
University of Wollongong

Research Online

University of Wollongong Thesis Collection University of Wollongong Thesis Collections

2002

Solving traveling salesman problems with heuristic
learning approach
Sim Kim Lau
University of Wollongong

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact the UOW
Library: research-pubs@uow.edu.au

Recommended Citation
Lau, Sim Kim, Solving traveling salesman problems with heuristic learning approach, Doctor of Philosophy thesis, Department of
Information Systems, University of Wollongong, 2002. http://ro.uow.edu.au/theses/1455

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/theses
http://ro.uow.edu.au/thesesuow
http://ro.uow.edu.au/
http://ro.uow.edu.au/

SOLVING TRAVELING SALESMAN

PROBLEMS WITH HEURISTIC LEARNING

APPROACH

A thesis submitted in partial fulfilment of the requirements for
the award of the degree

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

SIM KIM LAU
MBus(IT), BSc(Hons)

DEPARTMENT OF INFORMATION SYSTEMS
2002

DECLARATION

This is to certify that the work presented in this thesis was carried out by the author at

the Department of Information Systems at the University of Wollongong, and is the

result of original research and has not been submitted for a degree at any other

university or institution.

Sim Kim Lau

i

ABSTRACT

This research studies the feasibility of applying heuristic learning algorithm in

artificial intelligence to address the traveling salesman problem. The research focuses

on tour construction and seeks to overcome the weakness of traditional tour

construction heuristics, which are of greedy and myopic nature. The advantage of tour

construction heuristic is its simplicity in concept. However, the greedy and myopic

nature of tour construction heuristic result in a sub-optimal solution, and the tour

needs to be improved with much effort after it is built. The improvement is made

using tour improvement heuristics, which improves tour by changing the tour

configuration until a better solution is found. Traditional tour construction heuristics

were not designed to modify the configuration of the tour, which is an important

feature in tour improvement heuristics, during the tour construction process. This

research investigates the application of a real time admissible heuristic learning

algorithm that allows the tour configuration to change as the tour is built. The

heuristic evaluation function of the algorithm considers both local and global

estimated distance information. The search engine of the algorithm incorporates

Delaunay triangulations of computational geometry as part of the search strategy. This

helps to improve the search efficiency because computational geometry provides

information about the geometric properties of nodes distributed in Euclidean plane, so

that only promising nodes that are likely to be in the optimal tour are considered

during the search process.

A state space transformation process that defines state, state transition operator and

state transition cost has been developed. The heuristic estimation of a state is

computed using minimal spanning tree, and the set of relevant states for consideration

at each state selection is identified through the application of Delaunay triangulations.

Computational results show that the geometric distribution of nodes in the Euclidean

plane influences the heuristic estimation, because it influences the computation of

minimal spanning tree. Problems that exhibit distinct and well-separated clusters are

advantageous to this approach because it is capable of producing good quality

heuristic estimate.

A restrictive search approach that could further reduce the search space of the

heuristic learning algorithm has also been investigated. It is based on the

characteristics of optimal tour in which nodes located on the convex hull are visited in

the order in which they appear on the convex hull boundary. Using this characteristic

together with the proximity concept of Voronoi diagram in computational geometry,

some of the nodes that are unlikely to travel in the same direction as the optimal tour

can be pruned. This approach could identify promising candidate edge set using only

edges from one triangle selected from Delaunay triangulations, and the triangle is

selected based on the direction the tour travels. The examples used in this research

show that the saving in heuristic updates can be quite significant.

iii

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance and support of the following people in

completing this thesis.

I am indebted to Professor Li-Yen Shue who is now with the National Kaoshiung

First University of Science & Technology, Taiwan, without whom this thesis would

never have been finished. His supervision and guidance over the years have helped

me to persevere in this research direction, and his untiring efforts in pointing me to

the right research direction and to teach me to be a good researcher. Most importantly

he has continued to support and guide me even after his departure from the

Department.

I am also grateful to Professor Graham Winley, Dr Reza Zamani and Mr Louie

Athanasiadis, who have provided valuable advice and assistance, and especially to

Louie who has assisted in providing programming guidance.

Finally, to my husband and two young daughters who have to tolerate my long

working hours while I embarked on the final stage of completing the thesis.

I also acknowledge the use of LED A libraries and Concorde program in this research.

iv

TABLE OF CONTENTS

DECLARATION *

ABSTRACT "

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF TABLES vii

LIST OF FIGURES »

LIST OF PUBLICATIONS xi

CHAPTER 1: INTRODUCTION 1

1.1 Statement of the problem 1
1.2 Objectives 3
1.3 Overview of the research 4
1.4 Outline of the thesis 6

CHAPTER 2: LITERATURE REVIEW 8

2.1 Introduction 8
2.2 Tour construction heuristics 9

2.2.1 Nearest neighbour heuristic 9
2.2.2 Insertion heuristics 10
2.2.3 Christofides' heuristic 11
2.2.4 Space filling curve heuristics 12
2.2.5 Neural network approach 12

2.3 Tour improvement heuristics 13
2.3.1 Local search heuristic 13
2.3.2 Simulated annealing 15
2.3.3 Genetic algorithm 1 7

2.3.4 Tabu search 20
2.4 Branch and bound method 22
2.5 Conclusion 24

CHAPTER 3: TOUR CONSTRUCTION USING HEURISTIC LEARNING
APPROACH 26

3.1 Introduction 26
3.2 Search and Learning A * algorithm 27
3.3 Implementation issues 30

3.3.1 State space transformation approach 30

v

3.3.2 Heuristic estimation of each state 31
3.3.3 Search strategy 32

3.4 The proposed heuristic learning algorithm - SLA*-TSP 36
3.4.1 Example 37

3.5 SLA*-TSP with learning threshold 41
3.5.1 Examples 44

3.6 Conclusion 48

CHAPTER 4: THE FACTORS INFLUENCING THE PERFORMANCE OF
SLA*-TSP 50

4.1 Introduction 50
4.2 Implementation of SLA*-TSP using L E D A 51

4.2.1 Pruning 53
4.3 Factors influencing the performance of SLA*-TSP 55

4.3.1 Limitation and scope of the experiment 55
4.3.2 Test problems obtained from TSPLIB 56
4.3.3 Randomly generated problems 63

4.4 Conclusion 71

CHAPTER 5: A RESTRICTIVE SEARCH APPROACH 73

5.1 Introduction 73
5.2 Identifying proximity and utilising knowledge of direction in tour construction. 74
5.3 Restrictive SLA*-TSP approach 84
5.4 Examples 85

5.4.1 Example 1 86
5.4.2 Example 2 89
5.4.3 Example 3 91
5.4.4 Discussion 94

5.5 Conclusion 96

CHAPTER 6: CONCLUSIONS 97

6.1 Overview of research 97
6.2 Results of research 98
6.3 Contribution of the research 99
6.4 Future research 101

REFERENCES 103

APPENDIX A: PROGRAM LISTING Ill

APPENDIX B: SUMMARISED SEARCH RESULTS FOR EXAMPLES 2 AND
3 IN CHAPTER 5 USING THE RESTRICTIVE SEARCH APPROACH 167

Table B.l: Summarised search process of Example 2 - B U R M A 1 4 using the
restrictive SLA*-TSP approach 168
Table B.2: Summarised search process of Example 3 -12-city problem using the
restrictive SLA*-TSP approach 171

vi

LIST OF TABLES

Page

Table 2.1 Running time and worst case behaviour of various 11

insertion heuristics

Table 2.2 Summary of local and global optimisation techniques 22

Table 3.1 Summarised search process for 8-city problem 3 8

Table 3.2 Search process with learning threshold equal to 10% of 45

optimal solution (p=2230)

Table 3.3 Search process with learning threshold equal to 20% of 45

optimal solution (p=4460)

Table 3.4 Search process with learning threshold equal to 30% of 45

optimal solution (p=6690)

Table 4.1 Results of four test problems 5 7

Table 4.2 Ratio of initial heuristic estimate of root state to the tour 5 8

length

Table 4.3 Results of all four problems when learning threshold is 60

applied

Table 4.4 Computation results for selected TSPLIB problem 63

instances

Table 4.5 Results without learning threshold 65

Table 4.6 Number of heuristic updates and saving (expressed in %) 68

with different levels of learning thresholds

vii

Page

Table 4.7 CPU time with different levels of learning thresholds 69

Table 4.8 Quality of solution with different levels of learning 69

thresholds

Table 5.1 Proximity candidate edge set for the 8-city problem 87

Table 5.2 Forward search process for 8-city problem using the 87

restrictive approach

Table 5.3 Proximity candidate edge set for BURMA14 90

Table 5.4 Proximity candidate edge set of Example 3 93

Table 5.5 Summary of results for three examples 94

Table 5.6 Number of states generated in the search process 95

viii

LIST OF FIGURES

Page

Figure 3.1 Divide and conquer algorithm 33

Figure 3.2 Largest empty circle algorithm 34

Figure 3.3 Voronoi diagram of an 8-city problem 3 5

Figure 3.4 Delaunay triangulation of an 8-city problem 3 5

Figure 4.1 Delaunay triangulation of an 8-city problem 54

Figure 4.2 Graph showing penalty on the solution in term of 62

learning threshold

Figure 4.3 Structure of problems tested 64

Figure 4.4 Delaunay triangulation for p 1_4_16_13 66

Figure 4.5 Delaunay triangulation for pl_2_3_4 66

Figure 4.6 The number of heuristic updates vs. learning 70

threshold

Figure 4.7 Performance of CPU time vs. learning threshold 70

Figure 4.8 Quality of solution vs. learning threshold 71

Figure 5.1 Find_j)roximity_candidate_edge_set procedure 76

Figure 5.2 Delaunay triagulation of an 8-city problem 77

Figure 5.3 Voronoi diagram for external nodes only 77

ix

Figure 5.4 Combined Delaunay triagulation and Voronoi 77

diagram

Figure 5.5 Direction of searching for triangle 79

Figure 5.6 Example 1 to illustrate the search direction 80

Figure 5.7 Example 2 to illustrate the search direction 81

Figure 5.8 Procedure of find_triangle 82

Figure 5.9 Combined Delaunay triangulations and Voronoi 89

diagram for B U R M A 1 4

Figure 5.10 Structure of problems tested 92

Figure 5.11 The combined Delaunay triangulation and Voronoi 92

diagram of Example 3

x

LIST OF PUBLICATIONS

Lau, S.K. "Heuristic learning approach for travelling salesman problems", submitted

to The Sixteenth Triennial Conference of the International Federation of

Operational Research Societies (IFORS 2002), Edinburgh, 8-12 July, 2002

Lau, S.K. and Shue, L.Y. 2001. "Solving Travelling Salesman Problems with an

Intelligent Search Approach", Asia-Pacific Journal of Operational Research, 18(1),

77-87

Lau, S.K. and Shue, L.Y., 2000, "Solving Traveling Salesman Problems with an

Intelligent Search Algorithm", Proceedings of the Fifth Conference of the Association

of Asian-Pacific Operations Research Societies (CD-ROM), July 5-7, Singapore, 7pp.

Lau, S.K. and Shue, L.Y., 2000, "A Heuristic Learning Algorithm for Traveling

Salesman Problems", Proceedings of the Americas Conference on Information

Systems, August 10-13 Long Beach, California, 17-19

xi

CHAPTER 1: INTRODUCTION

This chapter provides an outline of the thesis. The chapter is organised as follows.

Section 1 presents the statement of the problem. The research objectives are outlined in

Section 2 and an overview of the research follows in Section 3. Section 4 outlines the

organisation of this thesis.

1.1 Statement of the problem

In the traveling salesman problem (TSP), a salesman is to find the shortest tour of a

finite number of cities by visiting each city exactly once and returning to the starting

city. It provides an ideal platform for the study of combinatorial optimisation problems

because many industrial optimisation problems can be formulated as TSP. Examples of

such applications include vehicle routing, workshop scheduling, order-picking in a

warehouse, computer wiring and drilling of circuit board problems.

TSP is inherently intractable. It belongs to a group of problems known as NP-

complete. The combinatorial nature of the problem results in computational time to

grow exponentially with problem size, and no efficient algorithm could be constructed

to find optimal solution in polynomial time for problems that are NP-complete (Garey

and Johnson, 1979). Therefore, researchers usually solve the problem by finding

approximate solution with reasonable computation time. The common approach is to

first construct the tour using tour construction heuristics and then tour improvement

heuristic is applied to obtain a better solution. Tour construction heuristic is simple in

concept. It works by adding city one at a time using some selection and insertion

1

criteria. Then, tour improvement heuristic is applied until a shorter tour is found. Tour

improvement heuristic works by exchanging edges of the tour. This method allows

tour configuration to change during the iterative tour improvement process. However,

it can result in local optimal solution. Extensive research has been conducted to

address this problem, and a number of global optimisation techniques, such as

simulated annealing, genetic algorithm and tabu search, have been developed for this

purpose. In contrast, little attempt has been made to construct an optimal tour in the

first place, so that tour improvement heuristic needs not be applied after the tour is

built. In addition, little research has been conducted to utilise the advancement in the

area of artificial intelligence, in particular the heuristic learning principle, to address

the TSP.

Tour construction heuristic by itself is not useful because the solution is sub-optimal. It

is a greedy approach. Part of the tour that is already built remains unchanged

throughout the tour construction process, and no attempt is made to change the tour

configuration as the tour is built. This characteristic is in contrast to the tour

improvement heuristic which changes the configuration of the tour during the iterative

improvement process until a shorter tour is found. In addition, tour construction

heuristic is myopic. It often relies on local knowledge to construct a tour. The selection

and insertion criteria in various tour construction heuristics rely on local distance

information to determine which city is to be selected and added to the tour. Therefore,

if the configuration of the tour can be changed during the tour construction process,

similar to the approach of tour improvement heuristics, then it is more likely to result

in optimal solution.

2

The aim of this research is to demonstrate the well-developed heuristic learning

algorithm in artificial intelligence may present another approach in addressing TSP. A

heuristic learning algorithm is applied so that a dynamic tour construction process that

allows the tour configuration to change during the tour construction process can be

developed. As the tour is constructed, the tour configuration changes through the

heuristic learning process using the local and estimated global distance information of

the tour. The heuristic learning process allows the heuristic estimates of the partially

completed tour to be updated, and, at the same time, the forward search and

backtracking operations in the algorithm allow addition and deletion of cities to and

from the tour during the tour construction process.

The combinatorial nature of the problem can result in the solution space to become

exponential in relation to the problem size. Therefore, it is important to control the

search space. An efficient search strategy that can reduce the search space is very

important in this research. This research seeks to investigate a search strategy by

exploiting the geometric properties of the cities. Computational geometry concepts of

Delaunay triangulations and Voronoi diagram will be investigated for this purpose

because they provide information about location and neighbourhood of nodes in the

Euclidean plane.

