, is presented. 
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5.4.1 Example 1 

Example 1 is the 8-city problem which was used in Chapter 3 for demonstration of 

SLA*-TSP (see Section 3.4.1, page 37). By using the procedure given in Section 5.2, 

the first step is to identify the proximity candidate edge set for each city. In this 

example, the convex hull is made up of cities {1,4,3,6,7}, and Voronoi diagram was 

constructed based on these five cities (see Figure 5.3, page 77). Using the procedure 

find_j)roximity_candidate_edge_set, the proximity candidate edge set for each city is 

identified. Table 5.1 shows the elements in the candidate edge set derived from 

Delaunay triangulations, Voronoi diagram using external cities only, and proximity 

candidate edge set. Column 1 shows the city and column 2 indicates if the city is on 

convex hull. Column 3 presents the candidate edge set developed using Delaunay 

triangulation Di, column 4 gives a list of internal cities that are in the same Voronoi 

region as the city on convex hull (Vi), and column 5 shows the proximity candidate 

edge set Pi = {Dj n Vi}. For internal cities that are not on the convex hull, a "-" in 

column 4 is used to show that Vj is not applicable. Table 5.1 also shows which rule 

from the procedure find_triangle has been applied, and which triangle has been used to 

identify the candidate neighbouring cities during the search process. 

The complete forward search process for this problem is given in Table 5.2. The 

presentation of Table 5.2 is the same as the presentation format used in Chapter 3 in 

which only the forward search processes are shown. The step-by-step implementation 

of the restrictive SLA*-TSP approach will not be described here. The discussion will 

focus on how the triangle is selected for each city during tour construction process and 

the rule that is used during the search process. The discussion will be presented in the 

order the cities are visited in a clockwise direction. 
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City 
i 

1 

2 

3 

4 

5 

6 

7 

8 

On 
convex 
hull 

V 
X 

V 
V 
X 

V 
V 
X 

Candidate edge set 

From Delaunay 
triangulation, D; 

4,7 

3, 5, 6, 8 

2, 4, 5, 6 

1,3,5,7,8 

2, 3 4, 8 

2,3,7,8 

1,4,6,8 

2,4,5,6,7 

From Voronoi 
diagram, V, 

0 

-

2,5,8 

0 

. 

0 

0 

-

Proximity 
candidate edge 
set, P( 

4,7 

3,5,6,8 

2,5 

1,3,5,7,8 

2, 3 4, 8 

2,3,7,8 

1,4,6,8 

2,4,5,6,7 

Rule applied 
(procedure 
find_triangle) 

Rule 2 

Rulel 

Rule 2 

Rule 2 

Rule 2 

Rulel 

Rule 1 

Rule 2 

Triangle 
selected 

A1-7-4 

A2-3-5 

A3-5-2 

A4-1-7 

A5-2-8 

A6-3-2 

A7-6-8 

A8-6-2 

Table 5.1: Proximity candidate edge set for the 8-city problem 

Iteration 
1 

2 

3 

4 

5 

Level-0 
(4,4) * 
13070 
(4,4)* 
15891 
(4,4)* 
18548 
(4,4)* 
23093 
(4,4) 
23093 

Level-1 
(4,1,4) 
15891 
(4,1,4) 
15891 
(4,1,4) 
18548 
(4,1,4) 
23093 
(4,1,4) 
23093 

Level-2 

(4,1,7,4) 
15740 
(4,1,7,4) 
18548 
(4,1,7,4) 
23093 
(4,1,7,4) 
23093 

Level-3 

(4,1,7,8,4) 
18548 
(4,1,7,8,4) 
18548 
(4,1,7,6,4) 
23093 
(4,1,7,6,4) 
23093 

Level-4 

(4,1,7,8,6,4) 
24215 
(4,1,7,6,2,4) 
22218 
(4,1,7,6,2,4)* 
22300 

Level-5 

(4,1,7,6,2,3,4) 
21931 
(4,1,7,6,2,3,4) 
22300 

Level-6 

(4,1,7,6,2,3,5,4) 
21480 
(4,1,7,6,2,3,5,4) 
22300 

Level-7 

(4,1,7,6,2,3,5,8,4) 
22300 
(4,1,7,6,2,3,5,8,4) 
22300 

Table 5.2: Forward search process for 8-city problem using the restrictive approach 

The direction of the tour is clockwise, and the starting city is city 4. From city 4, rule 2 

of procedure find_triangle is applied. Rule 2 is used in this instance because its 

unvisited candidate neighbouring cities are located to its right. The first triangle that 

has both candidate neighbouring cities in the proximity candidate edge set P4 is 

triangle A1-4-7. Therefore the selection of the neighbouring city to the tour can be 

made from city 1 or 7, and city 1 is selected because it has the minimum estimated tour 

length. From city 1, rule 2 is applied because its unvisited candidate neighbouring city 

is to its right. The search begins from the first quadrant. However, there is no triangle 

in the first quadrant and the search continues to the second quadrant. It is found that 

there is no triangle that satisfies the condition that both unvisited candidate 
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neighbouring cities in Pi, therefore the search process continues. This time the triangle 

with at least one unvisited neighbouring city in Pi is selected, and the triangle is A1-4-

7. In this case, the neighbouring city for city 1 is city 7; city 4 is excluded because it is 

already in the partial tour. From city 7, rule 2 is once again applied because its 

neighbouring node is to its right. This time the first triangle encountered is A 7-6-8 and 

the state generated is state (4,1,7,8,4). This state has the minimum estimated tour 

length that is greater than the estimated tour length of its parent state, therefore 

backtracking occurs and heuristic update takes place (see iteration 2 as shown in Table 

5.2). 

In the third iteration, the search progresses from (4,4), (4,1,4), (4,1,7,4), (4,1,7,8,4). 

The last city added to the partial tour is city 8, and rule 2 is applied to find the triangle. 

Although both sides of city 8 have unvisited neighbouring cities, it is rule 2 that is 

applied because it will result in a tour that is consistent with the clockwise direction of 

travel. The first triangle that has both unvisited neighbouring cities is A8-6-2. 

In iteration four, the search starts from (4,4), and continues to (4,1,4), (4,1,7,4), 

(4,1,7,6,4). The last city in this partial tour is city 6, which has its unvisited 

neighbouring nodes to its left. This time rule 1 is applied, and the first triangle 

encountered is A2-3-6 and the state with the minimum estimated tour length of 22218 

is (4,1,7,6,2,4). From city 2, rule 1 is again applied and the first triangle encountered is 

A2-3-5. From city 3, rule 2 is used and the first triangle is A3-5-2. From city 5, rule 2 

is again used and the triangle found is A5-2-8, and the state generated is 

(4,1,7,6,2,3,5,8,4). At this stage, more heuristic estimates and backtracking steps will 

be carried out until an optimal tour of (4,1,7,6,2,3,5,8,4) with tour length 22300 is 
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found (see iteration 5 in Table 5.2). Results from Table 5.2 shows that the restrictive 

approach only takes five forward search trials to reach the optimal solution. 

5.4.2 Example 2 

Example 2 is a problem of fourteen cities (BURMA 14) obtained from TSPLIB 

(Reinelt, 1991). This problem was one of the four problems used in the performance 

analysis of SLA*-TSP in Chapter 4. Figure 5.9 shows the combined Delaunay 

triangulations and Voronoi diagram using the approach described in Section 5.2. In the 

diagram, single-line shows the Delaunay triangulations and the bold-line shows the 

Voronoi regions. 

Figure 5.9: Combined Delaunay triangulations and Voronoi diagram for B U R M A 1 4 

Table 5.3 shows the elements in the candidate edge sets and the triangle that is found 

for each city. The layout and presentation format of Table 5.3 are the same as Table 

5.1 above. In this example, it can be seen that proximity candidate edge sets for 

internal cities are the same as the candidate edge set defined using Delaunay 

triangulations, however the proximity candidate edge sets for external cities 2, 5, 6, 7 

have reduced, except city 1 which remains the same. 
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A s with the previous example, the explanation on h o w the forward search and 

backtracking processes took place in the restrictive SLA*-TSP approach will not be 

discussed. On the other hand, the discussion concentrates on examining how the 

triangles are determined and the rule that has been used during the search process. The 

discussion will be presented in the order the cities are visited in a clockwise direction. 

The direction the tour travels is clockwise, and the tour starts from city 5. 

City 
i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

On 
convex 
hull 

V 
V 
X 

X 

V 
V 
V 
X 

X 

X 

X 

X 

X 

X 

Candidate edge set 

From Delaunay 
triangulation, D; 

2,7,8,9,13 

1,3,4,5,11,13 

2,4,11 

2,5,10,11 

2,4,6,10,14 

5,7,14 

1,6,8,12,14 

1,7,9,12 

1,8,12,13,14 

4,5,11,13,14 

2,3,4,10,13 

7,8,9,14 

1,2,9,11,14 

5,6,7,9,10,12,13 

From Voronoi 
diagram, V, 

0 

3,11 

_ 

_ 

4,10,13 

14 

8,9,12 

. 

-

. 

_ 

_ 

_ 

-

Proximity 
candidate edge 
set, P; 

2,7,8,9,13 

3,11 

2,4,11 

2,5,10,11 

4,10 

14 

8,12 

1,7,9,12 

1,8,12,13,14 

4,5,11,13,14 

2,3,4,10,13 

7,8,9,14 

1,2,9,11,14 

5,6,7,9,10,12,13 

Rule applied 
(procedure 
findjriangle) 

Rulel 

Rule 2 

Rule 2 

Rulel 

Rulel 

Rulel 

Rulel 

Rule 2 

Rule 2 

Rule 2 

Rule 2 

Rule 2 

Rule 2 

-

Triangle 
selected 

A1-7-8 

A2-3-11 

A3-2-11 

A4-2-3 

A5-4-10 

A6-5-14 

A7-6-14 

A8-1-7 

A9-1-8 
A9-8-12 

A10-13-14 

All-10-13 

A12-8-7 

A13-9-1 

-

Table 5.3: Proximity candidate edge set for B U R M A 1 4 

The tour starts with city 5, and it is likely to travel to the neighbouring nodes to its left; 

otherwise it will not lead to a tour that travels in clockwise direction. Therefore rule 1 

of procedure find_triangle is used, and the first triangle that has both candidate 

neighbouring cities is A5-4-10. Using the algorithm of SLA*-TSP, city 4 is included 

in the partial tour. From city 4, rule 1 is again applied and the triangle selected is A4-
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2-3. This time, city 2 is added to the partial tour. From city 2, rule 2 is applied because 

its unvisited neighbouring cities are to its right. The proximity candidate edge set for 

city 2, P2 = {3, 11}, therefore the first triangle that has both unvisited candidate 

neighbouring cities in P2 is A2-3-11. From city 3, rule 2 is again applied and the 

triangle selected is A3-2-11. In this instance, there is no triangle that has both 

unvisited neighbouring cities in proximity candidate edge set P3. Therefore the search 

needs to start again, and the triangle that has at least one unvisited neighbouring city is 

A3-2-11. The same rule (i.e. rule 2) applies for cities 11, 10, 13, 9, 12, and 8, because 

each of these cities has unvisited neighbouring nodes located to its right. In the case of 

node 9, the cautious approach that has been discussed in Section 5.2 has been used. 

Instead of considering candidate neighbouring nodes from only one triangle, all 

triangles that are to its right are considered. In this instance, triangles A9-8-12 and 

A9-1-8 have been selected. After that, rule 1 is applied to cities 1, 7 and 6, because it 

must travel to the neighbouring nodes to its left in order for the tour to travel in a 

clockwise direction. The last city is city 14, and it is not necessary to select any 

triangle for this city. The results are summarised in Table 5.3. 

The complete forward search trials are shown in Table B.l in Appendix B. The results 

from Table B.l shows that it takes 35 forward search trials to reach the optimal 

solution using the restrictive SLA*-TSP approach. 

5.4.3 Example 3 

The test approach in this example is adapted from the randomly generated problem in 

Chapter 4. It is a 12-city randomly generated problem that exhibits clustering of nodes. 

It consists of four clusters with 3 nodes in each cluster. The nodes are located within a 

(0,100) square and the square is divided into 16 equal rectangles (see Figure 5.10). 
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Three nodes are randomly generated within each rectangle according to a uniform 

distribution. In this example, the nodes are selected from square 1,4, 13 and 16. 