1.2 Objectives

This research has three objectives.

1. To investigate how the well-developed heuristic learning algorithm in artificial

intelligence can be applied as an approach in addressing the traditional TSP.

3

2. To develop an approach to implement the heuristic learning algorithm so that

TSP can be solved using dynamic tour construction.

3. To demonstrate the computational geometric properties of Euclidean TSP can

be utilised as part of the search strategy to reduce the search space.

To achieve these objectives, the research addresses the following steps:

1. Development of a transformation method that can facilitate the formulation of

TSP into state-space problems.

2. Development of an approach that incorporates computational geometry of

Delaunay triangulation into the search process.

3. Development of a step-by-step application procedure that incorporates heuristic

learning approach with Delaunay triangulation as a search strategy.

4. Investigation of factors that affect the performance of the proposed heuristic

learning approach.

5. Development of a restrictive search approach through the integration of

knowledge with regard to the direction of the tour and the computational

geometric property of Voronoi diagram in the heuristic learning approach.

1.3 Overview of the research

This research investigates the application of a heuristic learning algorithm called

Search and Learning A* algorithm (SLA*) to solve TSP. SLA* is a real time

admissible heuristic learning algorithm, which uses the heuristic evaluation function to

4

estimate the relative merit of different state to the goal state (Zamani, 1995). The

heuristic estimate of a state represents an estimate of solution from that state to the

goal state. The rationality of this algorithm is that, a state that is further away from the

goal state should have a larger heuristic estimate. The feature of this algorithm is the

application of heuristic learning principle to update and improve the initially

underestimated heuristic estimates. This will lead to an improvement of state selection

decision and an optimal solution when the goal state is reached.

In order to apply the heuristic learning approach to overcome the greedy and myopic

nature of the tour construction heuristics, TSP is transformed into a state-space

problem. The heuristic evaluation function of the algorithm considers both local and

estimated global distances. Local distance is the actual cost of moving from one state

to another, and estimated global distance is the heuristic estimation of a state to the

goal state. The heuristic learning mechanism allows the algorithm to update the

heuristic estimates of the visited states, and hence modify the tour configuration along

the search process. This way the tour configuration changes as a result of heuristic

learning by utilising local and global distance information during the tour construction

process.

Search efficiency of the heuristic learning approach can be improved by considering

only those edges that are likely to lead to an optimal tour. In order to reduce search

space, the concept of Delaunay triangulation is used to construct candidate edge set in

which only promising edges are selected during the search process. In addition, the

concept of proximity using Voronoi diagram, and the direction of the tour are

integrated in the search strategy to further reduce the search space. A learning

threshold method will also be investigated to find approximate solution. This method

5

improves the computation time for large-sized problems at the sacrifice of the quality

of the solution.

1.4 Outline of the thesis

The rest of the thesis is organised as follows.

Chapter 2 presents the literature review, which covers various tour construction and

tour improvement heuristics that are commonly used to solve TSP. Examples of tour

construction heuristics examined include nearest neighbour heuristics, insertion

heuristics and Christofides1 heuristics. The tour improvement heuristics investigates the

local search approach as well as global optimisation techniques, which include

simulated annealing, genetic algorithm and tabu search. The branch and bound method

that has been successfully applied to solve large TSP will also be explored.

Chapter 3 examines the tour construction process using the heuristic learning approach

of SLA*. This chapter investigates the state-space transformation process to transform

TSP into a state-space problem. The transformation process includes definitions of

state, state transition operator, state transition cost and heuristic estimates. The concept

of Delaunay triangulation will be examined, and is incorporated as part of the search

strategy to find promising neighbouring cities in the tour construction process. The

step-by-step application procedure to construct tour using the heuristic learning

approach will be given. This is followed by an example to demonstrate the working of

the algorithm. Finally, an approximation method using the principle of learning

threshold will be examined. This is followed by three examples to demonstrate the

step-by-step procedure of the algorithm.

6

Chapter 4 investigates the implementation of the heuristic learning approach to

construct tour. Issues relating to computer implementation of the algorithm are

discussed. The computational experiements were conducted on two sets of test

problems: selected instances from the TSPLIB library and the randomly generated

problems. Factors influencing the performance of the heuristic learning approach will

be investigated and discussed.

Chapter 5 examines the development of a restrictive search strategy. This chapter

investigates the rationale behind the implementation of the restrictive search approach,

which is used as a constrained search strategy to further reduce the search space. The

factors considered are based on the concept of proximity in Voronoi diagram, direction

of the tour and the search direction of a triangle from Delaunay triangulations. Each of

the factors will be investigated. Three examples have been included to demonstrate the

implementation of the restrictive search approach.

Chapter 6 concludes the thesis with the discussion of possible future research

direction.

7

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

The nature of NP-completeness in TSP makes it unlikely that any algorithm can be

guaranteed to find optimal solutions when the number of cities is large. In view of the

computation difficulties various heuristics have been developed to solve the problem.

This chapter presents a literature review of various heuristics methods. The literature

review covers commonly used tour construction and tour improvement heuristics. In

addition a number of global optimisation techniques, which can be used to overcome

the local entrapment problems in local search heuristics, will also be examined. The

branch-and-bound and branch-and-cut methods that have been successfully used to

solve large TSP are also examined.

This chapter is organised as follows: Section 2 discusses tour construction heuristics.

This includes nearest neighbour, various insertion heuristics and Christofides'

heuristic. Other tour construction methods such as space filling curve and neural

network will also be outlined. Section 3 examines tour improvement heuristics. This

includes local search heuristic as well as global optimisation heuristics that include

simulated annealing, genetic algorithm and tabu search. The algorithm of each of these

techniques and its associated advantages, disadvantages and performances will be

discussed. Section 4 examines the application of the branch-and-bound and branch-

and-cut methods to solve large TSP. The conclusion follows in Section 4.

8

2.2 Tour construction heuristics

Tour construction heuristic constructs a tour by progressively adding a city one at a

time until a complete tour is formed. The part of the tour that is already built remains

unchanged during the tour construction process. In this section, nearest neighbour

heuristic, various insertion heuristics, Christofides' heuristic, space filling curve

heuristic and neural network approach will be examined.

2.2.1 Nearest neighbour heuristic

Nearest neighbour heuristic is simple in concept. It randomly selects a city as the

starting node of the path. The next city for inclusion is the unvisited city that is nearest

to the last city. The process is repeated until all cities have been included. Finally the

last city is joined to the first city to form a tour.

2
The running time of this heuristic is found to be proportional to n , represented as

2
0(n) where n is the number of city (Golden et al, 1980). The expected tour length is

of the order O(logn) times the optimal tour length for random distance problem

(Johnson, 1990). The quality of the solution is strongly dependent on the choice of the

starting city (Reinelt, 1994). One way to overcome this problem is to repeat the nearest

neighbour heuristic for each possible starting city and the tour with the shortest

distance is selected as the optimal tour (Rosenkrantz et al, 1977). But the running time

3
using this approach is proportional to n .

Although the nearest neighbour heuristic is simple in concept, it has its weakness. By

being greedy in the beginning stage of the tour construction process, the tour distance

may increase considerably in length when the last city is joined to the first city. A

9

number of researchers have modified nearest neighbour heuristic to overcome this

shortcoming. Burke (1994) uses a tour, instead of a path, during the construction

process. Bentley (1992) uses double-ended nearest neighbour approach that allows the

path to grow at both ends of the tour. This approach performs two nearest neighbour

heuristics at each tail, and the path with the shorter distance is selected. Reinelt (1994)

uses the approach of insertion of forgotten cities to avoid adding too many isolated

cities at the end. The approach is not to let the degree of the free city to fall below a

certain pre-specified level (such as 2 or 3). The degree of the free city refers to the

number of adjacent cities that has not been included in the current path. If a city falls

below the pre-specified level, then it is added immediately to the path.

2.2.2 Insertion heuristics

There are three important considerations in insertion heuristics (Lawler et al, 1985):

the choice of starting city, a selection criterion to select the most appropriate city to be

inserted, and an insertion criterion which determines which part of the tour to insert the

city. Examples of insertion heuristics include random, nearest and farthest insertions.

These insertion heuristics varies in the way the city is inserted in the tour. For

example, the nearest insertion heuristic starts with a tour of two cities that are nearest

to one another. Then an unvisited city that is nearest to the tour cities is selected. This

city is inserted between two consecutive cities that result in the minimum increase of

tour length. The procedure of farthest insertion heuristic is similar to the nearest

insertion with the exception that it selects two cities that are located farthest to one

another as the initial tour. Then an unvisited city that is farthest to the tour is selected.

In random insertion, a random city that results in the minimum increase in tour length

is selected. For each heuristic, the selection and insertion steps are repeated until all

10

cities have been included in the tour. Table 2.1 shows the running time and results of

worst-case analysis of the nearest, farthest and random insertion heuristics for an n-city

problem. In general farthest insertion and random insertion heuristics outperform

nearest insertion heuristic, because both farthest and arbitrary insertion heuristics

produce good global tour (Reinelt, 1994).

Heuristics

Nearest insertion

Farthest insertion

Random insertion

Running time

0(n2)

0(n log n)

0(n2)

Worst case (length of tour/length of optimal tour)

<2

<21n(n) + 0.16

<21n(n) + 0.16

Table 2.1: Running time and worst case behaviour of various insertion heuristics

(Golden etal. 1980)

Gendreau et al (1992) integrates tour improvement within the insertion heuristic. The

approach is called generalised insertion and unstringing and stringing procedure

(GENIUS). The main feature of this approach is that insertion of a city does not

necessary take place between two consecutive cities. However, the number of potential

insertions is based on the neighbourhood of the city to be inserted to the tour. At the

same time, an improvement is carried out in such a way that the improvement search is

limited to the most promising moves. This way the reconnecting edge is able to join

cities that are closest to one another. Their results show that the tour sometimes results

in a shorter tour length compared to the standard insertion heuristics.

2.2.3 Christofides' heuristic

Christofides' heuristic uses minimal spanning tree as a basis to construct a tour. A

spanning tree for a set of n cities is a collection of (n-1) edges that join all cities into a

single connected tree (Johnson and Papadimitriou, 1985). Therefore a minimal

11

spanning tree is one with minimum cost. In this algorithm, the minimum length

matching of the odd degree vertices are obtained from the minimal spanning tree. The

tour is constructed by traversing the Euler cycle and selecting the cities in the order

they are first encountered. However this approach only works if triangle inequality is

satisfied. The running time is proportional to n , where n is the number of city, and the

worst-case analysis shows that it is less than 1.5 times of the optimal tour (Reinelt,

1994).

2.2.4 Space filling curve heuristics

Space filling curve heuristic is one of the recent tour construction heuristic developed,

which can be used to map city locations in Euclidean plane to a unit circle using the

inverse of a closed space-filling curve (Bartholdi and Platzman, 1988). A tour is

formed by visiting the cities in the order of their images appeared on the circle. Its

running time is of the order 0(nlogn), where n is the number of city, and worst-case

analysis shows that it is 1.25 times the optimal tour for uniformly generated problems.

This heuristic works well for non-uniformly generated problems and it performs

particularly well with respect to the measure of the ratio of the longest link in the tour

to the average link in the tour (Burke, 1994). The advantage of this approach is that it

is fast and it can be used when the inter-city distance is unknown (Tate et al, 1994).

2.2.5 Neural network approach

Hopfield and Tank (1985) have shown that neural network can be used to solve TSP.

This method works by dividing the network into a (n x n) two-dimensional array with

0-1 states. However, the original Hopfield and Tank's approach is only able to solve a

10-city problem. Yu and Jia (1993) applied a technique called the orthogonal array

12

table to overcome the shortcoming of Hopfield and Tank's approach. The use of

orthogonal array table allows the most suitable parameters to be selected in search of

better attracting regions that correspond to a better optimal solution (Yu and Jia, 1993).

Problems with 10 and 30, 31, and 300 cities have been successfully solved using this

approach. Angeniol et al (1988) implement another approach that is based on

Kohonen's self-organising feature map (Kohonen, 1984). In this approach, a set of

nodes is joined together dynamically in such a way that it can evolve continuously to

claim each city in the tour. In another study, Burke (1994) uses a technique known as

guilty net, which is based on Kohonen's self-organising feature maps, to solve non-

uniformly generated problems to optimality.

2.3 Tour improvement heuristics

This section examines local search heuristic and other non-operational research global

optimisation techniques that include simulated annealing, genetic algorithm and tabu

search.

2.3.1 Local search heuristic

Local search heuristic is a tour improvement heuristic which systematically tries to

improve a tour after an initial complete tour is found. Most commonly used local

search heuristics include 2-opt, 3-opt and Lin-Kernighan heuristics (Lin, 1965; Lin and

Kernighan, 1973). Theoretically r-opt heuristic (where r = 2, 3, 4, ...) improves the

tour by deleting r existing edges and replacing with r new edges. For example, if r = 2,

then two edges in the tour are deleted and two new edges are reconnected in a different

way to obtain a new tour. If the exchange reduces the total distance of the tour, then

13

that tour becomes the current solution. If it does not, then another attempt to exchange

two more edges are carried out. This process is repeated until a tour with the shortest

distance is found. The running time for r-opt heuristic is proportional to n , where n is

the number of city (Golden et al, 1980). Theoretically the larger the number of edges

exchanged, the better the solution is. However, this means the number of exchanges

needs to be carried out will also increase rapidly and computation cost is increased too.

Thus 2-opt and 3-opt are usually performed (Golden and Stewart, 1985). In deciding

which edge to be exchanged, it has been suggested that computational time can be

saved if the edge with the longest distance can be exchanged at the first instance

instead of selecting the edges at random (Christofides and Eilon, 1972).

Lin-Kernighan heuristic is regarded as the best improvement heuristic in the literature

(Johnson, 1990). It is a variable depth r-opt in which the number of edges to be

exchanged is decided dynamically at each iteration of improvement, and is not fixed

(Lawler et al, 1985). Lin-Kernighan heuristic first employs breadth-first search and

follows by depth-first search in deciding the number of edges of exchange at each

iteration of improvement (Papadimitriou, 1992; Mak and Morton, 1993). It allows a

tour length to increase during some stage of the improvement process if it opens up

new possibilities for achieving considerable improvement later (Reinelt, 1994). For

this reason it is able to find a better solution compared to r-opt heuristic.