4 

3 

2 

1 

8 

7 

6 

5 

12 

11 

10 

9 

16 

15 

14 

13 

Figure 5.10: Structure of problems tested 

Figure 5.11 shows the combined Delaunay triangulations and Voronoi diagram of the 

problem. As with previous examples, the Delaunay triangulations are constructed 

based on all nodes in the problem and the Voronoi diagrams constructed are based on 

external nodes only. The single-line shows the Delaunay triangulation and the bold 

lines show the boundary of Voronoi regions formed by nodes that lie on the convex 

hull. Table 5.4 shows the elements in the candidate edge set Dj, Vj and Pj. The layout 

and presentation format of Table 5.4 is the same as Table 5.1 

Figure 5.11: The combined Delaunay triangulation and Voronoi diagram of Example 3 
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City 
i 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

On 
convex 
hull 

V 
X 

X 

X 

V 
V 
X 

V 
X 

V 
V 
X 

Candidate edge set 

From Delaunay 
triangulation, D, 

2,3,6,8 

1,3,4,6,7 

1,2,7,8,9 

2,5,6,7,10,12 

4,6,10 

1,2,4,5 

2,3,4,8,9,11,12 

1,3,7,9,11 

3,7,8 

4,5,11,12 

7,8,10,12 

4,7,10,11 

From Voronoi 
diagram, Vj 

2,3 

_ 

_ 

-

4 

0 

_ 

7,9 

_ 

12 

0 

-

Proximity 
candidate edge 
set, P; 

2,3 

1,3,4,6,7 

1,2,7,8,9 

2,5,6,7,10,12 

4 

1,2,4,5 

2,3,4,8,9,11,12 

7,9 

3,7,8 

12 

7,8,10,12 

4,7,10,11 

Rule applied 
(procedure 
find_triangle) 

Rule 3 

Rule 4 

_ 

Rule 4 

Rule 4 

Rule 4 

Rule 3 

Rule 4 

Rule 4 

Rule 4 

Rule 4 

Rule 3 

Triangle 
selected 

A1-8-3 

A2-1-3 

-

A4-5-6 

A5-4-6 

A6-1-2 

A7-11-12 

A8-7-9 

A9-7-3 

A10-4-5 

All-10-12 

A12-10-4 

Table 5.4: Proximity candidate edge set of Example 3 

As with Example 2, this section focuses on how the triangle is selected and the 

application of SLA*-TSP will not be discussed. It is assumed that the tour travels in an 

anti-clockwise direction, and the tour starts with city 8. From city 8, rule 4 of 

procedure frndjriangle is applied, because its neighbouring nodes are to its left. The 

first triangle that has both candidate neighbouring nodes in the proximity candidate 

edge set of P8 is A8-7-9. The next city to consider is city 9. Again rule 4 is applied 

because its neighbouring cities are to its left. This time A 9-7-3 is selected. This is 

followed by city 7, and rule 3 is used to find triangle A7-11-12. City 11 uses rule 4 to 

find triangle All-10-12 because its neighbouring cities are to its left. Then city 12 

uses rule 3 to find A12-10-4. Rule 4 is applied to cities 10, 4, 5, 6, 2, and triangles 

found are A10-4-5, A4-5-6, A5-4-6, A6-1-2, and A2-1-3 respectively. Then city 1 

uses rule 3 to find triangle A1-8-3 and city 3 is the last city added to the tour. The 

results is summarised in Table 5.4. 
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Table B.2 of Appendix B shows the complete forward search trials of this problem. 

From Table B.2, it shows that only 14 forward search trials are required to obtain 

optimal solution using the restrictive search approach. 

5.4.4 Discussion 

Table 5.5 summarises the results for the above three examples. The table compares the 

number of forward searches each problem takes using both the SLA*-TSP and the 

restrictive search approach. The number of heuristic updates needed in both 

approaches for each problem is also included in the table. To compare the performance 

f ., . - _ RestrictiveSLA*-TSP . * A * *u 
of these two approaches, the ratio of is computed for the 
SLA*-TSP 

number of forward search as well as that of heuristic updates. 

Example 

1 

2 

3 

N o of 
cities 

8 

14 

12 

Number of forward search 

SLA*-
TSP 

18 

786 

26 

Restrictive 
SLA*-TSP 

5 

33 

14 

Ratio 

28% 

4% 

54% 

Number of heuristic updates 

SLA*-
TSP 

74 

5601 

124 

Restrictive 
SLA*-TSP 

9 

182 

37 

Ratio 

12% 

3% 

30% 

Table 5.5: Summary of results for three examples 

Results from Table 5.5 show that the restrictive SLA*-TSP approach substantially 

outperforms the SLA*-TSP approach. Problem in Example 2 shows that the number of 

heuristic updates in the restrictive search approach is only 3% of the SLA*-TSP 

approach, with a saving of 97%. Even the clustered problem in Example 3, which is 

the worst of the three, the number of heuristic updates in the restrictive SLA*-TSP 

approach is only 30% of the SLA*-TSP approach, with a saving of 70%. As discussed 

in Chapter 4, in problems that exhibit clustering or grouping of nodes, the value of the 
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heuristic estimate is greater than otherwise. This is because the minimal spanning tree 

includes those edges that are between the clusters and results in a higher value of 

heuristic estimate. Therefore problems that exhibit clustering or grouping of nodes will 

be relatively advantageous to the approach of SLA*-TSP. On the other hand, when the 

restrictive search approach is applied to problems that do not exhibit clustering 

characteristics, a very substantial saving in terms of the number of heuristic updates 

can be achieved. 

Table 5.6 shows the results of the number of states generated in the search process. 

The number of states is calculated based on the number of candidate neighbouring 

nodes generated. It can be seen that the restrictive search approach generates fewer 

states. This is because each time the tour is expanded, it considers a very limited 

number of promising neighbouring nodes depending on the direction of the tour. On 

the other hand, in the SLA*-TSP approach it needs to consider all unvisited 

neighbouring nodes that are connected through the edges of Delaunay triangulation. 

Example 

1 

2 
3 

N o of cities 

8 

14 
12 

SLA*-TSP 

90 

34560 

4800 

Restrictive SLA*-TSP 

16 

512 
512 

Ratio 

18% 

2% 
11% 

Table 5.6: Number of states generated in the search process 

Initial study from these three examples has indicated that the search space of SLA*-

TSP approach can be much improved by considering only the most promising 

candidate neighbouring nodes during the tour construction process. The improvement 

is achieved through the use of knowledge pertaining to the convex hull, Voronoi 

diagram, direction of the tour and the direction of search. 
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5.5 Conclusion 

In this chapter, it has shown that knowledge based on the computational geometric 

characteristics of Euclidean TSP can be utilised to identify a reduced set of candidate 

nodes to be included in the search process. The contribution of this chapter is the 

development of the restrictive SLA*-TSP approach in which the search strategy has 

utilised the characteristics of Voronoi diagram, direction of the tour, and the direction 

of search. In this restrictive approach, only the most promising neighbouring nodes are 

included for consideration during the tour construction process. It is believed that the 

restrictive SLA*-TSP approach could present an effective alternate approach in 

addressing TSP; in particular the selection of promising cities based on the proximity 

information of Voronoi diagram and the way the direction is integrated in the search 

strategy. 
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CHAPTER 6: CONCLUSIONS 

6.1 Overview of research 

The principal emphasis of this research is the development of a heuristic learning 

approach to construct TSP tour by utilising the underlying computational geometric 

properties of Euclidean TSP. This thesis centred on two issues of tour construction 

heuristics that had not been pursued previously. 

1. Greedy and myopic natures of tour constructions. 

This thesis developed a dynamic tour construction approach by using the 

heuristic learning approach of SLA*. Dynamic tour construction aims to 

change the configuration of the tour while the tour is under construction. The 

backtracking and heuristic updating features in SLA* offer an opportunity for 

this to occur. 

2. Search strategy based on the underlying computational geometric properties of 

Euclidean TSP . 

This thesis focuses on two-dimensional Euclidean TSP. Computational 

geometric properties associated with Euclidean TSP such as Delaunay 

triangulation and Voronoi diagrams are utilised to ensure that only promising 

cities that are likely to lead to an optimal tour are included for consideration in 

the tour construction process. 
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This research shows that SLA*-TSP is a powerful heuristic learning approach that can 

be used to construct tour dynamically. The tour configuration process is constantly 

changing during the tour construction process until a solution is obtained. It has 

demonstrated that by utilising the computational properties and characteristics 

associated with Euclidean TSP, the search process considers only promising cities that 

are likely to result in optimal solution. Knowledge concerning Delaunay triangulation, 

Voronoi diagram, the direction of the tour travels and direction of search for triangle 

can be embedded in a restrictive search approach to reduce search space. 

6.2 Results of research 

In the pursuit of the above topics, the following results were obtained. 

1. Development of SLA*-TSP approach. 

A state space transformation process that includes state definition, state 

transition operator and state transition cost has been developed. This is to allow 

TSP to be formulated as a state-space problem so that SLA*-TSP can be 

applied. The implementation approach of SLA*-TSP has been developed. 

2. Development of two search strategies based on the underlying computational 

geometric properties of Euclidean TSP. 

The first strategy utilises the characteristics of Delaunay triangulations in 

defining search space. The second strategy is more restrictive, it utilises the 

proximity property of Voronoi diagram, convex hull, direction the tour travels 

and the direction of search for an appropriate triangle. This latter strategy 
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selects an appropriate triangle from Delaunay triangulation, which contains 

information of the candidate edges that are likely to lead to the optimal tour. 

3. Investigation of quality of heuristic estimate in determining the performance of 

SLA*-TSP. 

The distribution of nodes on the problem influences the heuristic estimate 

because it influences the computation of minimal spanning tree. In problems 

that exhibit clustering or grouping of nodes, it will lead to a better quality of 

heuristic estimate. This is because when the clusters are well separated, long 

edges linking clusters tend to be included in the minimal spanning tree. 

The research also shows that the application of SLA*-TSP with a learning threshold 

approach can be used to improve the computation time for large sized problems at the 

sacrifice of the optimal solution. By including the learning threshold in the algorithm, 

SLA*-TSP with learning threshold approach is able to find an approximate solution 

with a known quality. The advantage of this approach is that the maximum amount of 

sacrifice is known before hand. 

6.3 Contribution of the research 

Conventional tour construction heuristics is myopic and greedy in nature. This 

research addresses the above gaps in conventional tour construction heuristics for 

traveling salesman problem. With the application of heuristic learning algorithm 

SLA*, the work presented here shows that the tour can be constructed dynamically 

through the use of local and global distance information. Along the search process, the 

backtracking and forward search processes can repetitively lead to deletion and 
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addition of cities from and to the tour. This dynamic construction of the tour is made 

possible through the consideration of both the local tour information and the global 

tour estimation, which is updated continuously along the search process. 

The work presented here shows that by utilising the computational geometric 

properties of Euclidean TSP, the performance of the heuristic learning feature of 

SLA*-TSP can be enhanced. Firstly, the search capability of SLA*-TSP is enhanced 

by the solution space selection of the Delaunay triangulations. In addition, through the 

integration of Voronoi diagram, operating as a decision boundary, with the direction of 

search for the triangle, a more intelligent restrictive SLA*-TSP approach has been 

developed. This restrictive approach makes the selection of promising cities based on 

the proximity information of Voronoi diagram, and the sense of direction of search is 

integrated in the search strategy to avoid unnecessary search. This is an approach that 

has not been pursued previously. 

This research has demonstrated that a well-developed heuristic learning algorithm in 

artificial intelligence such as SLA* can present an effective alternate way of 

addressing traditional TSP. The research has shown that the heuristic learning 

approach together with the underlying computational geometric properties of 

Euclidean TSP can be integrated in such a way that the tour can be constructed 

dynamically in which the configuration of the tour can be constantly updated during 

the tour construction process. The characteristics of computational geometry has been 

utilised to define a reduced search space so that only the promising candidate edges are 

included in the tour construction process. 
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6.4 Future research 

Based on the findings of this research, future research needs to be conducted to offer a 

more complete and comprehensive heuristic learning framework to solve TSP. The 

following issues warrant further investigation. 

- One of the major weaknesses of the current computer implementation is its 

inefficient memory handling. Further research needs to be carried out to 

improve the design of the data structures to improve the efficiency of memory 

handling. One of the possible methods is to use tree structure so that the state 

and the value of the updated heuristic estimate can be stored and retrieved more 

efficiently. 

- The major factor influencing the performance of SLA*-TSP is the heuristic 

estimate. Minimal spanning tree is used in this research to compute the 

heuristic estimate. However, further research can to be investigated to find an 

alternative method, if any, to compute the heuristic estimate that has a value as 

close to the optimal solution as possible. Investigations can be conducted to 

determine the suitability of other lower bound, such as assignment problem, to 

be used as a heuristic estimate. 

- The SLA*-TSP with learning threshold approach allows the algorithm to find 

an approximate solution with a desired range of certainty. This feature is 

particularly important in practical situations when an exact solution is not 

required, but the speed of computation is. However, there is a need to better 

understand the way backtracking is delayed in relation to the neighbourhood 
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and geometric properties of the nodes when learning threshold is included. 

Further research needs to be conducted to examine this relationship. 
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APPENDIX A: PROGRAM LISTING 

HI 



//C++ program using LEDA library for SLA-TSP 
//last modified: 17 April 2001 

#define PRUNE 
ttdefine NODE_TABLES 
// commented out FAST_CODE to collect statistics during run time 
//#define FAST_CODE 

#include <stdio.h> 
#include <math.h> 
#include <time.h> 
#include <values.h> 
#include <stdlib.h> 
ttinclude <string.h> 
#ifndef BORLANDC 
#include <sys/times.h> 
#endif 

#include <LEDA/geo_alg.h> 
ttinclude <LEDA/graphwin.h> 
#include <LEDA/window.h> 
#include <LEDA/rat_kernel_names.h> 
#include <LEDA/set.h> 

#define COLOR_NORMAL black 
#define COLOR_CURRENT_PATH red 
#define COLOR_MIN_PATH yellow 
#define COLOR_DELETED_PATH green 
#define COLOR_PROPOSED_PATH cyan 

#ifndef BORLANDC 
fdefine max(a, b) ((a) < (b) ? (b) -. (a) 
#define min(a, b) ((a) > (b) ? (b) : (a) 

#endif 

#define BIN_SIZE 1000 

#ifdef NODE_TABLES 
struct heuristicNode 

{ 
float heuristic; 

float *graphPtr; 

In­

struct binNode 

{ 
struct heuristicNode *heuristicNodePtr; 

int count; 
struct binNode *nextBin; 

}; 

#else 

struct binNode 

{ 
struct binNode *left; 
struct binNode *right; 
float heuristic; 
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float *graphPtr; 
}; 

#endif 

struct heuristicLookUpTable 
{ 

struct binNode *binNodePtr; 
}; 

char stringl[200]; 

int numpoints ; 
int bin_size = BIN_SIZE; 

#ifndef FAST_CODE 
bool stepFlag = false; // -s 
bool graphicFlag = false; // -g 
bool statisticsFlag = false; // -S 
bool displayOutputFlag = false; // -o 
bool autoFlag - false; 
bool endOfRunGraph = false; 
bool graphSelectedFlag = false; 
bool atRootFlag - true; 
#endif 

bool altThresholdFlag = false; 
bool thresholdSelectedFlag = false; 
bool randomPointFlag = false; // -r 
bool filePointFlag = false; // -f 

float maxX,maxY,minX,minY; // windows co-ordinate boundaries 

float initThreshold =0.0; // -t 
float currentThreshold = 0.0; 

int startPoint = 1; // -p 
char *progname; 
bool backtrackFlag = false; 

#ifndef FAST_CODE 
int delayGap = 1; 
char *outputFile = NULL; // -0 

int stepBut, // button variables 
clearBut, 

autoBut, 
exitBut; 

unsigned int statsForwardSequenceCount = 0; 
unsigned int statsFowardCount = 0; 
bool statsforwardFlag = false; 

unsigned int statsBacktrackSeguenceCount = 0; 
unsigned int statsBacktrackSequenceRootCount = 0; 
unsigned int statsBacktrackCount = 0; 
unsigned int statsBacktrackRoot2Root = 0; 
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unsigned int remainingGraphHeuristicUpdates = 0; 
unsigned int remainingGraphNoHeuristicUpdates = 0; 
unsigned int subGraphHeuristicUpdates = 0; 
unsigned int subGraphNoHeuristicUpdates = 0; 

window WDD("DELAUNAY TRIANGULATION"); 
#endif 

list<point> L; // list of points that make up 
the graph 
list<point> LPoint; // list of nodes removed from the 
graph 

#ifdef PRUNE 
list<int> connectList; // used for determine is all no 
visited points are still connects, used by path pruning algorthm 
int edgeCounter; // used by the path pruning 
algorithm 
set<point> externalPoints; //a set of all points that are 
on the external edges of the graph 
set<string> externalEdges; 
#endif 

GRAPH<point,int> DT; // The Graph defining the 
Delaunay Triangle 
GRAPH<point,int> remainingGraph; // The Remaining Graph after the 
current processing points have been removed 

GRAPH<point,int> previousGraph; 
GRAPH<point,int> tempPreviousGraph; 

node firstNode, 
is to be processed 

currentNode; 
graph being processed 

stack<GRAPH<point,int> > graphStack; 

struct heuristicLookUpTable *graphLoopUpTablePtr; 
struct heuristicNode *tempGraphHeuristicNodePtr; 

struct heuristicLookUpTable *subGraphLoopUpTablePtr; 
struct heuristicNode *tempSubGraphHeuristicNodePtr; 

//******************************************************************* 

*********** 

node GetFirstNode(list<point>& L,GRAPH<point,int>& DT, int 
startPoint); 
float GetDistance(point &pStart,point &pEnd); 
void deleteNode(point& p,GRAPH<point,int>& G); 
int MSTcmp(const edge &el,const edge &e2); 
float calculateMSTPathLength(GRAPH<point,int>& G, list<edge>& el); 

#ifndef FAST_CODE 
void processMouse(void) ; 
void FindScalingFactors(float *xFact,float *yFact); 
void displayMinSpanningPath(GRAPH<point,int>& G,list<edge>& el); 

// first node in the graph that 

// The current node of the 
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void displayGraph(GRAPH<point,int>& G, bool clearFlag); 
void displayWholeGraph(void ); 
void displayCurrentPath(list<point>& listPoints) ; 
void displayProposedPath(point& pl,point& p2); 
ttendif 

int isDeletedPoint(point &pEnd); 
node getGraphNodeFromPoint(GRAPH<point,int>& G,point &pl); 
void InitLookUpTables(void); 

//********************* 

#ifdef NODE_TABLES 
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point 
&P) ; 
void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer); 
void InsertGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer); 
int myGraphBsearch(float *ptsBuffer, struct binNode *binNodePtr,int 
size); 
float getGraphUpdatedHeuristic(GRAPH<point,int>& G,point &p) ; 
//********************* 
void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float 
heuristic); 
void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,points 
endPoint,float heuristic); 
void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer); 
void InsertSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic, float *ptsBuffer); 
int mySubGraphBsearch(float *ptsBuffer, struct binNode 
*binNodePtr,int size); 
float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G,point &p); 
#else 
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point 
&P) ; 
void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer); 
float getGraphUpdatedHeuristic(GRAPH<point,int>& G, point& 
startPoint); 
//********************* 
void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float 
heuristic); 
void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point &p,float 
heuristic); 
void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer); 
float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, point& 
endPoint); 
#endif 
float redLineLength(void); 
int cmpPts(float *pl, float *p2, int count); 
void processArguments (int argcchar *argv[]); 
void readlnGraph(char *fileName); 
void generateRandomGraph(int points,int xlow,int ylow,int xhigh,int 
yhigh,int prec); 
void displayUsage(void); 
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•k-k'k'k-k'k-k'k-kie-k 

int main(int argc, char *argv[]) 
{ 

progname = "sk4"; 
processArguments(argc, argv) ; 

#ifndef FAST_CODE 
ofstream progOutput; 
if (outputFile) 
{ 

progOutput.open(outputFile,ios::out); 
if (!progOutput.good()) 

{ 
fprintf(stderr,"Unable to open output file\n"); 
displayUsage(); 
exit(0); 

} 
} 

#endif 

time_t startTime = time(NULL); 

ttifndef FAST_CODE 
float xfact, 
yfact; 

if (graphicFlag) 
{ 

StepBut = WDD.button("STEP" ) ; 
clearBut = WDD.button("CLEAR"); 

autoBut = WDD.button("AUTO"); 
exitBut = WDD.button("EXIT"); 

FindScalingFactors(&xfact,&yfact); 
WDD.init(minX-xfact,maxX+xfact,minY-yfact); 

WDD.display(window::center,window::center); 
WDD.start_buf feringO ; 

} 
#endif 

InitLookUpTables(); 

// setup DELAUNAY_TRIANGLE DIAGRAM using list L in graph DT 
DELAUNAY_TRIANG(L,DT); 

#ifndef FAST_C0DE 
if (graphicFlag) 
displayGraph(DT,true); // display initial graph 

#endif 

#ifdef PRUNE 
edge e; 
forall_edges(e,DT) 
{ 
if (DT[e] == HULL_EDGE) 
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{ 
char strBuffer[50]; 

ostrstream ostr(strBuffer,50); 

node v = DT.source(e), w = DT.target(e); 
point pi; 
pi = DT[v].to_point(); 
if (externalPoints.member(pi) == false) 

externalPoints.insert(pi); 
ostr « pi; 
pi = DT[w].to_point(); 
if (externalPoints.member(pi) == false) 

externalPoints.insert(pi); 
ostr << pi; 
ostr « '\0'; 
externalEdges.insert(strBuffer) ; 

} 
#endif 

firstNode = currentNode = GetFirstNode(L,DT,startPoint) ; 

#ifdef PRUNE 
point pi = DT[firstNode].to_point(); 

if (externalPoints.member(pi) == true) 
{ 
edgeCounter = 1; 

connectList.append(1); 
} 
else 
{ 
edgeCounter = 0; 
connectList.append(0) ; 

} 
#endif 

remainingGraph = DT; // copy graph into a remaining buffer 
previousGraph = DT; 

LPoint.append(DT[firstNode].to_point()); // store first point 

ttifndef FAST_CODE 
if (graphicFlag) 
processMouse(); 

else if (stepFlag) 
{ 

cout << "Enter 's' to step\n" ; 
cin » stringl; 
cout « endl; 

} 
#endif 

for (;;) 
{ 

// get the list of adjacent nodes to the current node 
list<node> adjNodes = remainingGraph.adj_nodes(currentNode); 
point pStart, 

pEnd; 
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int numAdjNodes = adjNodes.size(); // get the 
number of adjacent nodes 

int flag - 0; 
int index = 0; 
node minNode; 
float minValue; 
float mainGraphMSTLength; 
point minPoint; 

#ifndef FAST_C0DE 
bool minUpdateFlag; 

#endif 

float tempDistance = 0; 
GRAPH<point,int> tempGraphGraph; 

node tempNode; 

if (LPoint.sizeO > 1) 
{ 

int i, 
j ; 

point xl, 
x2 ; 

list_item listPtr; 

j = LPoint.sizeO; 

xl = LPoint.front(); 
listPtr = LPoint.first(); 

for ( i = 1 ; i < j ; i++) 
{ 

listPtr = LPoint.succ(listPtr); 
x2 = LPoint.contents(listPtr); 
tempDistance+= xl.distance(x2); 
xl = x2; 

} 
} 

int Kounter = 0; 
forall(tempNode,adjNodes) 
{ 

pStart = remainingGraph[currentNode].to_point(); 
pEnd = remainingGraph[tempNode].to_point(); 

if (isDeletedPoint(pEnd)) 
continue; 

// check if endpoint has more that one adjacent node 
list<node> tempAdjNodes = 

remainingGraph.adj_nodes(tempNode); 

node tempTempNode; 

int nodeCounter = 0; 

#ifdef PRUNE 
bool externalEndPointFlag = externalPoints.member(pEnd); 
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bool externalStartPointFlag = 
externalPoints.member(pStart) ; 

int numAdjacentActiveHullPoints = 0; 
#endif 

forall( tempTempNode,tempAdjNodes) 
{ 

point tPoint = 
remainingGraph[tempTempNode].to_point() ; ; 

if (isDeletedPoint(tPoint)) 
continue; 

nodeCounter++; 

#ifdef PRUNE 
if (externalEndPointFlag && 

externalPoints.member(tPoint)) 
{ 
char strBuffer[50]; 

ostrstream ostr(strBuffer,40); 
ostr « pEnd; 
ostr « tPoint; 

ostr « '\0'; 
if (externalEdges.member(strBuffer)) 

numAdjacentActiveHullPoints++; 
} 

#endif 
} 

if (LPoint.sizeO == numpoints -1) 
nodeCounter++; 

if (nodeCounter == 0) 
continue; 

#ifdef PRUNE 
if (externalEndPointFlag && edgeCounter == 1 && 

numAdjacentActiveHullPoints == 2 && !externalStartPointFlag) 
continue; 

#endif 

Kounter++; 

float distance^ pStart.distance(pEnd); 

float tempVall = distance +tempDistance + 
pEnd.distance(LPoint.frontO) -(tempDistance+ 
pStart.distance(LPoint.front 0)) ; 