A major weakness of local search heuristic is its tendency to get stuck at local

optimum because the heuristic searches for improvement is within the local

neighbourhood. The quality of the solution relies on local configuration. One way to

improve the chance of finding better local optimum is to repeat the improvement

process many times with different initial tours. In another study, Gu and Huang (1994)

14

apply the search space smoothing technique to avoid entrapment of local optimum. A

pre-processing smoothing technique is applied to transform the objective function to a

series of simplified functions. Then r-opt is applied to the simpler functions. The

quality of the solution depends on how the original problem is reduced at each step,

and how the intermediate solution is used to achieve global optimum. This technique is

similar in concept to simulated annealing that will be described later.

Being trapped in local optimum is not the only drawback of local search heuristics. It

has been proven that finding a local optimum using Lin-Kernighan heuristics for TSP

is PLS-complete (polynomial-time local search) (Papadimitriou, 1992). In general,

there is no guarantee to find a tour whose length is bounded by a constant multiple of

optimal tour lengths, even if an exponential number of steps are allowed

(Papadimitriou and Steiglitz, 1982). It is not known whether 2-opt and 3-opt are also

PLS-complete, however it has been shown that for k>3, k-opt is also PLS-complete

(Johnson, 1990).

2.3.2 Simulated annealing

The application of simulated annealing to solve optimisation problems was

independently proposed by Kirkpatrick et al (1983) and Cerny (1985), and is based on

the concept of the physical annealing process. The strength of simulated annealing lies

in a process called uphill move. It allows a neighbourhood move that increases the

value of the objective function with small and decreasing probability. The acceptance

or rejection of an uphill move is determined using the Boltzmann probability function

defined as Prob(E) = exp(-E/kT), where E is the change in energy, T is the temperature

and k is the Boltzmann constant. The main feature of this approach is it allows the

15

system to jump out of local optimum by taking the uphill move that can lead to a new

configuration or a new neighbourhood region so that a global optimum is found.

The quality of the solution depends on the annealing schedule, which determines the

rate of cooling (Press et al, 1992; Koulamas et al, 1994; Lourenco, 1995). It is during

this cooling process that simulated annealing sometimes accepts a higher cost function

than the current solution. This constitutes the uphill move that ensures the solution is

not trapped in local optimum (Lawler et al, 1985; Press et al, 1992; Koulamas et al,

1994; Lin and Hsueh, 1994; Jedrzejek and Cieplinski, 1995). Geometric cooling rule is

usually used to determine the cooling rate (Lourenco, 1995). In general,

experimentations are often required to determine how the temperature can be changed

from higher to lower values as well as the amount of time it takes to reach equilibrium

at that temperature.

The advantage of simulated annealing is it is not restricted to the problem domain,

especially if the annealing schedule can be designed appropriately in such a way that

the temperature is cooled slowly enough. Geman and Geman (1984) show that if the

temperature is reduced slowly enough, then simulated annealing statistically

guarantees to find an optimal solution for any arbitrary problem and the solution

reaches to ground state with a logarithmic schedule. However in practice logarithmic

cooling can be too slow to reach. Thus the most important factor is to be able to reduce

the temperature very slowly. However, this will increase the running time, especially if

the cost function is expensive to compute. In addition, for problems with a smooth

energy landscape, the use of simulated annealing may be unnecessary as local search

heuristics may be sufficient.

16

In general, simulated annealing is capable of providing fairly good solutions with short

computational time if an appropriate annealing schedule is used. To demonstrate this

feature, Usami and Kitaoka (1997) experimented with 9 known examples of 100 cities

from literature, and optimal solutions were obtained for 3 problems within 1 minute of

calculation using Pentium 90 MHz processor. On average the tour length is found to be

only 0.5% longer than the optimal tour. Experiments conducted by Johnson (1990)

show that simulated annealing can find a better tour than 3-opt and Lin-Kernighan

heuristics if sufficient time is allowed. However the increase in running time is

enormous.

Simulated annealing can be combined with other heuristics to improve its performance

(Dowsland, 1995). Lin and Hsueh (1994) develop a hybrid method by combining

nearest neighbour heuristic with low temperature simulated annealing. Their result is

within 3 to 5 percent of the optimal value.

2.3.3 Genetic algorithm

Genetic algorithm is a global optimisation heuristic based on the principles of natural

selection and population evolution (Holland, 1975). The principle is to identify high

quality properties that can be combined into a new population so that the new

generation of solutions are better than the previous population (Kolen and Pesch,

1994). Unlike other heuristics that consider only one solution, genetic algorithm

considers a population of feasible solutions. The algorithm consists of four

components: selection, crossover, mutation and replacement. The algorithm can be

described as follow.

17

The population are initialised by randomly generated feasible solutions. Each feasible

solution is assigned a fitness value. This value is used to determine the probability of

choosing a solution as the parent solution. An example of fitness value is the tour

length, and the probability of selecting it as a solution is inversely proportional to the

length. The solutions with high fitness values will be selected to breed with other

parent solutions in the crossover step, which can be carried out by exchanging part of

the tour with another. The aim is to combine good characteristics of parent solutions to

create new children solutions. It is important in this step to determine an appropriate

crossover point, such as which edges should be selected so that they can be passed to

the children solutions. Solutions are mutated through the changes made to the children

solutions. The aim of mutation step is to ensure diversity in the population. It is not

necessary to perform mutation step to every solution. A portion of the solution can

have one or more edges exchanged using some assigned probability. The last step is

the replacement of current population in which the parent generation is replaced with

the new population of children solutions. The process is repeated until a convergence

criterion is satisfied. This can be achieved by repeating for a specific number of

generations or until the population does not show any further improvement (Laporte et

al, 1996).

Crossover and mutation are two important steps in genetic algorithm. Crossover

ensures better children solutions are generated in the new generation, and mutation

ensures uphill move is allowed. These two steps form the strength of genetic

algorithm. More importantly, genetic algorithm conducts the search of optimal solution

based on the population; in contrast to a single feasible solution in other optimisation

techniques. This allows genetic algorithm to take advantage of the fittest solution by

assigning higher probability that can result in better solution. However, it is necessary

18

to use an appropriate fitness function so that the constraints of only one city can be

visited at one time is taken into consideration.

It is important to find good parameter settings in order for genetic algorithm to work.

One of the factors is the determination of population size, because if the population is

too small, a premature convergence may occur which leads to local optimum. On the

other hand, if the population is too large, then there may be a significant increase in

computation time because too many solutions need to be considered. Other factors

include determination of the crossover point in parent solutions and strategies for

mutation. The construction of crossover operators should not result in children

solutions that are too far away from the parent solutions. Similarly, if too many edges

are selected during the mutation step, it will also increase computation time as too high

mutation may result in too much diversity. On the other hand, too low mutation may

result in a sub-optimal solution. Evaluation of fitness values is also important, because

a too simplistic fitness function may lead to convergence of local optimum.

Generally genetic algorithm is used as a meta-heuristic that incorporates other

improvement heuristics such as Lin-Kernighan heuristic. Kolen and Pesch (1994)

included local search (2-opt and Lin-Kernighan heuristics) with genetic algorithm.

Their results show that for large problem size, this technique performs better especially

if there is severe time constraint imposed on the running time. In another study, Tate et

al (1994) use genetic algorithm to improve tours that have been generated by space

filling curves. Yip and Pao (1995) develop a technique called guided evolutionary

simulated annealing that combines simulated annealing with simulated evolution.

There are two levels of competition: competition-within and competition-between the

families. Competition within the family is based on simulated annealing, and

19

competition between families measures the fitness of each family that determines the

number of children that should be generated in the next generation. Experiments have

been conducted using 10-city and 50-city problems, and results show that there is a

100% convergence in all test problems.

2.3.4 Tabu search

In order to escape local optimum, a global optimisation technique such as simulated

annealing allows tour length to increase during the process. However, no step is taken

to prevent the heuristic from revisiting the same local optimum again. Tabu search is

designed to overcome this problem (Glover, 1990). Tabu search employs short- and

long-term memory strategies. Short-term memory consists of a tabu list that is used to

determine if a move is allowed. Long-term memory is used to escape from the local

optimum and redirect the search to other neighbourhoods. Knox (1994) calls this

strategy a supervisory heuristic that guides the lower level heuristic performing the

actual manipulations.

Tabu restriction and aspiration are two important features in this approach. When

evaluating the neighbourhood of a solution, some potential solutions are classified as

tabu or inadmissible. This results in tabu restriction that forbids the move. A tabu

move can become admissible when an aspiration criterion is satisfied, and it can

override the tabu move. An example of aspiration criterion is when a tabu move can

produce a tour that is better than the current best tour (Glover, 1990).

Tabu list establishes a basis for deciding whether a move under consideration is

forbidden or otherwise. For example, if 2-edge exchange is used, then a tabu list stores

the edges that have been deleted. This way any future move that tries to introduce

20

those two edges to the tour is forbidden. Tabu search alternates between different types

of neighbourhoods (Laporte et al, 1996). It does not stop at the first local optimum.

The search only stops when a predetermined number of iterations or processing times

have elapsed. When a local optimum is reached, the search will select a bad move that

has not been previously examined (Knox, 1994). The principle is that the best move

that is not tabu is selected, even though it may result in an increase in cost. This way

the search alternates between different neighbourhoods and allows it to escape from

poor local optimum and move to other local optimum nearby, resulting in reaching

new neighbourhood (Laporte et al, 1996). There are different strategies to identify the

size of the tabu list, Knox (1994) recommends the length of the tabu list be kept at 3n,

where n is the number of cities. Another approach is to use frequency-based

information such as the frequency with which a move occurs in the search. For

example, in an attempt to diversify the search, frequently occurring moves can be

classified as tabu (Glover and Laguna, 1993; Xu and Kelly, 1996).

Results from Knox (1994) suggest that tabu search outperforms 2-opt and 3-opt when

the size of the problems increases. The advantages of tabu search include

independence of problem domain and flexible memory structure. However the success

of the technique is dependent on selecting appropriate parameters for the tabu list.

Table 2.2 summarises the features, advantages and disadvantages of tour improvement

heuristics that have been discussed above.

21

Method

r-opt

Simulated
annealing

Genetic
algorithm

Tabu
search

Feature

The use of neighbourhood
structure in search of
optimal solution

The use of annealing
schedule to search for
global optimal solution

The use of crossover and
mutation in a population of
feasible solutions

The use of tabu restriction
and aspiration criteria to
forbid and override a move
respectively

Advantages

Search within it its local
neighbourhood

Easy to implement

Provide reasonable
solutions

Domain independence

Robust

Ease of modification

Parallel nature

Independent of problem
domain

Flexible memory structure

Disadvantages

Get stuck at a local
optimum configuration

Long running time needed
for convergence

Difficult to implement
crossover operation to
ensure that the problem
structure is reflected during
the crossover process

Solution quality depends on
appropriate management of
tabu restriction and
aspiration criteria

Table 2.2: Summary of local and global optimisation techniques

2.4 Branch and bound method

Branch and bound is an exact method in Operation Research that can be used to find

optimal solution. In general, the branch and bound method solves problems by

breaking up feasible solutions into a collection of subproblems. The approach performs

branching and bounding operations and testing of elimination rule (Gendron and

Crainic, 1994). The branching process partitions the problem into subproblems, and

the bounding process keeps track of the best candidate found so far based on the upper

and lower bounds of the subproblem (Baker, 1974). The search space can be

represented in a form of a tree, where the root represents the original problem and the

children of a given node as the subproblems obtained by the branching process

(Viswanathan and Bagchi, 1993). The subproblems generated from the branching

process are mutually exclusive. While the tree is generated, each child of a given node

is said to be in one of three states: generated, evaluated or examined (Gendron and

Crainic, 1994). A generated subproblem is evaluated when a bounding process has

22

been applied. It is examined to determine whether a branching operation needs to be

applied to it or whether the elimination rule is applied to show that it can be pruned

off. Subproblems that do not lie within the bound are eliminated from further

consideration. In each instance, lower and upper bounds are revised. The process is

repeated until the optimal solution is found. A common approach to generate

subproblems is to use the Carpaneto and Toth's branching rule (Carpaneto and Toth,

1980). This branching rule generates subproblems by including and excluding certain

edges during the branching process. In the branch and bound approach, the order of the

tree is often depth-first search (Viswanathan and Bagchi, 1993). The disadvantage of

this is possible erroneous decisions made cannot be corrected until late in the search

process (Lawler et al, 1985).

The performance of branch and bound algorithm depends on the quality of the lower

and upper bounds. Experiments have shown that assignment problem can provide an

excellent lower bound for asymmetric problem (Lawler et al, 1985; Miller and Pekny,

1991). For symmetric problem, 1-tree is commonly used as lower bound (Reinelt,

1994). The upper bound can be set at an arbitrary large value. Alternatively, the upper

bound can be determined using heuristics. For example, Karp's patching algorithm

(Karp, 1979), which is based on assignment problems with a patching operation that

joins subtours into one by deleting and inserting edges in the subtours, is commonly

used as upper bound (Miller and Pekny, 1991; Carpaneto et al, 1995; Zhang, 1999).

Padberg and Rinaldi (1991) develop branch and cut algorithm to solve large symmetric

TSP. The lower bound in this approach is obtained from linear programming

relaxations. According to Padberg and Rinaldi (1991, p.62), the core of the algorithm

is "the polyhedral cutting plane procedure that exploits a subset of the system of linear

23

inequalities defining the convex hull of the incidence vectors of the Hamiltonian cycles

of a complete graph". There are four key elements in this algorithm: a heuristic

procedure to find good upper bound, the quality and quantity of cuts generated,

efficient use of linear programming solver, and an efficient tree search approach that

combines branching with cutting plane.

2.5 Conclusion

This chapter has reviewed various commonly used heuristics to solve traveling

salesman problem. From literature review, it can be seen that extensive research has

focussed on designing and developing methods that are capable of improving tour so

that an optimal solution is obtained. However, there has been relatively little research

on using tour construction heuristics to obtain optimal solution. In fact, tour that is

built using tour construction heuristics often needs to be improved using tour

improvement heuristics so that a better solution can be found. The poor quality of

solution obtained using tour construction heuristics can be attributed to these

algorithms being greedy approaches. The tour configuration does not change during

the tour construction process and the tour is often constructed using local distance

information, which results in the approach being myopic. On the other hand, the key

element of local search heuristics is to use edge-exchange method to change the tour

configuration in such a way that other neighbourhood can be explored. This way a

better solution can be found. Similarly in global optimisation heuristics, the aim is to

ensure that other neighbourhood regions can be explored so that the solution is not

locally optimal.

24

Literature review has also shown that traveling salesman problem can be solved to

optimality using operations research method such as branch and bound. At the same

time, researchers have used concepts in non-operations research area such as physical

science (simulated annealing), biology (genetic algorithm) and artificial intelligence

(neural networks) to solve the problem. However, there is little research in using

heuristic learning algorithm to address the problem. In particular, using heuristic

learning algorithm to investigate methods that allow tour configuration to change

during the tour construction process and to address the greedy and myopic nature of

tour construction heuristics. This research seeks to address these issues by

demonstrating that the well-developed heuristic learning algorithm in artificial

intelligence may present another approach in addressing the traveling salesman

problem. In particular, the research aims to investigate the application of a heuristic

learning algorithm to address the greedy and myopic natures of tour construction

heuristics.

25

CHAPTER 3: TOUR CONSTRUCTION USING

HEURISTIC LEARNING APPROACH

3.1 Introduction

In traditional tour construction heuristics, the tour is built from scratch and the node is

added one at a time until a complete tour is found. This is a greedy approach in which

part of the tour that is already built remains unchanged, and no attempt is made to

change the tour configuration. In addition, this approach is myopic as it often relies on

local distance information to build tour. Reinelt (1994) points out that in general,

constructing a tour using only tour construction heuristics alone will not lead to

optimal solution. It often needs to be improved using tour improvement heuristics such

as 2-opt or Lin-Kernighan heuristics, which made improvement to the tour by

exchanging edges until a shorter tour is found. This chapter investigates the application

of a heuristic learning algorithm to address the greedy and myopic natures of tour

construction heuristics.

A heuristic learning algorithm called Search and Learning A* algorithm (SLA*) will

be applied. The feature of SLA* is the application of heuristic learning to update and

improve the initially under-estimated heuristic estimates, which will lead to the

improvement of state selection decisions and an optimal solution when the goal state is

reached. Before SLA* can be applied, the problem needs to be transformed to a state-

space representation. Therefore a state-space transformation process, which consists of

state definition, transition cost and a state transition operator will be investigated. In

26

addition, the implementation of S L A * requires a non-overestimating heuristic estimate

to be determined. The heuristic estimate of a state represents an estimate of solution

from that state to the goal state, therefore a suitable method to compute the heuristic

estimation is important and will be investigated. The heuristic learning mechanism of

SLA* allows the algorithm to update the heuristic estimates of visited states, and thus

modify the tour configuration along the search process. However, to prevent the search

space from becoming too large when SLA* is implemented, a suitable search strategy

based on the geometric properties of TSP will be explored.

This chapter is organised as follows. Section 2 examines the Search and Learning A*

algorithm (SLA*). Section 3 investigates implementation issues when SLA* is

applied. The investigation includes identifying the state-space transformation process,

and an appropriate method of computing non-overestimating heuristic estimate. A

search strategy that utilises the concept of Delaunay triangulation will be examined.

Section 4 outlines the step-by-step application procedure of SLA*-TSP algorithm

(Search and Learning A* algorithm for Traveling Salesman Problems). An example is

included to demonstrate the working of the algorithm. Section 5 examines the

approach of finding approximate solutions by introducing the notion of learning

threshold to SLA*-TSP. The conclusion follows in Section 6.

3.2 Search and Learning A* algorithm

Search and Learning A* algorithm (SLA*) is a real time admissible heuristic learning

algorithm, which uses the heuristic evaluation function to estimate the relative merit of

different states to the goal state (Zamani, 1995). The search path improvement feature

27

of S L A * requires the initial estimate of a state to be non-overestimating so that it m a y

be improved during the search process. The algorithm of SLA* is described as follows.

The rationality of this algorithm is that a state that is further away from the goal state

should have a larger heuristic estimate. From a front state x, the state selection process

is based on the minimum increment of the heuristic function f(y) = k(x,y) + h(y),

where k(x,y) is the positive true edge cost from state x to its neighbouring state y, and

h(y) is the heuristic estimate of state y. The algorithm will first identify the state with

the minimum f(y), and then compares it with h(x) to decide if h(x) can be improved. If

it does, heuristic learning is said to occur. This relationship can be expressed as h(x) >

min (k(x,y) + h(y)}. Hence, if h(x) is not smaller than minimum f(y), then this

relationship is true, and the state with minimum f(y) is added to the search path as the

new front state. From this new state, the algorithm continues the search operation. If

this heuristic relationship is not true, then h(x) is too much under-estimated and it can

be updated to this minimum f(y), then the new h(x) is replaced with the minimum of

{k(x,y) + h(y)}, and still remains as non-overestimating.

Due to the fact that the selection criterion of a state is based on the heuristic estimate

of its neighbouring states, the update of h(x), a larger value than before, may invalidate

the selection of its previous state (x-1). In order to reflect the effect of the new h(x) to

the search path, the algorithm conducts a backtracking operation by applying the above

rationale to the state (x-1) to see if h(x-l) can be updated. If h(x-l) is updated, then its

previous state (x-2) will need to be reviewed too. In this way, the states of the search

path will be reviewed one by one in the reverse order. Along the way, any state whose

heuristic estimate has been improved is detached from the path, because the

improvement casts doubt on the validity of its previous minimum heuristic function

28

status. This review process continues until it reaches either the state whose heuristic

estimate remains unchanged after it has been examined for heuristic learning, or the

root state if the algorithm backtracks all the way to the root state, and then the

algorithm resumes the search from this state. As a result, before the resumption of the

search path, the algorithm would have completely updated the earlier path. Hence the

search path that is to be developed subsequently, before the next heuristic learning,

will be a minimum path. When the goal is reached, the path is an optimal path and

represents a complete solution. This algorithm can be expressed in the following steps:

Let k(x,y) be the positive edge cost from state x to a neighbouring state y, and

h(x) be the non-overestimating heuristic estimate from state x to the goal

state.

Step 1: Put the root state on the backtrack list called OPEN.

Step 2: Call the top-most state on the OPEN list x. If x is the goal state, stop;

otherwise continue.

Step 3: Evaluate [k(x,y) + h(y)] for every neighbouring state y of x, and find the state

with the minimum value. Call this state x'. Break ties randomly.

Step 4: If h(x) > [k(x,x') + h(x')], add x' to the OPEN list as the top-most state and

go to step 2. Otherwise replace h(x) with [k(x,x') + h(x')].

Step 5: If x is not the root state, remove x from the OPEN list.

Step 6: Go to step 2.

29

3.3 Implementation issues

This section investigates the implementation issues of SLA* on Euclidean TSP, where

cities are given as points in a two-dimensional plane and their distance is computed

using Euclidean distance. In order to apply SLA*, a state-space transformation method

that can formulate the problem into state-space problem must first be developed. A

state-space transformation approach, which consists of state definition, state transition

operator and state transition cost, will be examined. Next, a suitable method to

compute the heuristic estimation will be investigated. Finally, a search strategy that

utilises geometric properties of TSP is explored. The concepts of Delaunay

triangulation will be examined and explored so that an efficient search approach can be

developed. This is important to ensure that the search space does not become too large,

which can influence the performance of the algorithm.

3.3.1 State space transformation approach

The state space transformation process includes state definition, state transition

operator and state transition cost.

Definition of state

A state is defined as a tour, consisting of selected cities and the remaining unvisited

cities of a given problem. The selected cities form a partially incomplete tour, which is

a closed tour by connecting cities in the order of their selection and connecting the last

city to the city of origin. A partial tour becomes a complete tour when all cities are

included.

30

The status of a city at a given moment is in one of the following two sets: partial tour

P, or unvisited cities U. The root state consists of the city of origin, which can be

selected randomly. Let the city of origin be denoted as city 1, then the root state can

be expressed as {(1,1),U}, with U=(2,3,...,n), and the goal state is {(l,2,...,n,l), 0}. A

given state Si, can be represented as ((l,2,...,i,l),{U}), where i is the last city added to

the tour and U is (i+l,i+2,...,n).

State transition

For a given state Si, {(1,2,.. .,i,l),(U)}, where i is the last city added to the partial tour,

the transition to the next state Sj+i is through the selection of a city from the

neighbouring cities of i, which are in the unvisited set U. The selection criterion is the

minimum increment of tour length.

State transition cost

The transition cost from a parent state Sj to a child state S;+i is the increment in distance

between states Si and Si+i, which is [d(i,i+l)+d(i+l,l)-d(i,l)] with d(i,j) =

yl(xi - xj)2 +(yi-yj)2 being the Euclidean distance between two cities i(xi,yO and

j(xj,yj).

3.3.2 Heuristic estimation of each state

A minimal spanning tree is a spanning tree that connects all nodes such that its cost is

minimum (Lawler et al, 1985). Among the possible lower bound estimates of a partial

tour, minimal spanning tree is used to compute the non-overestimating heuristic

estimate. For a state Si, the heuristic estimate is the cost of the minimal spanning tree

on the remaining (n-i) unvisited cities, where n is the number of cities. Either Prim's

31

algorithm (Prim, 1957) or KruskaPs algorithm (Kruskal, 1956) can be used to calculate

the minimal spanning tree. In this research, Kruskal's algorithm is used. It works by

maintaining a set of partial minimum spanning trees, and repeatedly adds the shortest

edge so that it joins two trees together. If a cycle is formed, then this edge is ignored

and the next shorter edge is added. The process is repeated until (n-1) edges are added

to form the spanning tree, where n is the number of nodes. The running time of

Kruskal's algorithm is 0((n+m)log(n+m)), where m and n are the number of edges and

nodes respectively (Mehlhorn and Naher, 1999).

3.3.3 Search strategy

The size of the solution space of the traveling salesman problem is exponential in term

of problem size, therefore it is necessary to control the search space so that it is not

rapidly becoming too large. An efficient search strategy is very important. Otherwise,

the number of possible tours to be considered will increase rapidly. The approach is to

consider only those edges that are likely to result in an optimal tour, and useless edges

that are unlikely to result in optimal tour should not be considered in the search

process. The geometric properties of the point sets will be exploited for this purpose.

One of the computational geometry concepts that can be used to obtain information

about the structure of point sets is Delaunay triangulation. Therefore, a searching

framework that is based on properties of Delaunay triangulation will be examined. In

the following, the concept of Delaunay triangulation will be explained. However, the

concept of Voronoi diagram, which is a geometric dual of Delaunay triangulation, will

be examined first.

The concept of Voronoi diagram is based on proximity of points in the plane. It

partitions the plane into a set of polygons, called Voronoi regions, so that each polygon

32

consists of points closer to one than to any others. Reinelt (1994) defines Voronoi

diagram as follows: the Voronoi diagram divides the set of points into a set of

polygons of which the boundaries are perpendicular bisectors between two points. The

Voronoi diagrams can be constructed using the divide and conquer algorithm, in

(nlogn) time (O'Rourke, 1998). The algorithm is given in Figure 3.1.

Step 1: Partition S into two subsets Si and S2 of approximate size.

(This step can be done using median value of x-coordinates.)

Step 2: Construct the Voronoi diagram of Si and S2 recursively.

Step 3: Merge Voronoi diagram of Si and S2 to form the total

diagram.

Figure 3.1: Divide and conquer algorithm (O'Rourke, 1998)

Voronoi diagram can be used to solve the nearest neighbour problem, and it allows the

proximity question to be answered. Examples of applications that can be solved using

Voronoi diagram include cluster analysis, collision detection, facility location, path

planning, associative file sharing and others (Preparata and Shamos, 1985;

Aurenhammer, 1991; O'Rourke, 1998). In cluster analysis, Voronoi diagram is used to

partition a set of data into groups in which similar data are organised. In facility

location problem, Voronoi diagram is used to identify a site in which a facility, such as

a shop, can be built farthest from its nearest competitor. In collision detection, Voronoi

diagram is used for proximity detection so that a robot can stop before a collision

occurs.

Delaunay triangulation is the geometric dual of Voronoi diagram. Therefore, the

structure of Delaunay triangulation is very closely related to Voronoi diagram. The

duality of Voronoi diagram and Delaunay triangulation implies that the edges of

33

Delaunay triangulation are orthogonal to their corresponding Voronoi edges (Reinelt,

1994). It can be constructed based on the largest empty circle property derived from

Voronoi diagram, which states no other point in the point sets should fall in the interior

of the circumcircle of any triangle in the triangulation (Aurenhammer, 1991;

O'Rourke, 1998). The running time of this approach is of the order O(nlogn), where n

is the number of points (O'Rourke, 1998). The procedure of the largest empty circle is

shown in Figure 3.2.

Step 1: Compute the Voronoi diagram VR(Pj) for all i = 1,2,...,n.

Step 2: Compute the convex hull H.

Step 3: For each Voronoi vertex v do

if v is inside H then compute radius of circle centred

on v and update maximum value.

Step 4: For each Voronoi edge e do

compute the intersection of e with the convex hull

boundary, call this point p,

compute radius of circle centred on p and update

maximum value,

Step 5: Return maximum value.

Figure 3.2: Largest empty circle algorithm (O'Rourke, 1998)

There are two important properties of Delaunay triangulations that are related to this

research: the boundary of Delaunay triangulation is the convex hull of the point sets,

and minimal spanning tree is a subset Delaunay triangulation (Aurenhammer, 1991;

O'Rourke, 1998). For an n-city problem, there are at most (3n-6) edges and (2n-4)

triangles formed by Delaunay triangulation (Reinelt, 1994). Although in general

Delaunay triangulation does not contain a traveling salesman tour, it has been shown

34

that there is a high probability that the edges appear in the optimal tour of TSP are also

edges of Delaunay triangulation (Aurenhammer, 1991; Stewart, 1992; Krasnogor et al,

1995; Phan, 2000). Therefore, Delaunay triangulation can provide good information

about the location of promising edges to be considered as part of the optimal tour. It is

obvious that one can utilise Delaunay triangulation as a search strategy to locate

promising neighbouring city that will lead to optimal tour. Figures 3.3 and 3.4 show

Voronoi diagram and Delaunay triangulation of an 8-city problem respectively.

Figure 3.3: Voronoi diagram of an 8-city problem

Figure 3.4: Delaunay triangulation of an 8-citv problem

35

3.4 The proposed heuristic learning algorithm -

SLA*-TSP

This section describes SLA* algorithm that takes account of Delaunay triangulation as

part of the search strategy. This algorithm was developed using the state space

transformation process and the heuristic estimation approach using minimal spanning

tree identified in the previous section. In the algorithm, the completed tour length for

state Si is computed rather than the heuristic estimate of S,. This allows the estimated

tour length to be compared. However, the result is the same as that when the heuristic

estimate is computed. The algorithm, acronym as SLA*-TSP (Search and Learning

Algorithm for Traveling Salesman problems), is given as follows:

Let Sj be the 1th state with its tour Pj(l,2,...,i,l), where 1 is the city of origin and i

is the last city of the tour. Its heuristic estimate h(i) is the minimum

spanning tree of the remaining (n-i) cities. Sj is the goal state when i = n.

d(i,j) be the Euclidean distance between city i and city j.