GRAPH<point,int> tempGraph; 

tempGraph = remainingGraph; 

deleteNode(pStart,tempGraph); 
tempGraphGraph = tempGraph; 

ttifndef FAST_CODE 
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if (graphicFlag) 
{ 

if (flag == 0) 
{ 

list<point> newPointList; 

node v; 

forall_nodes(v,tempGraph) 

newPointList.append(tempGraph[v].to_point() ) ; 

DELAUNAY_TRIANG(newPointList,tempGraph); 

list<edge> el = 
MIN_SPANNING_TREE(tempGraph,MSTcmp) ; 

displayWholeGraphO ; 
displayMinSpanningPath(tempGraph,el); 

mainGraphMSTLength = 
calculateMSTPathLength(tempGraph,el) ; 

if (displayOutputFlag) 
cout«"\nCalcuated MST for 

remaining graph: " « mainGraphMSTLength« endl; 
if (outputFile) 

progOutput«"\nCalcuated MST for 
remaining graph: " « mainGraphMSTLength« endl; 

float tempHeuristic = 
getGraphUpdatedHeuristic(tempGraph,pStart) ; 

if (tempHeuristic != 0) 
{ 

if (displayOutputFlag) 
cout « "Updating Above 

MST Heuristic Estimate From: " 
« mainGraphMSTLength 

« " To: " 
<< tempHeuristic 

« endl; 

if (outputFile) 
progOutput « "Updating 

Above MST Heuristic Estimate From: " 
« mainGraphMSTLength 
« " To: " 

« tempHeuristic 
<< endl; 

remainingGraphHeuristicUpdates++; 

mainGraphMSTLength - tempHeuristic; 

} 
else 

remainingGraphNoHeuristicUpdates++; 
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processMouseO ; 

tempGraph = tempGraphGraph; 
} 
flag++; 

} 
else 

#endif 
{ 

if (flag == 0) 
{ 

float tempHeuristic = 
getGraphUpdatedHeuristic(tempGraph,pStart) ; 

if (tempHeuristic != 0) 
{ 

#ifndef FAST_CODE 
if (displayOutputFlag) 

cout « "Using Updated MST 
Heuristic Estimate: " 

« tempHeuristic 
<< endl; 

if (outputFile) 
progOutput « "Using 

Updated MST Heuristic Estimate: " 
<< tempHeuristic 

<< endl; 
remainingGraphHeuristicUpdates++; 

#endif 

mainGraphMSTLength = tempHeuristic; 

} 
else 

{ 

#ifndef FAST_CODE 

remainingGraphNoHeuristicUpdates++; 

#endif 

list<point> newPointList; 

node v; 

forall_nodes(v,tempGraph) 

newPointList.append(tempGraph[v].to_point()); 

DELAUNAY_TRIANG(newPointList,tempGraph); 

list<edge> el = 
MIN_SPANNING_TREE(tempGraph,MSTcmp); 

mainGraphMSTLength = 
calculateMSTPathLength(tempGraph,el) ; 
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#ifndef FAST_CODE 
if (displayOutputFlag) 

cout«"\nCalcuated MST for 
remaining graph: " « mainGraphMSTLength« endl; 

if (outputFile) 
progOutput«" \nCalcuated 

MST for remaining graph: " << mainGraphMSTLength<< endl; 
#endif 

StoreGraphHeuristic(tempGraph,mainGraphMSTLength,pStart); 
tempGraph = tempGraphGraph; 

} 

#ifndef FAST_CODE 
if (stepFlag) 
{ 

cout « "Enter 's' to step\n" ; 
cin >> stringl; 

cout « endl; 
} 

#endif 

} 
flag++; 

} 

#ifndef FAST_CODE 
if (displayOutputFlag) 

cout « "Start Point: " 
<< pStart 
<< " Proposed Path End Point: " 
<< pEnd 
<< endl; 

if (outputFile) 
progOutput « "Start Point: " 

« pStart 
« " Proposed Path End Point: " 

« pEnd 
<< endl; 

bool updateFlag = false; 
#endif 

deleteNode(pEnd,tempGraph); 

float tempVal2; 

#ifndef FAST_CODE 
if (graphicFlag) 
{ 

list<point> newPointList; 

node v; 

forall_nodes(v,tempGraph) 
newPointList.append(tempGraph[v].to_point()); 

DELAUNAY_TRIANG(newPointList,tempGraph); 
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displayWholeGraphO ; 
displayGraph(tempGraph,false); 

displayCurrentPath(LPoint); 
displayProposedPath(pStart,pEnd); 

list<edge> el = 
MIN_SPANNING_TREE(tempGraph,MSTcmp) ; 

displayMinSpanningPath(tempGraph,el); 

tempVal2 = 
calculateMSTPathLength(tempGraph,el); 

if (displayOutputFlag) 
cout << "Loop distance is: " 

<< tempVail 
« " MST of SubGraph is: 

<< tempVal2 
« " Total is: " 

« (tempVall + tempVal2) 
« endl; 
if (outputFile) 

progOutput « "Loop distance is: " 
<< tempVall 

« " MST of SubGraph is: 
<< tempVal2 
« " Total is: " 

« (tempVall + tempVal2) 
« endl; 

float updatedHeuristic = 
getSubGraphUpdatedHeuristic(tempGraph,pEnd); 

if (updatedHeuristic) 
{ 

if (displayOutputFlag) 
cout << "Loop distance is: " 

<< tempVall 
« " Heuristic Update of MST of 

SubGraph is: 
<< updatedHeuristic 

« " Total is: " 
« (tempVall + updatedHeuristic) 
<< endl; 
if (outputFile) 

progOutput « "Loop distance is: 
ll 

<< tempVall 
« " Heuristic Update of MST 

of SubGraph is: " 
<< updatedHeuristic 

« " Total is: " 
« (tempVall + 

updatedHeuristic) 
« endl; 

updateFlag = true; 

tempVal2 = updatedHeuristic; 

} 
} 
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else 
ttendif 

{ 

float updatedHeuristic = 
getSubGraphUpdatedHeuristic(tempGraph,pEnd); 

if (updatedHeuristic != 0) 
{ 

ftifndef FAST_C0DE 
if (displayOutputFlag) 

cout << "Loop distance is: " 
<< tempVall 
« " Heuristic Update of MST of 

SubGraph is: 
« updatedHeuristic 

« " Total is: " 
« (tempVall + updatedHeuristic) 

<< endl; 
if (outputFile) 

progOutput << "Loop distance is: 
11 

« tempVall 
« " Heuristic Update of MST of 

SubGraph is: 
<< updatedHeuristic 

<< " Total is: " 
« (tempVall + updatedHeuristic) 

« endl; 
updateFlag = true; 

#endif 
tempVal2 = updatedHeuristic; 

} 
else 
{ 

list<point> newPointList; 

node v; 

forall_nodes(v,tempGraph) 

newPointList.append(tempGraph[v].to_point()); 

DELAUNAY_TRIANG(newPointList,tempGraph); 

list<edge> el = 
MIN_SPANNING_TREE(tempGraph,MSTcmp); 

tempVal2 = 
calculateMSTPathLength(tempGraph,el); 

StoreSubGraphHeuristic_2(tempGraphGraph,pEnd,tempVal2); 

#ifndef FAST_C0DE 
if (displayOutputFlag) 

cout « "Loop distance is: " 
« tempVall 

« " MST of SubGraph is: 
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« tempVal2 
« " Total is: " 

« (tempVall + tempVal2) 
« endl; 

if (outputFile) 
progOutput << "Loop distance is: 

n 

<< tempVall 
« " MST of SubGraph is: 

<< tempVal2 
« " Total is: " 

« (tempVall + tempVal2) 
<< endl; 

#endif 
} 

} 

float tempVal3 = tempVall + tempVal2; 

if (index == 0) 
{ 

minPoint = pEnd; 
minNode = tempNode; 

minValue = tempVal3; 
#ifndef FAST_CODE 

minUpdateFlag = updateFlag; 
#endif 

} 
else if (minValue > tempVal3) 
{ 

minPoint = pEnd; 
minNode = tempNode; 

minValue = tempVal3; 
#ifndef FAST_CODE 

minUpdateFlag = updateFlag; 
#endif 

} 

index++; 

#ifndef FAST_C0DE 
if (graphicFlag) 
processMouse(); 

else if (stepFlag) 
{ 

cout « "Enter 's' to step\n" ; 
cin >> stringl; 
cout << endl; 

} 
#endif 

} 

if (Kounter == 0) 
{ 

point pi; 

#ifdef PRUNE 
int connectListValue; 
connectListValue = connectList.back(); 

connectList.Pop(); 
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edgeCounter -= connectListValue; 
#endif 

tempGraphGraph = remainingGraph; 

pEnd = LPoint.back(); 
deleteNode(pEnd,tempGraphGraph); 
StoreSubGraphHeuristic(tempGraphGraph,minPoint,MAXFLOAT); 

remainingGraph = graphStack.pop(); 
LPoint.Pop(); 

pi = LPoint.back(); 

currentNode= getGraphNodeFromPoint(remainingGraph,pi); 

pStart = LPoint.back(); 

ttifndef FAST_CODE 
if (graphicFlag) 

{ 
displayWholeGraph(); 
displayGraph(remainingGraph,false); // 

display initial graph 
displayCurrentPath(LPoint); 

} 

if (graphicFlag) 
processMouse(); 

else if (stepFlag) 
{ 

cout « "Enter 's' to step\n" ; 
cin » stringl; 
cout « endl; 

} 
#endif 

continue; 
} 

#ifndef FAST_CODE 
if (minUpdateFlag) 

subGraphHeuristicUpdates++; 
else 

subGraphNoHeuristicUpdates++; 

if (displayOutputFlag) 

{ 
cout « "Main Graph MST: " 
« mainGraphMSTLength 

« " Min value is " 
<< minValue 
« endl; 

if (laltThresholdFlag && thresholdSelectedFlag) 
{ cout « "Current Threshold: " « currentThreshold 

<< endl; 
cout « "learning: " « (minValue -

mainGraphMSTLength) «endl; } 
} 
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if (outputFile) 
{ 

progOutput « "Main Graph MST: " 
« mainGraphMSTLength 
<< " Min value is " 

« minValue 
« endl; 

if (laltThresholdFlag && thresholdSelectedFlag) 
{ cout « "Current Threshold: " « currentThreshold 

<< endl; 
cout << "learning: "<< (minValue -

mainGraphMSTLength) «endl; } 
} 

#endif 

tempPreviousGraph = remainingGraph; 
graphStack.push(remainingGraph); 

deleteNode(pStart,remainingGraph); 

currentNode=minNode; 
LPoint.append(remainingGraph[minNode].to_point()); // 

store first 

#ifdef PRUNE 
int connectListValue = 0; 
if (externalPoints.member(minPoint) && 

[externalPoints.member(pStart)) 
connectListValue = 1; 

edgeCounter += connectListValue; 
connectList.append(connectListValue) ; 

#endif 

// check for backtrack 
float thresholdCalc; 

if (altThresholdFlag) 
thresholdCalc = mainGraphMSTLength *(1 

+currentThreshold); 
else 

{ if (IbacktrackFlag) 
thresholdCalc = mainGraphMSTLength 

+currentThreshold; 
else thresholdCalc = mainGraphMSTLength;} 

if (thresholdCalc <= minValue) 
point pi; 

#ifndef FAST_CODE 
statsforwardFlag = false; 

if (IbacktrackFlag) 
statsBacktrackSequenceCount+ +; 

#endif 
backtrackFlag = true; 

#ifdef PRUNE 
int connectListValue; 
connectListValue = connectList.back(); 
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#endif 

connectList.Pop () ; 
edgeCounter -= connectListValue; 

remainingGraph = graphStack.pop(); 
LPoint.Pop(); 

pi = LPoint.back(); 
currentNode= getGraphNodeFromPoint(remainingGraph,pi); 

StoreSubGraphHeuristic(tempGraphGraph,minPoint,minValue); 
StoreGraphHeuristic(tempGraphGraph,minValue,pStart); 

#ifndef FAST_CODE 
if ( backtrackFlag && remainingGraph.number_of_nodes() 

== numpoints) 
statsBacktrackSequenceRootCount++; 

if (atRootFlag) 
statsBacktrackRoot2Root++; 

atRootFlag = false; 
statsBacktrackCount++; 

#endif 

if (remainingGraph.number_of_nodes() == numpoints) 