H(i) be the estimated tour length for Si, which consists of the tour pj and h(i).

Step 0: Apply Delaunay triangulation algorithm to find neighbouring nodes for each

city.

Step 1: Locate the city of origin as the one with the smallest x-coordinate; choose

the city with the largest y-coordinate to break ties.

Step 2: Put the root state on the backtrack list called OPEN.

36

Step 3: Call the top-most state on the O P E N list S;. If S; is the goal state, stop.

Otherwise continue.

Step 4: Find the (i-H)* city with min{[d(l,2)+d(2,3)+.. .+d(i-l,i)+d(i,i+l)+d(i+l,l)]

+h(i+l)} from neighbouring cities of i; break ties randomly. If no

neighbouring city of i can be found, go to step 6.

Step 5: If {[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)} > min{[d(l,2)+d(2,3)+...+d(i-

l,i)+d(i,i+l)+d(i+l,l)] + h(i+l)}, add Si+i to the OPEN list as the top-most

state; otherwise replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)].

Step 6: Remove Si from OPEN list if it is not the root state.

Step 7: Go to step 3.

3.4.1 Example

An example of an 8-city problem (see Figure 3.4, page 35) is included in this section to

demonstrate the working of SLA*-TSP. This section describes the procedures when

the algorithm is applied. The problem is obtained from Gendreau et al (1992). The

complete search process in finding an optimal solution is summarized in Table 3.1. In

the table, each row represents one attempt to locate a tour as far as possible without

incurring heuristic learning. The search path in each row is disrupted as soon as the

estimated tour length of a newly selected state is greater than that of its parent state.

Thus the last state of each row is the one that has a larger estimated tour length and

causes the backtracking. When this happens, the algorithm will update the estimated

tour length of its parent state. The upper entry in each cell represents a state, and the

lower entry is the estimated tour length of that state. The search process consists of

37

both forward searching and backward updating. In order to maintain the simplicity of

the table, only the forward searching part in each row is presented. The heuristic

updating and the backtracking process of the algorithm is not shown, instead an

asterisk ("*") is used to indicate the state where backtracking ends and the new round

of forward search begins. The following describes the steps and procedures when

SLA*-TSP is applied.

Iteration

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Root | Level-1
state
(4,4) *
13070
(4,4)*
15891
(4,4)*
18548
(4,4)*
19348
(4,4)*
20415
(4,4)*
20424
(4,4)*
20740
(4,4)*
20982

(4,4)*
21037
(4,4)
21037
(4,4)*
21054
(4,4)*
21429
(4,4)
21429
(4,4)*
21445
(4,4)*
21650
(4,4)*
21678
(4,4)*
22171
(4,4)*
22274
(4,4)*
22300

(4,1,4)
15891
(4,1,4)
15891
(4,1,4)
18548
(4,7,4)
19348
(4,5,4)
20415
(4,8,4)
20424
(4,3,4)
20740
(4,3,4)
20982

(4,5,4)
21037
(4,8,4)*
21037
(4,8,4)
21054
(4,1,4)
21429
(4,1,4)
21429
(4,1,4)
21445
(4,3,4)
21650
(4,8,4)
21678
(4,5,4)
22171
(4,3,4)
22274
(4,8,4)
22300

Level-2

(4,1,7,4)
15740
(4,1,7,4)
18548
(4,7,8,4)
22569
(4,5,3,4)
20360
(4,8,5,4)
21037
(4,3,5,4)
20360
(4,3,5,4)
20982

(4,5,8,4)
2 1 0 3 7 ^
(4,8,5,4)
21037
(4,8,5,4)
21054
(4,1,7,4)
21429
(4,1,7,4)
21429
(4,1,7,4)
21445
(4,3,5,4)
21650
(4,8,5,4)
21678
(4,5,3,4)
22171
(4,3,5,4)
22274
(4,8,5,4)
22300

Level-3

(4,1,7,8,4)
18548
(4,1,7,8,4)
18548

(4,5,3,2,4)
22171

(4,3,5,8,4)
20982
(4,3,5,8,4)
20982

(4,5,8,7,4)
23310
(4,8,5,3,4)
20982
(4,8,5,3,4)
21054
(4,1,7,8,4)
21429
(4,1,7,8,4)
21429
(4,1,7,8,4)
21445
(4,3,5,8,4)
21650
(4,8,5,3,4)
21678
(4,5,3,2,4)
22171
(4,3,5,8,4)
22274
(4,8,5,3,4)
22300

Level-4

(4,1,7,8,5,4)
18464

(4,3,5,8,2,4)
21650

(4,8,5,3,2,4)
21054
(4,8,5,3,2,4)
21054
(4,1,7,8,2,4)
21429
(4,1,7,8,2,4)*
21429
(4,1,7,8,5,4)
21445
(4,3,5,8,2,4)
21650
(4,8,5,3,2,4)
21678
(4,5,3,2,8,4)
20353
(4,3,5,8,2,4)
22274
(4,8,5,3,2,4)
22300

Level-5

(4,1,7,8,5,3,4)
18409

(4,8,5,3,2,6,4)
21678
(4,1,7,8,2,5,4)
20744
(4,1,7,8,2,3,4)*
21142
(4,1,7,8,5,2,4)
21445
(4,3,5,8,2,6,4)
22274
(4,8,5,3,2,6,4)
21678
(4,5,3,2,8,6,4)
23384
(4,3,5,8,2,6,4)
22274
(4,8,5,3,2,6,4)
22300

Level-6

(4,1,7,8,5,3,2,4)
16964

(4,1,7,8,2,5,3,4)
16793
(4,1,7,8,2,3,5,4)
16263
(4,1,7,8,5,2,3,4)
16643

(4,8,5,3,2,6,7,4)
21210

(4,3,5,8,2,6,7,4)
21806
(4,8,5,3,2,6,7,4)
22300

Level-7

(4,1,7,8,5,3,2,6,4)
24122

(4,1,7,8,2,5,3,6,4)
26402
(4,1,7,8,2,3,5,6,4)
26236
(4,1,7,8,5,2,3,6,4)
26252

(4,8,5,3,2,6,7,1,4)
22300

(4,3,5,8,2,6,7,1,4)
28896
(4,8,5,3,2,6,7,1,4)
22300

Table 3.1: Summarised search process for 8-city problem

38

Initially the neighbouring edges for each city in the problem are identified using

Delaunay triangulations (see Figure 3.4, page 35). In this example, the city of origin is

selected using the minimum x-coordinate. Therefore the city of origin is city 4: the

corresponding root state is {(4,4),U}5 and its heuristic estimate to the goal state is the

minimal spanning tree of the remaining unvisited cities U (i.e. cities 1,2,3,5,6,7,8),

which is 13070. For simplicity, from hereafter only the tour part of a state is shown,

and its unvisited states U is not given. The selection of the next city to join the tour is

made from the five neighbouring cities (1,3,5,7,8) of city 4 obtained from the edges of

Delaunay triangulations. Thus the corresponding front states are: (4,1,4), (4,3,4),

(4,5,4), (4,7,4) and (4,8,4). Step 4 of the algorithm makes the selection by finding the

state with the smallest estimated tour length. As shown in row 1, state (4,1,4) is

selected with a smaller value of 15891 = 10785 (heuristic) + 5106 (tour), which is

greater than 13070 of its parent state (4,4). Step 5 of the algorithm updates the parent

state with this new value 15891, and backtracks to its parent state (4,4).

In row 2, the algorithm starts from (4,4). It again selects (4,1,4), and because of no

heuristic updating involved, the state (4,1,4) becomes the new front state. For the state

selection of the next round, the candidate edge set shows that promising neighbouring

cities include 1, 4 and 7, as shown in Figure 3.4. Since the last city that was added to

the tour is 1, then the states to be considered are those of its neighbouring cities 4 and

7. City 4 is not eligible because it was in the tour already. Hence, the next state to

consider is (4,1,7,4). Its estimated tour length is 15740 = 7154 (heuristic) + 8586

(tour). This value is not greater than 15891 of its parent state, hence state (4,1,7,4)

becomes the new front state. From city 7 (which was the last city added to the partial

tour), only cities 6 and 8 are eligible for consideration. The estimated tour lengths of

these two corresponding states are 23093 and 18548 respectively. State (4,1,7,8,4) is

39

selected for having a smaller value of 18548. However, this value is larger than 15740

of its parent state (4,1,7,4). Hence, the estimated tour length of (4,1,7,4) is updated to

18548, and the algorithm backtracks to (4,1,4). From (4,1,4), the state (4,1,7,4) is

selected with an estimated tour length of 18548, which updates that of (4,1,4) to

18548. The algorithm then backtracks to the root state (4,4). The selection of state

(4,1,4) leads to the update of the estimated tour length of state (4,4) from 15891 to

18548.

Row 3 shows the search from the newly updated state (4,4). The search path shows

states (4,1,4), (4,1,7,4), (4,1,7,8,4), (4,1,7,8,5,4), (4,1,7,8,5,3,4), (4,1,7,8,5,3,2,4) and

stops at (4,1,7,8,5,3,2,6,4). At state (4,1,7,8,5,3,2,6,4), its estimated tour length 24122

is greater than 16964 of its parent state (4,1,7,8,5,3,2,4). This causes the algorithm to

backtrack. The algorithm backtracks all the way to the root state (4,4), and its

estimated tour length is updated to 19348. With this new value, row 4 shows the next

search path.

In row 4, there are three possible child states: (4,7,1,4), (4,7,6,4) and (4,7,8,4). The

state (4,7,1,4) is pruned from consideration because city 1 does not have an unvisited

neighbouring city to allow the state generation to continue. Thus, there are only two

possible child states: (4,7,6,4) and (4,7,8,4). It is found that state (4,7,8,4) with tour

estimated tour length of 22569 is the state with the minimum estimated tour length.

This value is greater than 19348 of its parent state, and causes the algorithm to

backtrack. The algorithm backtracks to the root state (4,4), and its estimated tour

length is updated to 19348. With this new value, row 5 shows the next search path.

The same procedure is followed and steps are repeated until there is no more

backtracking and heuristic learning, in which case optimal solution is found. Table 3.1

40

shows the summarised search process. The table shows that the algorithm takes 19

forward search trials to reach an optimal solution of 22300 with the optimal tour being

(4,8,5,3,2,6,7,1,4).

3.5 SLA*-TSP with learning threshold

For problems where optimal solutions with reasonable computation time and cost are

not feasible, the next best approach is to find approximate solutions of known quality.

Search and learning A* algorithm with learning threshold is an algorithm that produces

solutions guaranteed to be within a specific range of optimal solution (Zamani, 1995).

SLA* with learning threshold can be applied to TSP with the knowledge that one can

predict the quality of the approximate solution, because the solution found is within the

range of this learning threshold. The algorithm works by employing learning threshold

as an agent that delays the backtracking operations. The rationale of SLA*-TSP with

learning threshold is explained as follows.

Before the algorithm with learning threshold is applied, one needs to decide the quality

of the desired approximate solution. This is measured by how far the approximate

solution should be positioned away from the optimal solution. This range will be the

value of the learning threshold to be included in SLA*-TSP. The concept of learning

threshold is used to delay the backtracking operations. In SLA*-TSP, backtracking

takes place as soon as the minimum value of heuristic estimate of the front state

exceeds its parent state. When this occurs, heuristic learning is said to have taken

place. In the case of SLA*-TSP with learning threshold, backtracking may not

necessary take place when heuristic learning occurs. Instead, it will only take place

when the accumulated heuristic learning exceeds the learning threshold. Therefore

41

every time a heuristic learning takes place, the learning threshold is reduced by the

amount of heuristic learning incurred. In this case, the value of the learning threshold

is constantly being updated, and backtracking only takes place when the heuristic

learning exceeds the updated value of learning threshold. Then backtracking operation

occurs, and it will stop either until the root state is reached or until the heuristic

learning no longer exceed the updated value of learning threshold. When the

accumulated heuristic learning does not exceed the updated value of learning

threshold, forward search operations continue. This way, the learning threshold acts as

a guide to initiate the backtracking operations by comparing it with the accumulated

heuristic learning.

In summary, backtracking is activated only when the accumulated heuristic learning

exceeds the prescribed learning threshold. The learning threshold approach allows

approximate solution with known quality to be determined, and more importantly the

maximum amount of sacrifice is known before hand.

The algorithm of SLA*-TSP with learning threshold is described as follows:

Let Si be the 1th state with its tour Pj(1,2,... ,i, 1), where 1 is the city of origin and i

is the last city of the tour. Its heuristic estimate h(i) is the minimum

spanning tree of the remaining (n-i) cities. Sj is the goal state when i = n.

d(i,j) be the Euclidean distance between city i and city j.

H(i) be the estimated tour length for Si, which consists of the tour pi and h(i).

t = initial learning threshold

42

Step 0: Apply Delaunay triangulation algorithm to find neighbouring nodes for each

city.

Step 1: Randomly select a city as the city of origin.

Step 2: Put the root state on the backtrack list called OPEN, and initialise learning

threshold t' to the initial learning threshold (i.e. t' = t), and set search mode =

forward.

Step 2: Call the top-most state of the OPEN list Si. If Si is the goal state, stop.

Otherwise continue

Step 3: Find the (1+1)* city with min{[d(l,2)+d(2,3)+.. .+d(i-l,i)+d(i,i+l)+d(i+l,l)]

+h(i+l)} from neighbouring cities of i; break ties randomly. If no

neighbouring city of i can be found, remove Sj from the OPEN list if it is not

the root state, and return to step 2.

Step4: Let learning = min{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,i+l)+d(i+l,l)] +h(i+l)}-

{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)}. If no learning has occurred (i.e.

learning < 0), then add Si+i to the OPEN list as the top-most state and return

to step 2.

Step 5: If search mode = forward and heuristic learning has occurred but the value of

the learning is less than or equal to the learning threshold t' (i.e. learning > 0

and learning < t'), then update t' by deducting the amount of learning that has

taken place (i.e. t'= {f- learning}) and replace h(i) with [d(i,i+l)+d(i+l,l) +

h(i+l) - d(i,l)], add Si+i to the OPEN list as the top-most state, and return to

step 2.

43

Step 6: If search mode = forward and heuristic learning has occurred but the value of

the learning is more than the learning threshold t' (i.e. learning > 0 and

learning > t'), then replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)] and

set the search mode = backtrack. Remove Sj from the OPEN list if it is not

the root state, and return to step 2.

Step 7: If search mode = backtrack and learning has occurred (i.e. learning > 0), then

replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)], remove S; from the

OPEN list if it is not the root state, and return to step 2.