#ifndef FAST_CODE 

point:" 

same to point: 

display initial graph 

if (displayOutputFlag) 
cout « endl 

« endl 
« " Backtrack - Graphs the same to 

« pi 
« " " 
<< endl; 
if (outputFile) 

progOutput << endl 
« endl 

« " Backtrack - Graphs the 

<< pi 
« " " 
<< endl; 

if (graphicFlag) 

displayWholeGraph(); 
displayGraph(remainingGraph,false); // 

displayCurrentPath(LPoint); 
processMouse(); 

else if (stepFlag) 
{ 

cout « "Enter 's' to step\n" ; 
cin » stringl; 
cout << endl; 

} 
atRootFlag = true; 

#endif 
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backtrackFlag = false; 
currentThreshold - initThreshold; 
continue; 

} 

#ifdef PRUNE 
connectListValue = connectList.back(); 

connectList.Pop(); 
edgeCounter -= connectListValue; 

#endif 

remainingGraph = graphStack.pop(); 
LPoint.Pop(); 

pi = LPoint.back(); 
currentNode= getGraphNodeFromPoint(remainingGraph,pi); 

#ifndef FAST_CODE 
if (displayOutputFlag) 

cout << endl 
« endl 

<< " Backtrack - POP twice to point: " 
<< pi 
« " " 
« endl; 

if (outputFile) 
progOutput << endl 

« endl 
« " Backtrack - POP twice to 

point: " 
<< pi 

« " " 
<< endl; 

if (graphicFlag) 
{ 

displayWholeGraph(); 
displayGraph(remainingGraph,false); // 

display initial graph 
displayCurrentPath(LPoint); 
processMouse(); 

} 
else if (stepFlag) 
{ 

cout << "Enter 's' to step\n" ; 
cin >> stringl; 
cout « endl; 

} 
#endif 

continue; 
} 

previousGraph = tempPreviousGraph; 

#ifndef FAST_CODE 
if (graphicFlag) 

processMouse() ; 
else if (stepFlag) 
{ 
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cout << "Enter 's' to step\n" ; 
cin >> stringl; 
cout << endl; 

} 
#endif 

if (altThresholdFlag) 
thresholdCalc = mainGraphMSTLength *(1 

+currentThreshold); 
else 

{ if (IbacktrackFlag) 
thresholdCalc = mainGraphMSTLength 

+currentThreshold; 
else thresholdCalc = mainGraphMSTLength;) 

numpoints) 
{ 

if (thresholdCalc >= minValue && LPoint.sizeO == 

time_t endTime = time(NULL); 

float pathDistance = redLineLength(); 
int i,j; 
i = endTime; 
j = startTime; 
cout « "Number of Points: " « numpoints « endl; 
cout « "Real Run Time: " « (i - j) « endl; 
cout « "LEDA time calculation: " « used_time()« endl; 

#ifndef FAST_CODE 
if (outputFile) 

{ 
progOutput « "Number of Points: " « numpoints 

<< endl; 
progOutput « "Real Run Time: " « (i - j) 

« endl; 
progOutput « " LEDA time calculation: " « 

used_time()« endl; 
} 

#endif 

#ifndef BORLANDC 
struct tms timeBuff; 

times (SctimeBuf f) ; 

double xx = timeBuff.tms_utime; 

double userTime = xx/CLOCKS_PER_SEC; 

cout « "CPU User Time: " « userTime « endl; 

#ifndef FAST_CODE 
if (outputFile) 

progOutput « "CPU User Time: " « userTime 
<< endl; 
#endif 

xx = t imeBu f f.tms_s t ime; 

double sysTime = xx/CLOCKS_PER_SEC; 
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cout << "OS System Time: " << sysTime « endl; 

#ifndef FAST_CODE 
if (outputFile) 

progOutput « "OS System Time: " « sysTime 
« endl; 
#endif 
#endif 

cout << "Minimum Path "; 
ttifndef FAST_CODE 

if (outputFile) 
progOutput « "Minimum Path "; 

#endif 
point xxxx; 
forall(xxxx,LPoint) 

{ 
cout << xxxx; 

ttifndef FAST_CODE 
if (outputFile) 

progOutput « xxxx; 
#endif 

} 
cout « LPoint.front() « endl; 

ttifndef FAST_CODE 
if (outputFile) 

progOutput « LPoint.front() « endl; 
#endif 
LPoint.append( LPoint.front()); 

cout « "Path length is: " « pathDistance « " Closed 
Loop distance is: " « redLineLength() «endl; 

cout « "Init Threshold Value: "« initThreshold « endl; 

#ifndef FAST_CODE 
if (statisticsFlag) 
{ 

cout « "Forward operations: " « 
statsFowardCount « " Forward Sequences: " « 
statsForwardSequenceCount « endl; 

cout « "Backtrack operations: " « 
statsBacktrackCount « " Backtrack Sequences: " « 
statsBacktrackSequenceCount « endl; 
cout « "Backtrack to root: " « 
statsBacktrackSequenceRootCount « " Backtrack root to root: « 
statsBacktrackRoot2Root « endl; 

cout « "Heuristic Updates Used in Remaining Graph: 
" « remainingGraphHeuristicUpdates « endl; 

cout « "No Heuristic Updates Used in Remaining Graph: 
" « remainingGraphNoHeuristicUpdates « endl; 

cout « "Heuristic Updates Used in Sub-Graph: " « 
subGraphHeuristicUpdates « endl; _ 

cout « "No Heuristic Updates Used in Sub-Graph: 
« subGraphNoHeuristicUpdates « endl; 

#ifdef NODE_TABLES 
cout « "Remaining Graph Bin Statistics" « endl; 
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int i; 

for ( i = 0 ; i <= numpoints ; i++) 
{ 
int sum = 0; 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + i)-
>binNodePtr; 

while ( binNodePtr) 
{ 

sum += binNodePtr->count; 
binNodePtr = binNodePtr->nextBin; 

} 

cout « i « "-" << sum << " " ; 
} 
cout « endl; 

cout « "SubGraph Bin Statistics" « endl; 

for ( i = 0 ; i <= numpoints ; i++) 
{ 
int sum = 0; 

struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + 
i)->binNodePtr; 

while ( binNodePtr) 
{ 

sum += binNodePtr->count; 
binNodePtr = binNodePtr->nextBin; 

} 

cout << i « "-" « sum « " "; 
} 
cout << endl; 

#endif 
} 

#endif 

cout « "Program Terminated\n" << endl; 

#ifndef FAST_C0DE 
if (outputFile) 
{ 

progOutput << "Path length is: " << pathDistance << " 
Closed Loop distance is: " « redLineLength () «endl ; 

progOutput « "Init Threshold Value: " « 
initThreshold « endl; 

if (statisticsFlag) 
{ 

progOutput << "Forward operations: " << 
statsFowardCount « " Forward Sequences: " << 
statsForwardSequenceCount << endl; 

progOutput << "Backtrack operations: " 
<< statsBacktrackCount « " Backtrack Sequences: " << 
statsBacktrackSequenceCount « endl; 
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progOutput << "Backtrack to root: " « 
statsBacktrackSequenceRootCount « " Backtrack root to root: " << 
statsBacktrackRoot2Root << endl; 

progOutput « "Heuristic Updates Used in 
Remaining Graph: " « remainingGraphHeuristicUpdates << endl; 

progOutput « "No Heuristic Updates Used in 
Remaining Graph: " « remainingGraphNoHeuristicUpdates << endl; 

progOutput « "Heuristic Updates Used in Sub-
Graph: " << subGraphHeuristicUpdates << endl; 

progOutput « "No Heuristic Updates Used in 
Sub-Graph: " << subGraphNoHeuristicUpdates << endl; 

#ifdef NODE_TABLES 
progOutput « "Remaining Graph Bin Statistics" 

<< endl; 
int i; 

for ( i = 0 ; i <= numpoints ; i++) 
{ 
int sum = 0; 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + 

while ( binNodePtr) 
{ 

sum += binNodePtr->count; 
binNodePtr = binNodePtr-

} 

progOutput « i « "-" « sum « " "; 
} 
progOutput « endl; 

progOutput « "SubGraph Bin Statistics" « endl; 

for ( i = 0 ; i <= numpoints ; i++) 
{ 
int sum = 0; 

struct binNode *binNodePtr; 

binNodePtr = 
(subGraphLoopUpTablePtr + i)->binNodePtr; 

while ( binNodePtr) 

{ 
sum += binNodePtr->count; 

binNodePtr = binNodePtr-
>nextBin; 

} 

progOutput « i « "-" « sum « " "; 

} 
progOutput « endl; 

#endif 
} 

i)->binNodePtr; 

>nextBin; 
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} 
progOutput << "Program Terminated" « endl; 

if (endOfRunGraph ) 
{ 

graphicFlag = true; 
stepBut = WDD.button("STEP"); 

clearBut = WDD.button("CLEAR"); 
autoBut = WDD.button("AUTO"); 

exitBut = WDD.button("EXIT"); 

FindScalingFactors(&xfact,&yfact); 
WDD.init(minX-xfact,maxX+xfact,minY-yfact); 
WDD.display(window::center,window::center); 
WDD.start_bufferingO ; 

} 

if (graphicFlag) 
{ 

autoFlag = false; 
displayWholeGraph(); 

displayGraph(remainingGraph,false); // display 
initial graph 

displayCurrentPath(LPoint); 
processMouse(); 

WDD.stop_buffering(); 
} 
#endif 

return 0; 
} 

if (ialtThresholdFlag ) 

{ 
if (IbacktrackFlag) 

if ( mainGraphMSTLength < minValue) 
currentThreshold = currentThreshold -

minValue+ mainGraphMSTLength; 
} 

else 
{ if ( mainGraphMSTLength > minValue) 

currentThreshold = initThreshold; 
// if ( mainGraphMSTLength <= minValue) 
// currentThreshold = 0.0; 

} 
} 

#ifndef FAST_CODE 
if (graphicFlag) 

{ 
displayWholeGraph(); 

displayGraph(remainingGraph,false); // display 
initial graph 

displayCurrentPath(LPoint); 
processMouse(); 
} 

else if (stepFlag) 

cout « "Enter 's' to step\n" ; 
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} 

cin >> stringl; 
cout << endl; 

if (displayOutputFlag) 
cout << endl 
<< endl 

« " Move Forward " 
<< endl; 

if (outputFile) 
progOutput << endl 

<< endl 
« " Move Forward 

« endl; 

if ( IstatsforwardFlag) 
statsForwardSequenceCount++; 

statsforwardFlag = true; 
atRootFlag = false; 
statsFowardCount++; 

#endif 
backtrackFlag = false; 

} 
return 0; 

} 

#ifndef FAST_CODE 
void processMouse(void) 
{ 

int but; 
if ( autoFlag && WDD.get_mouse() != NO_BUTTON) 
{ 

but = WDD.read_mouse() ; 
if (but == exitBut) 

exit(0); 
else if (but == autoBut) 

autoFlag = !autoFlag; 
return; 

else if (but == clearBut) 

WDD.clear(); 
return; 

else 

WDD.flush_buffer(); 
return; 

} 

if ( autoFlag) 

{ 
WDD.flush_buffer(); 
time_t ti; 

ti = time(NULL); 
ti +=delayGap; 
while (ti > time(NULL)) 
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return; 
} 

while (true) 
{ 

but = WDD.read_mouse() ; 

if (but == exitBut) 
exit(O); 

else if (but == autoBut) 

autoFlag = !autoFlag; 
return; 

else if (but == clearBut) 

WDD.clear(); 
return; 

else 

WDD.flush_buffer(); 
return; 

} 
} 

void FindScalingFactors(float *xfact,float *yfact) 

{ 
// Calculates a value for a scaling factor that will allow 
// the whole graph to be displayed in a window 

*xfact = (maxX -minX)/100*5; 
*yfact = (maxY - minY)/100*10; 
float xgap = maxX-minX+2* *xfact; 
float ygap = maxY-minY+2* *yfact; 

float sfact = WDD.heightO/ygap; 

float cal_xgap = WDD.width()/sfact; 

if (xgap < cal_xgap) 
*xfact += (cal_xgap - xgap)/2; 

return; 
} 

#endif 

node GetFirstNode(list<point>& L,GRAPH<point,int>& DT, int 

startPoint) 
{ 

static node v; 
point p; 

int i = 1; 
forall(p,L) 
{ 
if ( i++ == startPoint) 

break; 
} 
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forall_nodes(v,DT) 
if ( DT[v].to_point() == p) 

return v; 

return NULL; 
} 

void deleteNode(point& p,GRAPH<point,int>& G) 
{ 

node v; 
list<edge> el; 

forall_nodes(v,G) 
C 

if (G[v].to_point() == p) 
{ 

// removed to giveabout .5% gain 
// el = G.adj_edges(v); 
// G.del_edges(el); 

G.del_node(v); 
break; 

} 
} 
return; 

} 

#ifndef FAST_CODE 
void displayGraph(GRAPH<point,int>& G,bool clearFlag) 
{ 

node v; 
edge e; 

WDD.set_line_width(1); 
WDD.set_node_width(4); 

WDD.set_color(COLOR_NORMAL); 

if (clearFlag) 
WDD.clear(); 

forall_nodes(v,G) 
WDD.draw_filled_node(G[v].to_point()); 

forall_edges(e,G) 
{ 

node v = G.source(e), w = G.target(e); 
WDD.draw_segment(G[v].to_point(),G[w].to_point()); 

} 

WDD.flush_buffer(); 

} 

void displayWholeGraph(void ) 

{ 
node v; 
edge e; 

WDD.set_line_width(1); 
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WDD.set_node_width(4); 

WDD.set_Color(COLOR_DELETED_PATH); 

WDD.clear(); 

forall_nodes(v,DT) 
WDD.draw_filled_node(DT[v].to_point()); 

forall_edges(e,DT) 
( 

node v = DT.source(e), w = DT.target(e); 
WDD.draw_segment(DT[v].to_point 0,DT[w].to_point()); 

} 

WDD.flush_buffer(); 
} 

void displayProposedPath(point& pl,point& p2) 
{ 

WDD.set_line_width(4); 
WDD.set_COlor(COLOR_PROPOSED_PATH); 
WDD.draw_segment(pi,p2); 

WDD.flush_buffer(); 
} 

void displayCurrentPath(list<point>& listPoints) 

{ 
int i= 0; 

if (listPoints.length() <= 1) 
return; 

WDD.set_line_width(4) ; 
WDD.set_color(COLOR_CURRENT_PATH); 

point pl,p2,x; 
forall(x,listPoints) 
{ 

if (i == 0) 
{ 

pl = x; 
i++; 

continue; 
} 
i++; 
p2 = x; 

WDD.draw_segment(pl,p2); 
pl = p2; 

} 
WDD.flush_buffer(); 

} 

void displayMinSpanningPath(GRAPH<point,int>& G, list<edge>& el) 

( 
edge e; 
WDD.set_line_width(4); 
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WDD.set_color(COLOR_MIN_PATH); 

forall(e,el) 
{ 

node v = G.source(e), w = G.target(e); 
WDD.draw_segment(G[v].to_point(),G[w].to_point()); 

} 
WDD.flush_buffer(); 

} 

#endif 

float calculateMSTPathLength(GRAPH<point,int>& G, list<edge>& el! 

{ 
point pis,pit; 
node nls,nlt; 
float dist = 0.0; 
edge e; 

forall(e,el) 
{ 

nls = source(e); 
nit = target(e); 

pis = G[nls].to_point(); 
pit = G[nlt].to_point(); 

dist += pis.distance(pit); 
} 
return dist; 

int MSTcmp(const edge &el,const edge &e2) 

{ 
GRAPH<point,int> *G; 

node nls,nlt,n2s,n2t; 
point pls,plt,p2s,p2t; 

G = (GRAPH<point,int> *)graph_of(el); 

nls = source(el); 
n2s = source(e2); 

nit = target(el); 
n2t = target(e2); 

pis = (*G)[nls].to_point() 
pit = (*G)[nit].to_point() 
p2s = (*G)[n2s].to_point() 
p2t = (*G)[n2t].to_point() 

return cmp_distances(pls,plt,p2s,p2t) 

int isDeletedPoint(point &pEnd) 

{ 
point x; 

forall(x,LPoint) 
{ 

if (x == pEnd) 
return 1; 
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} 
return 0; 

} 

node getGraphNodeFromPoint(GRAPH<point,int>& G,point &pi; 
{ 

node v; 

forall_nodes(v,G) 
{ 

if (G[v].to_point() == pl) 
return v; 

} 
cerr << "Point not in graph" << endl; 

exit(1); 
return v; 

void InitLookUpTables(void) 
{ 

graphLoopUpTablePtr = new heuristicLookUpTable[numpoints+1]; 
if (!graphLoopUpTablePtr) 
{ 

cerr « endl « "NO MEMORY FOR LOOKUP TABLE (1)" « endl 
t 

exit(1); 
} 
memset((void 

*)graphLoopUpTablePtr,'\0',sizeof(heuristicLookUpTable) * 
(numpoints+1)); 

#ifdef NODE_TABLES 
tempGraphHeuristicNodePtr = new heuristicNode[bin_size]; 

if (!tempGraphHeuristicNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR TEMP HEURISTIC (2)" « 
endl ; 

exit(1); 
} 

#endif 

subGraphLoopUpTablePtr = new 
heuristicLookUpTable[numpoints+1]; 

if (!subGraphLoopUpTablePtr) 

cerr « endl « "NO MEMORY FOR LOOKUP TABLE (3)" « endl 

f 

exit(l); 
} 
memset((void 

*)subGraphLoopUpTablePtr,'\0',sizeof(heuristicLookUpTable) * 
(numpoints+1)); 

#ifdef NODE_TABLES 
tempSubGraphHeuristicNodePtr = new heuristicNode[bin_size]; 
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if (ItempSubGraphHeuristicNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR TEMP HEURISTIC (4)" « 
endl ; 

exit(l); 
} 

#endif 
} 

#ifdef NODE_TABLES 
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,points 
startPoint) 
{ 

int numOfNodes = G.number_of_nodes(); 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (5)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

* (ptsBuf fer + i) = x.xcoordO; 
i++; 
MptsBuffer + i) = x.ycoordO; 
i++; 

} 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr = 

new binNode; 
if (IbinNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (6)" « 

endl 
exit(1); 

} 
binNodePtr->count - 1; 

binNodePtr->nextBin = NULL; 

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size]; 

if (!binNodePtr->heuristicNodePtr) 

{ 
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cerr « endl « "NO MEMORY FOR BIN NODE (7)" « 
endl ; 

exit(l); 
} 
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size); 
binNodePtr->heuristicNodePtr[0].heuristic = heuristic; 
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer; 

} 
else 

StoreGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 
} 

void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer) 
{ 

int pos; 

while (binNodePtr) 
{ 

if ((pos = myGraphBsearch(ptsBuffer, 
binNodePtr,LPoint.sizeO ) ) == -1) 

{ 
if (binNodePtr->count == bin_size) 
{ 

if (binNodePtr->nextBin == NULL) 
{ 

if ((binNodePtr->nextBin = new binNode) 
== NULL) 

{ 
cerr « endl « "NO MEMORY FOR 

exit(l); 
} 

binNodePtr->nextBin->count = 1; 
binNodePtr->nextBin->nextBin = NULL; 

binNodePtr->nextBin->heuristicNodePtr = new 

heuristicNode[bin_size]; 

if (!binNodePtr->nextBin-

>heuristicNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR 
BIN NODE (9) " « endl ; 

exit(1); 
} 

memset(binNodePtr->nextBin-
>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size); 

binNodePtr->nextBin-
>heuristicNodePtr[0].heuristic = heuristic; 

binNodePtr->nextBin-
>heuristicNodePtr[0].graphPtr = ptsBuffer; 

return; 
} 

binNodePtr = binNodePtr->nextBin; 
continue; 

BIN NODE (8) " « endl 
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InsertGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 
return; 
} 
else 

{ 
if (binNodePtr->heuristicNodePtr[pos].heuristic < 

heuristic) 
binNodePtr->heuristicNodePtr[pos].heuristic = 

heuristic; 
return; 

} 
} 
cerr « endl « "IMPOSSIBLE CONDITION (10)" « endl ; 

exit(l); 
} 

void InsertGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic, float *ptsBuffer) 
{ 

int low, 
high, 
mid, 
result; 

// set up a binary search to find the insertion point 
high = binNodePtr->count -1; 
low = 0; 

while (low <= high) 
{ 

mid = (high + low)/2; 
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,LPoint.size()); 
if (result < 0) 

high = mid -1; 
else if (result > 0) 

low = mid + 1; 
else 

// the condition is impossible and indicates a major problem 
cerr « endl « "IMPOSSIBLE CONDITION (11)" « 

endl ; 
exit(l); 

} 
} 

// move elements from insertion point to a holding buffer 
memmove(tempGraphHeuristicNodePtr,tbinNodePtr-

>heuristicNodePtr[low],(binNodePtr->count - low)*sizeof(struct 
heuristicNode)); 

binNodePtr->heuristicNodePtr[low].heuristic = heuristic; 
binNodePtr->heuristicNodePtr[low].graphPtr = ptsBuffer; 

// move schedule nodes back to the backtrack position plus one 
memmove(kbinNodePtr-

>heuristicNodePtr[low+1],tempGraphHeuristicNodePtr,(binNodePtr->count 
- low)*sizeof(struct heuristicNode)); 
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// increament the count of schedule nodes in the current backtrack 
node 

binNodePtr->count++; 
return; 

} 

int myGraphBsearch(float *ptsBuffer, struct binNode *binNodePtr,int 
size) 
{ 
// binary search the backtrack node for the key 
// return -1 if not found or keys position in backtrack node 

int low, 
high, 
mid, 
result; 

high = binNodePtr->count -1; 
low = 0; 

while (low <= high) 
{ 

mid = (high + low)/2; 
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,size); 
if (result < 0) 

high = mid -1; 
else if (result > 0) 

low = mid + 1; 
else 

return mid; 
} 
return(-1); 

} 

float getGraphUpdatedHeuristic(GRAPH<point,int>& G, pointSc 

startPoint) 
{ 

int numOfNodes = G.number_of_nodes(); 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 
return 0; 

float *ptsBuffer = new float[LPoint.size() * 2] ; 
if (IptsBuffer) 

cerr « endl « "NO MEMORY FOR POINT BUFFER (12)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
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{ 
*(ptsBuffer + i) 
i++; 
*(ptsBuffer + i) 
i++; 

} 

int pos; 

while (binNodePtr) 
{ 

if ((pos = myGraphBsearch(ptsBuffer, 
binNodePtr, LPoint.sizeO ) ) != -1) 

{ 
delete ptsBuffer; 

return binNodePtr->heuristicNodePtr[pos].heuristic; 
} 

binNodePtr = binNodePtr->nextBin; 
) 

delete ptsBuffer; 
return 0; 

} 

//******************************************************************* 
************* 

void StoreSubGraphHeuristic(GRAPH<point,int>& G,point& endPoint,float 
heuristic) 
{ 

int numOfNodes = G.number„of_nodes0; 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (iptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (13)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

* (ptsBuffer + i) = x.xcoordO; 
i++; 
* (ptsBuffer + i) = x.ycoordO; 
i++; 

} 

struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 

{ 

= x.xcoord() ; 

= x.ycoord(); 
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binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr 
= new binNode; 

if (!binNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR BIN NODE (14)" « 
endl ; 

exit(1); 
} 

binNodePtr->count = 1; 
binNodePtr->nextBin = NULL; 

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size]; 

if (!binNodePtr->heuristicNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR BIN NODE (15)" « 
endl ; 

exit(1); 
} 
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size); 

binNodePtr->heuristicNodePtr[0].heuristic = heuristic; 
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer; 

} 
else 

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 

} 

void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point& 
endPoint,float heuristic) 
{ 

int numOfNodes = G.number_of_nodes(); 

float *ptsBuffer = new float[LPoint.size() * 2 + 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (16)" « endl 

exit(l); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

* (ptsBuffer + i) = x.xcoordO; 
i++; 
* (ptsBuffer + i) = x.ycoordO; 
i + + ; 

} 

* (ptsBuffer + i) = endPoint .xcoordO ; 

i++; 
*(ptsBuffer + i) = endPoint.ycoord(); 
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i++; 

struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 
{ 
binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr 

= new binNode; 
if (!binNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (17)" « 

endl 
exit(l); 

} 
binNodePtr->count = 1; 

binNodePtr->nextBin = NULL; 

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size]; 

if (!binNodePtr->heuristicNodePtr) 
{ 

cerr « endl « "NO MEMORY FOR BIN NODE (18)" « 
endl 

exit(1); 
} 
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size); 

binNodePtr->heuristicNodePtr[0].heuristic = heuristic; 
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer; 

} 
else 

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 

} 

void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer) 
{ 

int pos; 

while (binNodePtr) 
{ 

if ((pos = 
mySubGraphBsearch(ptsBuffer,binNodePtr,LPoint.size())) == -1) 

{ 
if (binNodePtr->count == bin_size) 
{ 

if (binNodePtr->nextBin == NULL) 
{ 

if ((binNodePtr->nextBin - new binNode) 
== NULL) 