Step 8: If search mode = backtrack and no learning has occurred (i.e. learning < 0),

then set search mode = forward and initialise learning threshold to the initial

learning threshold (i.e. t' = t), add Si to the OPEN list as the top-most state,

and return to step 2.

3.5.1 Examples

The same 8-city problem is used to demonstrate the working of SLA*-TSP with

learning threshold. Tables 3.2, 3.3 and 3.4 show the search process of the 8-city

problem with a learning threshold equals to 10%, 20% and 30%, respectively from the

optimal solution. The optimal solution for the 8-city problem is 22300 (see Section

3.4.1). Therefore, the learning threshold prescribed for each of the three cases are

t=2230, t=4460 and t=6690, respectively. To simplify the presentation, as in Table 3.1,

only forward search operations are shown in the tables. It takes eleven forward search

operations to find the optimal tour of (4,8,5,3,2,6,7,1,4) with length equal to 22300

when the learning threshold is at 10%. In Table 3.3, with the learning threshold is

20%, the solution found is also an optimal solution and it only takes five forward

44

operations. With learning threshold of 3 0 % , although the solution found is not an

optimal solution (tour length obtained is 24006), it is within the predicted range and it

is 30%o away from the optimal solution.

Iteration

1

2

3

4

5

6

7

8

9

10

11

Root
state
(4,4) *
13070
(4,4)*
15891
(4,4)*
18548
(4,4)*
19348
(4,4)*
20415
(4,4)*
20424
(4,4)*
20740
(4,4)*
21037
(4,4)*
21429
(4,4)*
21445
(4,4)*
22300

Level-1

(4,1,4)
15891
(4,1,4)
15891
(4,1,4)
18548
(4,7,4)
19348
(4,5,4)
20415
(4,8,4)
20424
(4,3,4)
20740
(4,5,4)
21037
(4,1,4)
21429
(4,1,4)
21445
(4,8,4)
22300

Level-2

(4,1,7,4)
15740
(4,1,7,4)
18548
(4,7,8,4)
22569
(4,5,3,4)
20360
(4,8,5,4)
21037
(4,3,5,4)
20360
(4,5,8,4)
21037
(4,1,7,4)
21429
(4,1,7,4)
21445
(4,8,5,4)
22300

Level-3

(4,1,7,8,4)
18548
(4,1,7,8,4)
18548

(4,5,3,2,4)
22171
(4,8,5,3,4)
20982
(4,3,5,8,4)
20982
(4,5,8,7,4)
23310
(4,1,7,8,4)
21429
(4,1,7,8,4)
21445
(4,8,5,3,4)
22300

Level-4

(4,1,7,8,5,4)
18464

(4,5,3,2,8,4)
20353
(4,8,5,3,2,4)
21054
(4,3,5,8,2,4)
21650

(4,1,7,8,2,4)
21429
(4,1,7,8,5,4)
21445
(4,8,5,3,2,4)
22300

Level-5

(4,1,7,8,5,3,4)
18409

(4,5,3,2,8,6,4)
23384
(4,8,5,3,2,6,4)
21678
(4,3,5,8,2,6,4)
22274

(4,1,7,8,2,5,4)
20744
(4,1,7,8,5,2,4)
21445
(4,8,5,3,2,6,4)
22300

Level-6

(4,1,7,8,5,3,2,4)
16964

(4,8,5,3,2,6,7,4)
21210
(4,3,5,8,2,6,7,4)
21806

(4,1,7,8,2,5,3,4)
16793
(4,1,7,8,5,2,3,4)
16643
(4,8,5,3,2,6,7,4)
22300

Level-7

(4,1,7,8,5,3,2,6,4)
24122

(4,8,5,3,2,6,7,1,4)
22300
(4,3,5,8,2,6,7,1,4)
28896

(4,1,7,8,2,5,3,6,4)
26402
(4,1,7,8,5,2,3,6,4)
26252
(4,8,5,3,2,6,7,1,4)
22300

Table 3.2: Search process with learning threshold equal to 1 0 % of optimal solution (p=2230)

Iteration

1

2

3

4

5

Root
state
(4,4) *
13070
(4,4)*
18548
(4,4)*
19348
(4,4)*
20415
(4,4)*
20424

Level-1

(4,1,4)
15891
(4,1,4)
18548
(4,7,4)
19348
(4,5,4)
20415
(4,8,4)
20424

Level-2

(4,1,7,4)
15740
(4,1,7,4)
18548
(4,7,8,4)
22569
(4,5,3,4)
20360
(4,8,5,4)
21037

Level-3

(4,1,7,8,4)
18548
(4,1,7,8,4)
18548

(4,5,3,2,4)
22171
(4,8,5,3,4)
20982

Level-4

(4,1,7,8,5,4)
18464

(4,5,3,2,8,4)
20353
(4,8,5,3,2,4)
21054

Level-5

(4,1,7,8,5,3,4)
18409

(4,5,3,2,8,6,4)
23384
(4,8,5,3,2,6,4)
21678

Level-6

(4,1,7,8,5,3,2,4)
16964

(4,8,5,3,2,6,7,4)
22210

Level-7

(4,1,7,8,5,3,2,6,4)
24122

(4,8,5,3,2,6,7,1,4)
22300

Table 3.3: Search process with learning threshold equal to 2 0 % of optimal solution (p=4460)

Iteration

1

2

3

Root
state
(4,4) *
13070
(4,4)*
19348
(4,4)*
20415

Level-1

(4,1,4)
15891
(4,7,4)
19348
(4,5,4)
20415

Level-2

(4,1,7,4)
15740
(4,7,8,4)
22569
(4,5,3,4)
20360

Level-3

(4,1,7,8,4)
18548

(4,5,3,2,4)
22171

Level-4

(4,1,7,8,5,4)
18464

(4,5,3,2,8,4)
20353

Level-5

(4,1,7,8,5,3,4)
18409

(4,5,3,2,8,6,4)
23384

Level-6

(4,1,7,8,5,3,2,4)
16964

(4,5,3,2,8,6,7,4)
22916

Level-7

(4,1,7,8,5,3,2,6,4)
24122

(4,5,3,2,8,6,7,1,4)
24006

Table 3.4: Search process with learning threshold equal to 3 0 % of optimal solution (p=6690)

45

Table 3.3 is used to demonstrate how the learning threshold has influenced the forward

search and backtracking processes. In this example, the learning threshold is set at

4460 and the city of origin is city 4. The selection of the next city to the tour is made

from five neighbouring cities (1,3,5,7,8) of city 4. Therefore the corresponding states

are: (4,1,4), (4,3,4), (4,5,4), (4,7,4) and (4,8,4). The selection of the state with

minimum heuristic function is state (4,1,4) with the estimated value of 15891. A

heuristic learning value of 2821 (the difference between the estimated tour length of

the neighbouring state of (4,1,4) and (4,4)) has occurred. If no learning threshold has

been set, then the algorithm will force backtracking to occur and the heuristic estimate

of state (4,4) will be updated. However, with learning threshold, this allows the

forward search process to continue. This is because the value of heuristic learning is

less than the value of learning threshold. The estimated tour length of state (4,4) will

be updated from 13070 to 15891. As heuristic learning has occurred, the learning

threshold is now updated to 1639 (that is 15891-13070). From state (4,1,4), the

neighbouring states to be generated is (4,1,7,4). Its estimated tour length is 15470 and

this is not greater than the 15891, thus no heuristic learning takes place. Hence forward

search process continues and the learning threshold remains at 1639.

From the state of (4,1,7,4), there are two possible neighbouring cities (cities 6 and 8)

that can be added to the tour. Hence, the two corresponding front states are (4,1,7,6,4)

and (4,1,7,8,4). The estimated tour length of state (4,1,7,6,4) is 23093 and that of state

(4,1,7,8,4) is 18548. The state with the minimum value to be selected is state

(4,1,7,8,4), with an estimated tour length of 18548. This value is greater than the

estimated tour length of (4,1,7,4), thus heuristic learning is said to have occurred. The

amount of heuristic learning in this case is 2808. This value is greater than the updated

learning threshold value of 1639. Therefore backtracking is activated and the algorithm

46

backtracks to state (4,1,7,4), (4,1,4) and (4,4) and the estimated tour length is updated

to 18548.

In row 2, the algorithm starts from (4,4) and selects (4,1,4), (4,1,7,4), (4,1,7,8,4). The

learning threshold is reset to the initial learning threshold of 4460. No heuristic

learning has taken place up to this state. From state (4,1,7,8,4), three possible front

states are generated: (4,1,7,8,2,4), (4,1,7,8,5,4) and (4,1,7,8,6,4). It is found that state

(4,1,7,8,5,4) with the estimated tour length of 18464 is the state with the minimum

estimated tour length. As the estimated tour length of the front state is less than the

estimated tour length of its parent state, no heuristic learning has occurred. The state

(4,1,7,8,5,4) is now the front state. From this state, the search process continues. From

the state (4,1,7,8,5,4), two possible front states are generated: (4,1,7,8,5,2,4) and

(4,1,7,8,5,3,4). The state with the minimum estimated tour length is (4,1,7,8,5,3,4).

Once again the estimated tour length of the front state (4,1,7,8,5,3,4) is 18409. This

value is less than the estimated tour length of its parent state, therefore no heuristic

learning has occurred and forward search process continues.

From the front state (4,1,7,8,5,3,4), two possible child states are generated:

(4,1,7,8,5,3,2,4) and (4,1,7,8,5,3,6,4). At this point, the state with the minimum

estimated tour length is state (4,1,7,8,5,3,2,4). This state with estimated tour length of

16964 is selected as the front state, and no heuristic learning has occurred up to this

point. The forward search process continues and there is only one front state generated:

(4,1,7,8,5,3,2,6,4). The estimated tour length of this state is 24122. This value is

greater than the estimated tour length of its parent state (4,1,7,8,5,3,2,4). The heuristic

learning that has taken place is equal to 7158, a value greater than the learning

threshold of 4460. Therefore, the backtracking process is activated and the algorithm

47

backtracks to the root state and its estimated tour length is updated to 19348. With this

new value, row 3 shows the next search process. The process continues until the

solution of (4,8,5,3,2,6,7,1,4) with the estimated tour length equals to 22300 is found.

3.6 Conclusion

In this chapter, the main features of Search and Learning A* algorithm have been

examined. The formulation of a traveling salesman problem into a state space problem

is achieved by defining the state, state transition operator and state transition cost. The

contribution of this chapter is the development of the state-space transformation

process so that heuristic learning algorithm of SLA* can be applied to construct tours

dynamically. This approach of constructing tour allows the tour configuration to

change during the tour construction process. This is made possible by the backtracking

and heuristic updating processes, which allow cities to be added and deleted during the

tour construction processes. The application of heuristic evaluation function of the

algorithm allows both local and global estimated distance information to be used. This

way SLA*-TSP is not relying on local knowledge alone to build tour. This research

has developed the SLA*-TSP approach which aims to overcome the greedy and

myopic nature of traditional tour construction through the process of dynamic tour

construction. The example presented in this chapter has shown that, the backtracking

and forward search processes have repetitively led to the deletion and addition of cities

from and to the tour through the consideration of both local and the global estimated

distance information.

This chapter has also demonstrated that when the geometric properties of Delaunay

triangulations is incorporated into the search strategy of SLA*-TSP, the performance

48

of SLA*-TSP is greatly enhanced through the reduction of solution space selection.

This is because Delaunay triangulations identify only promising cities to be considered

by a given state, and by ensuring that edges that will not lead to optimal solution are

pruned during the search process.

The SLA*-TSP with learning threshold algorithm was also examined. This approach

produces approximate solution of known quality, and it is particularly useful when the

problem to be solved is too large with respect to computational resources.

49

CHAPTER 4: THE FACTORS INFLUENCING

THE PERFORMANCE OF SLA*-TSP

4.1 Introduction

This chapter discusses the implementation of SLA*-TSP and the experimental results.

SLA*-TSP was written in C++ and implemented using LEDA software library

(Library of Efficient Data Types and Algorithms). LEDA is an object-oriented C++

class library consisting of various combinatorial and geometric data types and

algorithms (Mehlhorn and Naher, 1999). It was applied in this research for defining

data structures, computing Delaunay triangulation, minimal spanning tree and

Euclidean distance between two nodes.

The factors influencing the performance of the SLA*-TSP approach will be

investigated. The investigation will be based on computation experiments, which will

be made on two sets of test problems: selected instances from the TSPLIB library

(Reinelt, 1991) and randomly generated problems. In the computation experiments,

only problems with x- and y-coordinates are tested. All distances are computed using

the Euclidean distance function. The performance of SLA*-TSP algorithm with

learning threshold will also be investigated with these problems.

This chapter is organised as follows. Section 2 discusses the issues in implementation

of SLA*-TSP. In section 3, results of the test problems from TSPLIB library and

randomly generated problems are discussed. The limitations and scope of the

50

experiments are also outlined in this section. In both categories of problems, SLA*-

TSP with and without learning threshold will be applied. The presentations are based

on the results obtained from each category of problems. Analysis and discussions of

the factors influencing the performance of the algorithms are included in this section

too. Finally, the conclusion follows in Section 4.

4.2 Implementation of SLA*-TSP using LEDA

The implementation of SLA*-TSP using LEDA involves the issues of data types.

LEDA is a software library of combinatorial and geometric data types and algorithms

(Mehlhorn and Naher, 1999). It provides a set of basic data types, such as string and

stream, as well as parameterised data types, such as stack, array and list. It also

provides geometric and graph algorithms (such as Delaunay triangulations and

minimal spanning trees) that can be used in this research. It was selected based on its

simplicity in data structure, its ability to be used with C++ compiler and a sizable

collection of data types and computational geometric libraries that can be used. Since

the implementation base of LEDA is C++, therefore SLA*-TSP is also implemented

using C++.

The input of data set is based on x- and y-coordinates of the cities, and the data type

point is used to denote the city in two-dimensional plane. It is represented by Cartesian

coordinates (x,y). The LEDA data types used in the implementation of SLA*-TSP are

parameterised. A parameterised graph denoted by GRAPH is of type graph (the data

type graph consists of a list of nodes and a list of edges) whose nodes and edges

contain additional user-defined data (Mehlhorn and Naher, 1999). A parameterised

graph is used because it can dynamically allow information to associate with new

51

nodes and edges without restriction. This provides greater flexibility and more efficient

access of information stored in the nodes and edges. In the implementation of SLA*-

TSP, the declaration of parameterised graph is in the form of GRAPH<point, int> G.

This creates an instance of G in which a string variable is associated with every vertex

of G and an integer is associated with every edge of G. Delaunay triangulation is

represented as GRAPH<point, int> DT. Minimal spanning tree is computed at the

same time because it is a subgraph of Delaunay triangulation. This data type allows

dynamic generation of Delaunay triangulation and computation of minimal spanning

tree as the search process progresses. Another parameterised data type used in the

program is list, list<E>, where E is the element in the list. It is used to store a

sequence of items. In the implementation, list is used to store the sequence of cities in

the partially completed tour.