{ 
cerr « endl « "NO MEMORY FOR 

BIN NODE (19)" « endl ; 
exit(1); 
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} 

binNodePtr->nextBin->count = 1; 
binNodePtr->nextBin->nextBin = NULL; 

binNodePtr->nextBin->heuristicNodePtr = new 

heuristicNode[bin_size]; 

if (!binNodePtr->nextBin-
>heuristicNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR 

BIN NODE (20)" « endl ; 
exit(1); 

} 
memset(binNodePtr->nextBin-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size); 
binNodePtr->nextBin-

>heuristicNodePtr[0].heuristic = heuristic; 
binNodePtr->nextBin-

>heuristicNodePtr[0].graphPtr = ptsBuffer; 
return; 

} 

binNodePtr = binNodePtr->nextBin; 
continue; 

} 

InsertSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 

return; 
} 
else 

if (binNodePtr->heuristicNodePtr[pos].heuristic < 

heuristic) 
binNodePtr->heuristicNodePtr[pos].heuristic = 

heuristic; 
return; 

} 

cerr « endl « "IMPOSSIBLE CONDITION (21)" « endl ; 

exit(l); 
} 

void InsertSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 

heuristic, float *ptsBuffer) 

{ 
int low, 

high, 
mid, 
result; 

// set up a binary search to find the insertion point 
high = binNodePtr->count -1; 
low = 0; 

while (low <= high) 

{ 
mid = (high + low)/2; 
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result = cmpPts(ptsBuffer,binNodePtr-
>heuristicNodePtr[mid] .graphPtr,LPoint.size()) ; 

if (result < 0) 
high = mid -1; 

else if (result > 0) 
low = mid + 1; 

else 
{ 

// the condition is impossible and indicates a major problem 
cerr « endl « "IMPOSSIBLE CONDITION (22)" « endl 

exit(1); 
} 

} 

// move elements from insertion point to a holding buffer 
memmove(tempSubGraphHeuristicNodePtr,kbinNodePtr-

>heuristicNodePtr[low],(binNodePtr->count - low)*sizeof(struct 
heuristicNode)); 

binNodePtr->heuristicNodePtr[low].heuristic = heuristic; 
binNodePtr->heuristicNodePtr[low].graphPtr = ptsBuffer; 

// move schedule nodes back to the backtrack position plus one 
memmove(SbinNodePtr-

>heuristicNodePtr[low+1],tempSubGraphHeuristicNodePtr,(binNodePtr-
>count - low)*sizeof(struct heuristicNode)); 

// increament the count of schedule nodes in the current backtrack 
node 

binNodePtr->count++; 
return; 

} 

int mySubGraphBsearch(float *ptsBuffer, struct binNode 
*binNodePtr,int size) 
{ 
// binary search the backtrack node for the key 
// return -1 if not found or keys position in backtrack node 

int low, 
high, 
mid, 
result; 

high - binNodePtr->count -1; 
low = 0; 

while (low <= high) 
{ 

mid = (high + low)/2; 
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,size) ; 
if (result < 0) 

high = mid -1; 
else if (result > 0) 

low = mid + 1; 
else 

return mid; 
} 
return(-1); 
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} 

float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, point& 
endPoint) 
{ 

int numOfNodes = G.number_of_nodes(); 
struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 
return 0; 

float *ptsBuffer = new float[LPoint.size() * 2 + 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (23)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

*(ptsBuffer + i) = x.xcoord(); 
i++; 
*(ptsBuffer + i) = x.ycoord(); 
i++; 

} 
MptsBuffer + i) - endPoint .xcoord() ; 
i++; 
* (ptsBuffer + i) = endPoint.ycoordO ; 
i++; 

int pos; 

while (binNodePtr) 
{ 

if ((pos = mySubGraphBsearch(ptsBuffer, 
binNodePtr,LPoint.size()+1)) != -1) 

{ 
delete ptsBuffer; 

return binNodePtr->heuristicNodePtr[pos].heuristic; 
} 

binNodePtr = binNodePtr->nextBin; 
} 

delete ptsBuffer; 
return 0; 

} 

#else 
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point 
&p) 
{ 
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int numOfNodes = G.number_of_nodes(); 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (24)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

*(ptsBuffer + i) 
i++; 
*(ptsBuffer + i) 
i++; 

} 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 
{ 
binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr = 

new binNode; 
if (IbinNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (25)" « 

endl ; 
exit(1); 

} 
binNodePtr->left = NULL; 

binNodePtr->right = NULL; 
binNodePtr->heuristic = heuristic; 
binNodePtr->graphPtr = ptsBuffer; 

} 
else 

StoreGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 
} 

void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float 
heuristic,float *ptsBuffer) 

{ 
struct binNode *tempPtr; 
int result; 

while (binNodePtr) 
{ 

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr, LPoint.sizeO ) ; 

tempPtr = binNodePtr; 
if (result == 0) 
{ 

if (binNodePtr->heuristic < heuristic) 
binNodePtr->heuristic = heuristic; 

= x.xcoord() ; 

= x.ycoord() ; 
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return; 
} 
else if (result == -1) 

binNodePtr = binNodePtr->left; 
else 

binNodePtr = binNodePtr->right; 
} 

binNodePtr = new binNode; 
if (!binNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (26) " « endl ; 

exit(l); 
} 
binNodePtr->left = NULL; 

binNodePtr->right = NULL; 
binNodePtr->heuristic = heuristic; 
binNodePtr->graphPtr = ptsBuffer; 

if (result == -1) 
tempPtr->left = binNodePtr; 

else 
tempPtr->right = binNodePtr; 
return; 

float getGraphUpdatedHeuristic(GRAPH<point,int>& G, points 
startPoint) 
{ 

int numOfNodes = G.number_of_nodes(); 

struct binNode *binNodePtr; 

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr; 
if (binNodePtr == NULL) 

return 0; 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (iptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (27)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

* (ptsBuffer + i) = x.xcoordO; 
i++; 
* (ptsBuffer + i) = x.ycoordO; 
i++; 

} 

while (binNodePtr) 

{ 
int result; 
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result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size()); 

if (result == 0) 
{ 

delete ptsBuffer; 
return binNodePtr->heuristic; 

} 
else if (result == -1) 

binNodePtr = binNodePtr->left; 
else 

binNodePtr = binNodePtr->right; 
} 

delete ptsBuffer; 
return 0; 

} 

//******************************************************************* 
************* 

void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float 
heuristic) 
{ 

int numOfNodes = G.number_of_nodes(); 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (28)" « endl 

exit(1); 
} 

point x; 

int i = 0; 
forall(x,LPoint) 
{ 

* (ptsBuffer + i) = x.xcoordO; 
i++; 
*(ptsBuffer + i) = x.ycoord(); 
i++; 

} 

struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr 

= new binNode; 
if (!binNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (29)" « 

endl ; 
exit(1); 

} 
binNodePtr->left = NULL; 

binNodePtr->right = NULL; 
binNodePtr->heuristic = heuristic; 
binNodePtr->graphPtr = ptsBuffer; 

153 



} 
else 

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 
} 

void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point &p,float 
heuristic) 

C 
int numOfNodes = G.number_of_nodes(); 

float *ptsBuffer = new float[LPoint.size() * 2]; 
if (IptsBuffer) 

{ 
cerr « endl « "NO MEMORY FOR POINT BUFFER (30)" « endl 

exit(1); 

} 

point x; 

int i = 0; 
forall(x,LPoint) 

{ 
* (ptsBuffer + i) = x.xcoordO; 
i++; 
* (ptsBuffer + i) = x.ycoordO; 
i++; 

} 
*(ptsBuffer + i) = p.xcoord(); 
i++; 
* (ptsBuffer + i) - p.ycoordO ; 
i + +; 

struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr; 

if (binNodePtr == NULL) 

{ 
binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr 

= new binNode; 
if (!binNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (31)" « 

endl ; 
exit(l) ; 

} 
binNodePtr->left = NULL; 

binNodePtr->right = NULL; 
binNodePtr->heuristic = heuristic; 
binNodePtr->graphPtr = ptsBuffer; 

} 
else 

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer); 

} 

void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float 

heuristic,float *ptsBuffer) 

154 



{ 
struct binNode *tempPtr = binNodePtr; 

int result; 

while (binNodePtr) 
{ 

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size()); 

tempPtr = binNodePtr; 
if (result == 0) 
{ 

if (binNodePtr->heuristic < heuristic) 
binNodePtr->heuristic = heuristic; 

return; 
} 
else if (result == -1) 

binNodePtr = binNodePtr->left; 
else 

binNodePtr = binNodePtr->right; 
} 

binNodePtr = new binNode; 
if (IbinNodePtr) 

{ 
cerr « endl « "NO MEMORY FOR BIN NODE (32)" « endl ; 

exit(l); 
} 
binNodePtr->left = NULL; 

binNodePtr->right = NULL; 
binNodePtr->heuristic = heuristic; 
binNodePtr->graphPtr = ptsBuffer; 

if (result == -1) 
tempPtr->left = binNodePtr; 

else 
tempPtr->right = binNodePtr; 
return; 

float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, points 

endPoint) 
{ 

int numOfNodes = G.number_of_nodes(); 
struct binNode *binNodePtr; 

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr,• 

if (binNodePtr == NULL) 
return 0; 

float *ptsBuffer = new float[LPoint.size() * 2 + 2]; 
if ('ptsBuffer) 

cerr « endl « "NO MEMORY FOR POINT BUFFER (33)" « endl 

exit(l); 

} 

point x; 
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int i = 0; 
forall(x,LPoint) 
{ 

*(ptsBuffer + i) = x.xcoord(); 
i++; 
*(ptsBuffer + i) = x.ycoord(); 
i + + ; 

} 
*(ptsBuffer + i) = endPoint.xcoord(); 

i++; 
*(ptsBuffer + i) = endPoint.ycoord(); 

i++; 

while (binNodePtr) 

{ 
int result; 

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size()+1); 

if (result == 0) 
{ 

delete ptsBuffer; 
return binNodePtr->heuristic; 

} 
else if (result == -1) 

binNodePtr = binNodePtr->left; 
else 

binNodePtr = binNodePtr->right; 
} 

delete ptsBuffer; 
return 0; 

} 

#endif 

float redLineLength(void) 
{ 

float tempDistance = 0.0; 

if (LPoint.sizeO > 1) 
{ 

int i, 
j ; 

point xl, 
x2; 

list_item listPtr; 

j = LPoint.size(); 

xl = LPoint.front(); 
listPtr = LPoint.first(); 
for ( i = 1 ; i < j ; i++) 
{ 

listPtr = LPoint.succ(listPtr); 
x2 = LPoint.contents(listPtr) ; 
tempDistance+= xl.distance(x2); 
xl = x2; 

} 
} 

return tempDistance; 

} 
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int cmpPts(float *pl, float *p2, int count) 
{ 

int i ; 
count = count*2; 
for (i = 0 ; i < count ; i++,pl++,p2++) 

if ( *pl < *p2) 
return -1; 

else if (*pl > *p2) 
return 1; 

return 0; 
} 

void processArguments(int argc,char *argv[]) 
{ 

char *cptr; 

if (argc == 1) 
{ 

displayUsage() ; 
exit(0); 

} 

cptr = argv[l]; 

if (strlen(argv[l]) == 1) 
{ 

fprintf(stderr,"Invalid first argument\n"); 
displayUsage(); 
exit(0); 

} 

if (*cptr ! = '-') 
{ 

fprintf(stderr,"Expecting a '-' in front of an 
option\n"); 

displayUsage(); 
exit(0); 

} 

int i ; 

#ifndef FAST_C0DE 
int counter = 0; 
bool unknownFlag = false; 

for ( i = 1 ; i < (int)strlen(argv[l]) ; i++) 

{ 
// graphic flag 

if (*(cptr + i ) == 'g') 
{ 

if (graphSelectedFlag) 
{ 

fprintf(stderr,"The 'g' option has been 
repeated or 'G' is also specified\n"); 

displayUsage(); 
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exit(O) ; 
} 
counter++; 
graphSelectedFlag = true; 

graphicFlag = true; 
continue; 

if (* (cptr + i ) == 'GO 
{ 

if (graphSelectedFlag) 
{ 

fprintf(stderr,"The 'G' option has been 
repeated or 'g' is also specified\n"); 

displayUsage(); 
exit (0); 

} 
counter++; 
graphSelectedFlag = true; 

endOfRunGraph = true; 
continue; 

// Step flag 
if (*(cptr + i ) == 's') 

{ 
if (stepFlag) 

{ 
fprintf(stderr,"The 's' option has been 

repeated\n"); 
displayUsage(); 

exit(0); 
} 
counter++; 

stepFlag = true; 
continue; 

// Statistics flag 
if (*(cptr + i ) == 'SO 

{ 
if (statisticsFlag) 

{ 
fprintf(stderr,"The 'S' option has been 

repeated\n"); 
displayUsage(); 

exit(0); 
} 
counter++; 

statisticsFlag = true; 
continue; 

// Display Stepped Output flag 
if (Mcptr + i ) == 'o') 

{ 
if (displayOutputFlag) 

{ 
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fprintf(stderr,"The 'o' option has been 
repeated\n"); 

displayUsage(); 
exit(0); 

} 
counter++; 

displayOutputFlag = true; 
continue; 

unknownFlag = true; 
} 

if (unknownFlag && counter) 
{ 

fprintf(stderr,"Unknown argument entered in first 
parameter\n"); 

displayUsage(); 
exit(0); 

} 

if (strlen(argv[l]) > 2 && unknownFlag) 
{ 

fprintf(stderr,"Unknown arguments entered in first first 
parameter\n"); 

displayUsage(); 
exit(0); 

} 

#endif 

#ifndef FAST_CODE 
char *validOptions = "rftTpOdb"; 

#else 
char *validOptions = "rftTpb"; 

#endif 
// r - random points 
lit- input file 
// t - threshold 
/IT- alternate threshold 
// p - point 
// 0 - output file 
// d - delay 

int startlndex; 

#ifndef FAST_CODE 
if (counter) 

startlndex = 2; 
else 

#endif 
startlndex = 1; 

while (startlndex != argc) 

{ 
cptr = argv[startlndex] ; 

bool found = false; 

for (i = 0 ; i < (int)strlen(validOptions) ; i++) 

{ 
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if (*(cptr+l) == validOptions[i]) 
{ 

found = true; 
break; 

} 
} 

if (Ifound) 
{ 

fprintf(stderr,"Unknown argument in parameter 
%d\n",startlndex); 

displayUsage(); 
exit(O); 

} 

if (argc < startlndex +1) 
{ 

fprintf(stderr,"Invalid number of parameters 
provided\n"); 

displayUsage(); 
exit(O); 

} 

if (strlen(cptr) != 2 || *cptr != '-') 
{ 

fprintf(stderr,"Expecting a '-' in front of 
parameter %d\n",startlndex); 

displayUsage(); 
exit(0); 

} 

if( *(cptr +1) == 't') 
{ 

if (thresholdSelectedFlag) 
{ 

fprintf(stderr,"The 'f option has been 
repeated or ' T' is also specified\n"); 

displayUsage(); 
exit(0); 

} 
initThreshold = currentThreshold = (float)atof( 

argv[startlndex+l]); 
startIndex+=2; 

thresholdSelectedFlag = true; 

} 
if ( Mcptr + 1) == 'T') 
{ 

if (thresholdSelectedFlag) 

fprintf(stderr,"The 'T' option has been 

repeated or ' t' is also specified\n"); 
displayUsage(); 

exit(0); 

initThreshold = currentThreshold = (float)atof( 
argv[startlndex+l]); 

altThresholdFlag = true; 
thresholdSelectedFlag = true; 

startIndex+=2; 
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} 
else if (*(cptr +1) == 'p') 

{ 
startPoint = atoi( argv[startlndex+l]); 

if (startPoint < 1) 
{ 

fprintf(stderr,"Invalid start point entered: 
%s\n",argv[startlndex+l]); 

displayUsage(); 
exit(O); 

} 
startIndex+=2; 

} 
else if (Mcptr +1) == 'b') 

{ 
int binSizeValue = atoi( argv[startlndex+l]); 

if (binSizeValue < 1 || binSizeValue > 3) 

fprintf(stderr,"Invalid bin size (Enter 1,2 

or 3)\n") 
displayUsage(); 
exit(O); 

} 
if (binSizeValue == 1) 

bin_size = 1000; 
else if (binSizeValue == 2) 

bin_size = 10000; 
else 

bin_size = 100000; 
startIndex+=2; 

} 

#ifndef FAST_CODE 
else if (*(cptr +1) == 'd') 

delayGap = atoi( argv[startlndex+l]); 
if (delayGap < 1) 

fprintf(stderr,"Invalid delay entered: 

%s\n",argv[startlndex+l]); 
displayUsage(); 
exit(0); 

} 
if (!graphicFlag) 

fprintf(stderr,"Delay parameter requires the 

selection of Graphics option\n"); 
displayUsage(); 
exit(0); 

} 
startIndex+=2; 

} 
else if (Mcptr +1) == '0' ) 

outputFile = argv[startlndex+l]; 
FILE *fp; 

if ((fp = fopen(outputFile,"w")) == NULL) 
{ ' r.-, 

fprintf(stderr,"Unable to open output tile 
%s\n",outputFile); 

displayUsage(); 
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exit(O) ; 
} 

fclose(fp); 
startIndex+=2; 

} 
#endif 

else if (Mcptr +1) == 'f') 
{ 

if (argc < startlndex +2 ) 
{ 

fprintf(stderr,"Expecting a filename as last 
parameter - none supplied\n"); 

displayUsage(); 
exit(O); 

} 
else if (argc > startlndex +2 ) 
{ 

fprintf(stderr,"Too many parameters supplied 
- must be last set of parameter\n"); 

displayUsage(); 
exit(O); 

} 

filePointFlag - true; 
cptr = argv[startlndex + 1] ; 
readlnGraph(cptr) ; 
startIndex+=2 ; 

} 
else if (Mcptr +1) == 'r') 

{ 
if (argc < startlndex +7 ) 

{ 
fprintf(stderr,"Invalid number of parameters 

supplied for generating random points\n"); 
displayUsage(); 
exit(O) ; 

} 

else if (argc > startlndex +7 ) 
{ 

fprintf(stderr,"Invalid number of parameters 
supplied for generating random points\nmust be last set of 
parameters\n"); 

displayUsage(); 
exit(O); 

} 
randomPointFlag = true; 

int points, 
xlow, 

ylow, 
xhigh, 
yhigh, 

prec ; 
points = atoi(argv[startlndex + 1 ] ) ; 
xlow = atoi(argv[startlndex + 2 ] ) ; 
ylow = atoi(argv[startlndex + 3 ] ) ; 
xhigh = atoi(argv[startlndex + 4 ] ) ; 
yhigh - atoi(argv[startlndex + 5]); 
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prec = atoi(argv[startlndex + 6]); 
generateRandomGraph(points,xlow,ylow,xhigh,yhigh,prec); 

startIndex+=7; 
} 

} 

if (startPoint > numpoints) 
{ 

fprintf(stderr,"Invalid start point entered: %d ( > 
number of points in graph: %d) \n",startPoint,numpoints); 

displayUsage(); 
exit(0); 

} 

if (IrandomPointFlag && !filePointFlag) 
{ 

fprintf(stderr,"No data source specified - either file or 
random point generation\n"); 

displayUsage(); 
exit(0); 

} 
} 

void readInGraph(char *fileName) 
{ 

FILE *fp; 

fp = fopen(fileName,"r") ; 

if (fp == NULL) 

fprintf(stderr,"File %s does not exist\n", fileName); 
displayUsage(); 
exit(0); 

} 

fscanf(fp,"%d",Snumpoints) ; 

point p; 

int i ; 

for (i=0; i<numpoints ;i++) 

{ 
float a,b; 

int count; 

count = fscanf(fp,"%f %f",&a,&b); 

if (count != 2) 

fprintf(stderr,"Invalided data in file\n"); 
displayUsage(); 

exit(0); 
} 

if (i == 0) 
{ 

maxX=minX=a; 
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maxY=minY=b; 
} 

else 
{ 

maxX=max(maxX,a) 
minX=min(minX,a) 
maxY=max(maxY,b) 
minY=min(minY,b) 

} 
p = point(a,b); 

L.append(p); 
} 
fclose(fp); 

} 

void generateRandomGraph(int points,int xlow,int ylow,int xhigh,int 
yhigh,int prec) 
{ 

numpoints = points; 
int i ; 

// randomize(); // removed by diniz 

srand(time(NULL)); 
float *xPtr, *yPtr; 

xPtr = (float *) malloc(numpoints *sizeof(float)); 
yPtr = (float *) malloc(numpoints *sizeof(float)); 

if (!(xPtr && yPtr)) 
{ 

fprintf(stderr,"No memory left to generate random 
points\n"); 

exit(O); 
} 

point p; 
int mult = 1; 
for (i = 0 ; i < prec ; i++) 
mult *= 10; 

for (i = 0 ; i < numpoints ; i++) 
{ 
int loop = 1; 

while (loop) 
{ 

int ii; 
float j,k,l; 

j = rand()%(xhigh - xlow); 

k = rand(); 

while ( (1 = randO ) == 0) 

MxPtr+i) = xlow + j + 
((float)((int)((k/1)*mult)%mult)/mult); 
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j = rand()%(yhigh - ylow); 
k = rand(); 

while ((1 = rand()) == 0) 
t 

MyPtr+i) = ylow + j + 
((double)((int)((k/1)*mult)%mult)/mult); 

if ( MyPtr+i)> yhigh || MxPtr + i ) > xhigh) 
continue; 

loop = 0; 
for (ii = 0 ; ii < i ; ii++) 

if ( MxPtr + i) == MxPtr + ii) && MyPtr + 
i) == *(yPtr + ii)) 

{ 
loop = 1; 

break; 
} 

} 

if (i == 0) 
{ 

maxX=minX= MxPtr + i) ; 
maxY=minY=MyPtr + i) ; 
} 

else 
{ 

maxX=max(maxX, MxPtr + i) ) 
minX=min(minX, MxPtr + i) ) 
maxY=max(maxY, MyPtr + i) ) 
minY=min(minY,*(yPtr + i)) 

} 

p = point (MxPtr + i), MyPtr + i) ) ; 
L.append(p); 

} 
FILE *fp; 

fp = fopen("random.dat","w"); 

if (fp) 
{ 

fprintf(fp,"%d\n",numpoints) ; 

for (i = 0 ; i < numpoints ; i++) 
fprintf (fp, "%.*f %.*f\n",prec, MxPtr + 

i),prec,*(yPtr + i)); 
fclose(fp); 

} 
} 

void displayUsage(void) 

{ 
#ifdef FAST_CODE 

fprintf(stderr,"Usage: FAST VERSION \n"); 
fprintf(stderr,"%s [<-p|t|T|b value>....] <-f value>|<-r 

values>\n",progname); 
#else 
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fprintf(stderr,"Usage:\n") ; 
fprintf(stderr,"%s [<-gGsSo>] [<-p|t|T|b|0|d value>....] <-f 

value>|<-r values>\n",progname); 
fprintf(stderr,"-g: show in graphic step mode\n"); 
fprintf(stderr,"-G: show graphic at program termination\n"); 
fprintf(stderr,"-s: step through in text modeXn"); 
fprintf(stderr,"-S: calculate and display statistics about the 

current problemXn"); 
fprintf(stderr,"-o: display step output to screen\n"); 

#endif 
fprintf(stderr,"-p value : select a start point for the 

processing [1.. number of graph points]\n"); 
fprintf(stderr,"-t value : use a numerical threshold value in 

this calculationXn"); 
fprintf(stderr,"-T value : use a percentage threshold value in 

this calculationXn"); 
fprintf(stderr,"-b value : use to change binsize 1 - 1000, 2 -

10000 or 3 - 100000\n"); 
#ifndef FAST_CODE 

fprintf(stderr,"-d value : delay (in seconds) between screen 
updates in auto graphics modeXn"); 

fprintf(stderr,"-0 value : file name of file were output is 
sentXn"); 
#endif 

fprintf(stderr,"-f value : file name of input data file\n"); 
fprintf(stderr,"-r values : random graph generation 6 values 

expectedXn"); 
fprintf(stderr," numPoints - number of pointsXn"); 
fprintf(stderr," xlow - lowest x value limit of 

random pointsXn"); 
fprintf(stderr," ylow - lowest y value limit of 

random pointsXn") ,-
fprintf(stderr," xhigh - highest x value limit of 

random pointsXn"); 
fprintf(stderr," yhigh - highest y value limit of 

random pointsXn"); 
fprintf(stderr," precision - number of decimal 

places in pointXn"); 
fprintf(stderr,"Note: random point problem written to a file -

random.dat"); 
} 
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APPENDIX B: SUMMARISED SEARCH 

RESULTS FOR EXAMPLES 2 AND 3 IN 

CHAPTER 5 USING THE RESTRICTIVE 

SEARCH APPROACH 
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