The minimum heuristic estimate is stored using the parameterised data type stack,

stack<E>, where E is the element in the stack. A stack uses the principle of last-in-

first-out in which insertion and deletion of the elements only take place at the top of

the stack. The elements stored in the stack is of data type GRAPH<point, int>. With

forward search, the state with the minimum heuristic estimate is put at the top of the

stack. This operation is performed using the operator S.pushQ. When in backtracking,

the top element of the stack is deleted. The operation is performed using the operator,

S.popO which deletes and returns the new top element. This approach is used to keep

track of backtracking and heuristic updating.

Heuristic estimate of a state is only saved after it has been updated during the

backtracking process. The updated heuristic estimate is saved in a lookup table along

with the partially completed tour. This allows the value of the heuristic estimate to be

52

referenced to the state in the search process. For states whose heuristic estimates are

not found in the lookup table, they are calculated using the minimal spanning tree. The

calculated value will be discarded if the proposed path was not used. However, if the

proposed path is encountered again in the search process, the minimal spanning tree

will be calculated again. Appendix A shows the listing of the program for the above

implementation.

4.2.1 Pruning

One of the issues that need to be addressed in applying SLA*-TSP is to reduce the

search space so that it is efficient. The following two approaches are used in the

program to prune away states that are not promising in producing an optimal tour. In

the first approach, when the child states are generated in the forward search, a dead

end state that will not lead to the generation of more subsequent child states is pruned

from the search process. This can happen when the last city added in the partial tour

does not have an unvisited neighbouring edge of Delaunay triangulation. When this

occurs, the child state is pruned from the search space, as the forward search process

cannot be continued.

The second approach is based on the rationale that the shortest closed path through n

nodes is always a simple polygon. Therefore, an optimal TSP tour should not contain

paths that intersect with one another, because intersection of paths will lead to a longer

tour length. Thus in the second approach, when the generated child state results in a

disjoint set of triangulation in the problem (a disjoint set of triangulation is one that

divides the problem into two separate distinct sets of triangulations), then this child

state will be pruned from the search space.

53

To illustrate the first approach, consider the example of 8-city problem in Figure 4.1.

Assume that the current state is (4,7,4). According to Delaunay triangulation, three

possible child states can be generated: (4,7,1,4), (4,7,6,4) and (4,7,8,4). The child state

(4,7,1,4) will be pruned from the search space and only two states (4,7,6,4) and

(4,7,8,4) will be generated as child states, because city 1 does not have any

neighbouring city connected by the edges of Delaunay triangulation to allow forward

search process to continue.

Figure 4.1: Delaunay triangulation of an 8-city problem

The following example explains how the second approach works using the same

problem. Assume that the current state is (4,1,7,8,5,4). Then two possible child states

are to be generated: (4,1,7,8,5,3,4) and (4,1,7,8,5,2,4). The child state (4,1,7,8,5,3,4)

will be pruned, because it will generate the following two child states (4,1,7,8,5,3,2,4)

and (4,1,7,8,5,3,6,4). Each of the child states consists of intersection paths that will not

lead to an optimal tour.

54

4.3 Factors influencing the performance of SLA*-TSP

This section investigates the factors influencing the performance of the SLA*-TSP

algorithm. The computation experiments were made on two sets of test problems:

selected instances from the TSPLIB library (Reinelt, 1991) and randomly generated

problems. All tests were run on a SUN SPARC server 20. Results and discussions

from test problems obtained from TSPLIB will first be presented. This is followed by

results and discussions on randomly generated problems.

4.3.1 Limitation and scope of the experiment

For memory saving purpose, only test problems from TSPLIB that have x- and y-

coordinates are selected, where the distance between two cities is computed using the

Euclidean distance function. The input in this form is required for the computation of

Delaunay triangulations. This has restricted the choice of test problems that can be

selected from TSPLIB. There are only ten problems in the set that have x- and y-

coordinates with problem size less than one hundred nodes. These include problems

with 14, 16, 22, 48, 51, 52, 70, 76 and 96 nodes (there are two problems with 76

nodes). Out of these ten problems, insufficient memory were encountered for problems

that have more than twenty-two nodes. This problem is a result of using lookup table

to store the states and its value of updated heuristic estimates at each backtracking

step, and constrained the experiments to problems of a very small size.

Although the experiments were conducted on relatively small size problems, the aim is

to analyse the results from these problems and investigate the search behaviour of the

approach. Hence, the factors that influence the performance of SLA*-TSP algorithm

may still be applicable to problems of larger sizes.

55

4.3.2 Test problems obtained from TSPLIB

This section presents the empirical test results from the selected problems in TSPLIB.

In this section, the method is first presented. Then, results of SLA*-TSP without

learning threshold are reported. Factors that influence the performance of SLA*-TSP

will be examined as the results are reported. This is followed by presentation of results

obtained from SLA*-TSP with learning threshold.

Method

The four problems that have been tested were named using the convention in TSPLIB

- name follows by the number of cities in the problem. They are BURMA 14,

ULYSSES 16, ULYSSES22 and OLIVER30. The empirical tests consist of running the

algorithm for each starting point and the selection of the shortest tour as the optimal

solution. For comparison purposes, solutions using nearest neighbour heuristic and

Lin-Kernighan heuristic using the Concorde program (Applegate et al, 1998) were

calculated.

SLA*-TSP was first applied to these problems without the learning threshold, then it

was applied with the learning threshold. The learning threshold was set at 10%, 30%,

50%, 70% and 90% of the optimal solution.

Results and discussions

SLA*-TSP without learning threshold

This section presents the empirical test results in terms of computation time and the

solution obtained. Table 4.1 shows the results of the four problems using SLA*-TSP,

nearest neighbour heuristic and the Lin-Kernighan heuristics. The tour length and the

56

C P U time (in seconds) that were obtained using each method are displayed in the table

too. The results in tour length show that the heuristic learning algorithm of SLA*-TSP

produces better solution than the nearest neighbour heuristic, and is better or as good

as that obtained from the Lin-Kernighan heuristic. However, SLA*-TSP performs

poorly in computation time compared with both nearest neighbour and Lin-Kernighan

heuristics.

Problem

BURMA14

ULYSSES 16

ULYSSES22

OLIVER30

SLA*-TSP

Tour length

30.8785

74.1989

75.401

423.741

C P U time
(in sec)

43

782

5222

2033

Nearest-neighbour

Tour length

37.7108

88.5888

90.58963

586.1363

C P U time
(in sec)

0

0

0

0

Lin-Kernighan

Tour length

31.4536

74.1989

76.6657

423.741

C P U time
(in sec)

0.05

0.20

0.40

0.17

Table 4.1: Results of four test problems

The poor performance of SLA*-TSP in computation time can be attributed to dynamic

tour construction and inefficient data retrieval in the program. In SLA*-TSP approach,

a tour is constructed by allowing addition and deletion of cities to and from the tour.

This dynamic tour construction continuously updates along the search process. On the

other hand, nearest neighbour heuristic, which is a greedy approach, does not change

the tour configuration. This is because in the greedy approach, the part of the tour

already built remains unchanged during the tour construction process. Therefore, it can

be seen that dynamic construction of the tour can lead to a better solution. However,

constant updating of the partial tour through the process of backtracking and updating

of heuristic estimates can result in a much higher computation cost. The use of the

lookup table in keeping track of the updated heuristic estimates and its state may have

contributed toward the longer computation time. The size of the lookup table increases

as the search process progresses as more heuristic estimates are updated during the

57

backtracking processes. Although binary search is used in the program to retrieve the

value of the updated heuristic estimates from the lookup table, the retrieval time can

still grow substantially.

The performance of SLA*-TSP is not entirely influenced by the number of nodes

alone. The heuristic estimate is another important factor to consider. This factor can be

measured as the ratio of the initial heuristic estimate of the root state to the optimal

solution. If the ratio is high, then the quality of the heuristic estimate is good, and it

can be expected that fewer backtracking and heuristic updates are necessary.

Otherwise, from a lower base, more backtracking and heuristic updates will be

required before the optimal solution is found. Therefore if the initial heuristic estimate

is too much under-estimated, a longer computation time is to be expected. Table 4.2

shows a comparison of the number of heuristic updates in relation to the quality of the

heuristic estimate, which is measured as the ratio of initial heuristic estimates of the

root state to the tour length of the optimal solution. Column 2 shows the number of

heuristic updates required and column 3 shows the ratio: 0.65, 0.63, 0.61 and 0.80

respectively.

Problem

BURMA14

ULYSSES 16

ULYSSES22

OLIVER30

Number of heuristic updates

5601

101005

425565

96446

Ratio = initial heuristic estimate of
the root state/optimal solution

0.65

0.63

0.61

0.80

Table 4.2: Ratio of initial heuristic estimate of root state to the tour length

In Table 4.2, the number of heuristic updates required by OLIVER30 is 96446, and the

number of heuristic updates required by ULYSSES 16 and ULYSSES22 (which have

fewer nodes compare to OLiVER30) are 101005 and 425565 respectively. The quality

58

of the heuristic estimates of the latter two problems (0.63 and 0.61, respectively) is

relatively poor compared to OLIVER30, which has a ratio of 0.80. From the CPU

time in Table 4.1, one can see that it takes a shorter time for OLIVER30 to reach

optimal solution.

When the initial value of heuristic estimate is high, then it will take fewer heuristic

updates to reach the optimal solution. Therefore, one can conjecture that the quality of

the heuristic estimate can influence the performance of the algorithm.

SLA*-TSP with learning threshold

This section reports the results of the above four problems when SLA*-TSP with

learning threshold is applied. Table 4.3 shows the results with 10%, 30%, 50%, 70%

and 90%o of learning thresholds. Column 2 shows the levels of the learning threshold

expressed in percentage form as well as the actual value of learning threshold applied

in each level. Column 3 shows the CPU time (in seconds) required to find the solution.

Column 4 shows the number of heuristic updates it takes to reach the solution, and

column 5 shows the percentage of saving in heuristic updates, which is calculated as

NumberOfHeuristicUpdateWithLearningThreshold . f , f
NumberOfHeuristic Update WithoutLeaningThreshold

each learning threshold is not displayed. Instead, the penalty on the solution, which is

,, SolutionFound - OptimalSolution. . , , . . ,
expressed as (1H -), is shown and is given in column

OptimalSolution

6. In Table 4.3, the first row of each problem (rows with learning threshold = 0%) has

been included for comparison purposes.

59

Problems

BURMA14

ULYSSES 16

ULYSSES22

OLIVER30

Leaning threshold
%

0%
10%
30%
50%
70%
90%
0%
10%
30%
50%
70%
90%
0%
10%
30%
50%
70%
90%
0%
10%
30%
50%
70%
90%

actual
value

0
3.09

9.26

15.44

21.61

27.79

0
7.42

22.26

37.10

51.94

66.78

0
7.54

22.62

37.70

52.78

67.86

0
42.37

127.12

211.87

296.62

381.37

CPU
time

(in sec)

43
9
4
0
0
0
782
286
19
2
2
2
5222

584
4
0
0
0
2033

590
9
11
11
11

Number of
heuristic
updates

5601

1621

34
51
0
0
101005

36282

1739

168
168
168
425565

40191

122
9
1
0
96446

19096

232
443
507
507

Saving in heuristic
updates with learning

threshold

-

71%
99%
99%
100%

100%

-

64%
98%
100%

100%

100%

-

91%
100%

100%

100%

100%

-

80%
100%

100%

99%
99%

Penalty on the
solution

1.00

1.03

1.28

1.28

1.15

1.15

1.00

1.01

1.19

1.07

1.07

1.07

1.00

1.02

1.04

1.09

1.07

1.07

1.00

1.09

1.21

1.16

1.13

1.13

Table 4.3: Results of all four problems when learning threshold is applied

It is apparent that when the learning threshold is applied, the number of heuristic

updates required to reach the solution is significantly reduced compared with the case

where learning threshold is not applied. The savings obtained by the four problems

range from 64% to 91% and 98% to 100% when learning threshold of 10% and 30%

are respectively applied. With a 30% learning threshold, the saving range from 90% to

100%. It is interesting to compare the saving of heuristic updates and penalty on the

solution. At 10% learning threshold, for BURMA 14, the saving is 71%, but the penalty

on the solution is only 3%. Similarly for problem ULYSSES 16, the saving is 64%, and

the penalty on the solution is only 1%. Similar trends can be observed for problems

ULYSSES22 and OLIVER30. It can be seen that the number of heuristic updates

60

decreases as the learning threshold becomes larger. In each case, the saving in heuristic

updates is quite significant while the penalty on solution is relatively small. SLA*-TSP

with learning threshold could produce an approximate solution that is within the range

of the specified threshold from optimal solution. Results from the experiment show

that the penalty on the solution is within the range of the learning threshold set. In each

case the number of heuristic updates is reduced with the increase in learning threshold.

The saving of the heuristic updates can be attributed to the reduced frequency in

responding to the backtracking process, which is not invoked until the cumulative

heuristic update reaches the prescribed learning threshold. Therefore, one can

conjecture that if an approximate solution is sufficient for a problem, then SLA*-TSP

with learning threshold may be applied with reasonable computation time and

computer memory resources. This approach may be useful when one is faced with

large and complex problems that require excessive computation resources.

Another observation that can be made from solutions with learning threshold is that the

solution seems to plateaus after a certain range of learning threshold. Figure 4.2 shows

the graph on penalty on the solution with respect to learning thresholds. It can be seen

that the quality of the solution deteriorates as the learning threshold increases.

However, the solution does improve slightly and then plateau off as the learning

threshold increases.

61

1.35 n

1.30

1 1.25 -
o
CO

S 1.20
I 1-15 -
I 1.10
Q.

1.05

1.00 «•<-=
0%

BURMA14 - B — ULYSSES16 ULYSSES22 -M~OLIVER30

Figure 4.2: Graph showing penalty on the solution in term of learning threshold

In the current implementation of the program, only small sized problems can be solved

within reasonable time. Large sized problems could not be solved within reasonable

computation time due to inefficient memory handling. Table 4.4 shows the results of

running SLA*-TSP with learning threshold for seven test problems from TSPLIB. The

optimal solution for each problem is given by TSPLIB. It can be seen that the

computation time has been greatly reduced and the solution found is within the range

of the learning threshold. The results from Table 4.4 indicate that the solution plateaus

when the learning threshold reaches around 70% of the optimal solution. By

incorporating learning threshold to the SLA*-TSP approach, the algorithm was able to

find an approximate solution to the problem with a desired range of certainty.

In summary, the SLA*-TSP with learning threshold approach can improve the

computation time for large-sized problems at the sacrifice of the optimal solution. The

advantage in using this approach is the maximum amount of sacrifice is known before

hand.

«SL

20% 4 0 % 6 0 %
Learning threshold

80% 100%

62

Problem

ATT48

EIL51

BERLIN52

EIL76

RAT99

EIL101

LIN105

Learning
threshold

30%
50%
70%
90%
20%
30%
50%
70%
90%
30%
50%
70%
90%
30%
50%
70%
90%
30%
50%
70%
90%
30%
50%
70%
90%
55%
60%
70%
90%

CPU time (in sec)

17
12
15
15
34
41
2
2
2
224
55
10
6
169
95
96
96
10
11
10
10
13
14
11
11
189
192
191
190

Number of heuristic
updates

157
130
135
135
356
691
0
0
0
3699

832
112
49
4055

2327

2346

2346

10
6
0
0
22
45
0
0
7393

7512

7516

7388

Penalty on the solution

1.27

1.30

1.29

1.29

1.15

1.12

1.15

1.15

1.15

1.22

1.33

1.31

1.33

1.13

1.13

1.13

1.13

1.27

1.28

1.27

1.27

1.22

1.22

1.24

1.24

1.37

1.40

1.40

1.37

Table 4.4: Computation results for selected TSPLIB problem instances

4.3.3 Randomly generated problems

The aim of this experiment is to investigate the performance of SLA*-TSP in relation

to the pattern in which the nodes are distributed in the Euclidean plane. The

investigation will be conducted using randomly generated problems. The clusters can

be dispersed and well separated, in which case the distance between different clusters

(called inter-cluster distance) can be significant. On the other hand, the clusters can be

close to one another, in which case the inter-cluster distance is insignificant.

63

In this section, the method is first presented. Then, the results of SLA*-TSP without

learning threshold are reported. Discussion of results will also be included. This is

followed by presentation of results using SLA*-TSP with learning threshold.

Method

The test approach is adapted from Laporte et al (1996), and the test problems consist of

nodes located within a (0,100) square. The square is divided into 16 equal rectangles

(see Figure 4.3). Six nodes are randomly generated within each rectangle according to

a uniform distribution. The nodes were selected from four rectangles within the square

and each test problem consists of twenty-four nodes. Each problem is named using the

number matching each rectangle in the square. For example, pl_4_16_13 refers to

nodes obtained from rectangles 1,4, 16 and 13.

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

Figure 4.3: Structure of problems tested

Five problems have been selected in this experiment: pl_6_ll_16, p3_7_ll_15,

pl_2_3_4, pl_8_9_16, pl_4_16_13. Each problem shows a different characteristic in

which the clusters are located in the square. For example, the nodes in problems

pl_4_16_13 and pl_8_9_16 show a characteristic of clusters that are dispersed and

well separated. On the other hand, the clusters in problems pl_2_3_4, p3_7_l 1_15 and

pl_6_H_16 are located close to one another. In terms of distance between clusters,

problems pl_4_16_13 and pl_8_9_16 both demonstrate significant inter-cluster

distance, comparing to the other three problems.

64

Results and discussions

SLA*-TSP without learning threshold

This section presents the test results in terms of CPU time, number of heuristic updates

and the quality of the heuristic estimate, which is expressed as the ratio of the initial

heuristic estimate of the root state to the optimal solution. The results shown were

averaged over ten different instances for each type of problem. Table 4.5 shows the

results obtained when SLA*-TSP without learning threshold is applied. Column 2

shows the CPU time in second, column 3 shows the number of heuristic updates

required, and column 4 shows the ratio.

Problem

pi 6 11 16

p3 7_11_15

pi 2 3 4

pi 8 9 16

pl_4_16_13

C P U time
(in sec)

4675

4747

3909

474

141

Number of heuristic
updates

321201

295200

257204

26527

7159

Ratio = initial heuristic estimate of the root
state/optimal solution

0.5896

0.6547

0.6280

0.6908

0.7564

Table 4.5: Results without learning threshold

It is obvious that the ways nodes are grouped in different clusters can influence

Delaunay triangulations. Minimal spanning tree is a subset of Delaunay triangulation

(Aurenhammer, 1991), thus the behaviour of clustering can influence the quality of the

heuristic estimate, which is computed using minimal spanning tree. Figure 4.4 and 4.5

show Delaunay triangulations for problems pl_4_16_13 and pl_2_3_4 respectively.

These two problems were selected to contrast the Delaunay triangulations formed. The

nodes in problem pl_4_16_13 are grouped into distinct and well-separated clusters.

The Delaunay triangulations produced can be described as 'wide' and 'fat'. On the

other hand, the clusters in problems pl_2_3_4 are close to one another, and the

65

Delaunay triangulations produced can be described as 'elongated', 'narrow' and

'skinny'. The descriptions used to described Delaunay triangulations as 'fat' and

'skinny' follow the convention used in Aurenhammer (1991), de Berg et al (1997) and

O'Rourke (1998).

Figure 4.4: Delaunay triangulation for pi 4 16 13

Figure 4.5: Delaunay triangulation for pi 2 3 4

The last column of Table 4.5 shows that the ratio for problems pl_4_16_13 and

pl_8_9_16 is higher, comparing to the other three problems. In addition, the number

of heuristic updates for these two problems is comparatively smaller comparing to the

66

other three problems. This result can be explained by the way the nodes are grouped

into clusters. The clusters in problems pl_4_16_13 and pl_8_9_16 are more dispersed

and well-separated. In contrast, the clusters in each of the problems pl_2_3_4,

p 1_6_11 16 and p3_7_ll_15 are situated near to one another. In problems where

clusters are distinct and well-separated, the edges that connect different clusters could

be longer. These long edges between the clusters would form part of the minimal

spanning tree, because minimal spanning tree must connect all nodes. Therefore, when

the clusters are dispersed and located far from one another, it will result in a higher

heuristic estimate. On the other hand, in problems where clusters are situated near one

another, the edges between clusters are shorter. This could result in a lower value of

heuristic estimate. When the heuristic estimate is comparatively low, it will take more

heuristic updates and backtracking to reach the optimal solution. Therefore, one can

conjecture that SLA*-TSP approach is suitable for problems that exhibit distinct and

well-separated clusters. This is because long edges between the clusters will always

form part of the edges in minimal spanning tree, and it will result in a higher value of

initial heuristic estimate of the root state, which can lead to better performance.

Reinelt (1992) shows that Delaunay triangulation can provide a better candidate set for

problems in which nodes are located in several clusters. This is because edges that

connect different clusters are included in the triangulations. This research uses

Delaunay triangulations to define the candidate edge set and the results from this

experiment are consistent with the findings from Reinelt (1992).

SLA*-TSP with learning threshold

This section presents the results of the above five problems when SLA*-TSP with

learning threshold is applied. The learning threshold is applied at five different levels:

67

1 0 % , 30%), 50%), 70%) and 90%. The results presented here were averaged over ten

different instances for each problem, and are reported in terms of number of heuristic

updates, computation time and the quality of the heuristic estimate. Table 4.6 shows

the number of heuristic updates and saving in heuristic updates when learning

threshold is applied. For each problem, the first column shows the number of heuristic

updates, and the second column shows the saving achieved (expressed in percentage).

Tables 4.7 and 4.8 show the CPU time and the solution quality respectively. In Tables

4.6 and 4.7, results without learning threshold (i.e. rows with learning threshold = 0%)

are included for comparison purposes.

The quality of the solution did not suffer (penalty on the solution is zero) when 10% of

the learning threshold is applied, whereas the savings in heuristic updates range from

60% to 77%). When 30% of the learning threshold is applied, penalty on the solution

range from 2% to 5% with the savings ranging from 89% to 98%. In each problem,

100%) of saving is achieved in terms of heuristic updates when the learning threshold

reaches 50%. In terms of penalty on the solution, it can be seen that the penalty of

solution ranges from 8% to 17% at 50% of learning threshold. Therefore, in each case,

the saving in terms of heuristic updates and computation time are quite significant.

Learning
Threshold

0%
10%
30%
50%
70%
90%

Heuristic updates

pi 2 3 4

Number

257204

59417
r 5812

83
20
6

Saving
-

11%

98%
100%
100%
100%

pl_6_ll_16
Number Saving

321201
74912
4550

300
49
42

-

71%
98%
100%
100%
100%

p3_7_ll_15
Number Saving
29520d
70190
2971
276
59
58

76%
99%
100%
100%
100%

pl_4_16_13
Number
7159
2339
164
243
10
2

Saving
-

67%
98%
97%
100%
100%

pl_8_9_16
Number
26527
10695
2855
1017
114
41

Saving
-

60%
89%
96%
100%
100%

Table 4.6: Number of heuristic updates and saving (expressed in %) with different
levels of learning thresholds

68

Learning
Threshold

0%
10%
30%
50%
70%
90%

CPU time (in sec)

pl_2_3_4

3909

841.9

116.7

2.5
0.6
0.4

pl_6_ll_16

4675

1132.4

87.3

7.6
1.7
1.5

p3_7_ll_15

4747

1116

67.3

6.6
1.5
1.5

pl_4_16_13

141
47.4

5.4
6.9
0.6
0.5

pl_8_9_16

474
197.7

61.5

24.2

2.8
1.2

Table 4.7: C P U time with different levels of learning thresholds

Learning
Threshold

10%
30%
50%
70%
90%

Solution Quality

pl_2_3_4

1.00

1.04

1.11

1.08

1.11

pl_6_ll_16

1.00

1.02

1.08

1.11

1.08

p3_7_ll_15

1.00

1.02

1.17

1.18

1.19

pl_4_16_13

1.00

1.03

1.09

1.07

1.10

pl_8_9_16

1.00

1.05

1.10

1.09

1.09

Table 4.8: Quality of solution with different levels of learning thresholds

Figures 4.6, 4.7 and 4.8 show the relationship between different levels of learning

thresholds with respect to the number of heuristic updates, CPU time and penalty on

the solution respectively. The graph shows that computation time and heuristic updates

decrease significantly with the increase in learning threshold. The quality of the

solution initially deteriorates when the learning threshold is applied. However, the

solution generally plateaus when the learning threshold reaches about 50% of the

optimal solution (with the exception of pl_4_16_13). The results again show that

SLA*-TSP with learning threshold approach can improve the computation time if the

exact solution is not required.

69

m 350000
B

•g 300000
Q.
3

.y 250000
g 200000
.c
° 150000

E 100000

50000

0% 10% 30% 50%

Learning threshold

70%
—m

90%

-•—1_2_3_4 —«—1_6_11_16 3_7_11_15 —*—1_4_16_13 —*— 1_8_9_16

Figure 4.6: The number of heuristic updates vs. learning threshold

5000 n
4500

-. 4000 i
g 3500

.£ 3000
<D 2500
~ 2000 -

2 150° I
O 1000 -j

500

0% 20% 40% 60% 80% 100%

Learning threshold

-•— p1_2_3_4 —•—p1_6_11_16 p3_7_11_15 ~~»*™p1_4_16_13 —*— p1_8_9_16

Figure 4.7: Performance of CPU time vs. learning threshold

70

20°/< 40% 60%
Learning threshold

80% 100%

-•— p1_2_3_4 — m — p1_6_11_16 p3_7_11_15 —X—p1_4_16_13 —*—p1_8_9_16

Figure 4.8: Quality of solution vs. learning threshold

4.4 Conclusion

In this chapter, the process of implementation of the SLA*-TSP approach is discussed.

The SLA*-TSP algorithm has been implemented using L E D A in C++. The major

weakness of the current implementation is inefficient memory handling. It is believed

that if the data structures and the current design of the lookup table can be improved,

then problems of larger size can be solved. Further investigation needs to carry out to

improve the design of data structures so that memory can be handled more efficiently.

One possible improvement to the memory management is to use the tree structure, and

not the lookup table, to store the state and the value of the updated heuristic estimate.

The results show the main factor that influences the performance of SLA*-TSP is the

value of the initial heuristic estimate. If the initial value of the heuristic estimate of the

root state is close to the optimal solution, then fewer backtracking and heuristic

updates will be required to reach the optimal solution. The way nodes are grouped into

clusters in the Euclidean plane also influences the quality of the heuristic estimate. A

71

better performance of SLA*-TSP can be achieved for problems that exhibit distinct

and well-separated clusters, because this type of problem produces a higher quality of

heuristic estimate. Therefore, the closer the value of the heuristic estimate is to the

optimal solution, the better the performance of SLA*-TSP.

Finally, the results also show that SLA*-TSP with learning threshold approach can

improve the computation time for large-sized problems at the sacrifice of the quality of

the solution. By incorporating learning threshold to the SLA*-TSP approach, the

algorithm is able to find an approximate solution to the problem with a known quality.

The advantage of this approach is that the maximum amount of sacrifice is known

before hand. This feature is particularly important in practical situations when the

exact solution is not required but the speed of computation is critical.

72

CHAPTER 5: A RESTRICTIVE SEARCH

APPROACH

5.1 Introduction

The SLA*-TSP approach developed in Chapter 3 allows the tour configuration to

change during the tour construction process. The use of Delaunay triangulation as a

search strategy allows promising edges to be identified from which the state transition

operator takes edges with priority. However, this approach still leads to a

comparatively large search space. This is evidenced in the small sized problems that

can be solved in Chapter 4. This chapter discusses the implementation of a restrictive

search approach that could further reduce the number of candidate edges during the

search process. This represents an improvement over the search strategy using the

Delaunay triangulations, which was defined in Chapter 3. The approach is to define the

candidate edge set using edges from only one triangle selected from Delaunay

triangulations. The criteria for selecting the triangle are based on the concept of

proximity in Voronoi diagram, the direction of the tour and the search direction of the

triangle.

This chapter is organised as follows. Section 2 explains the rationale behind the factors

that can be used to further reduce the search space. Section 3 presents the restrictive

SLA*-TSP algorithm that incorporates the restrictive search strategy. Three examples

are provided to demonstrate the implementation of this approach in Section 4, and

Section 5 concludes the chapter.

73

5.2 Identifying proximity and utilising knowledge of

direction in tour construction

This section examines the rationale behind the development of a restrictive search

approach which is used as a constrained search strategy to further reduce the search

space in SLA*-TSP approach. The method selects only one triangle from Delaunay

triangulations using the proximity properties of Voronoi diagram, the travelling

direction of the tour and the search direction of the triangle. Before these factors are

examined, the following terms will be used throughout the chapter. An external node

is a node that is on the convex hull, and an internal node is one that is not on the

convex hull. A node is located to the right side of the current node if its x-coordinate is

larger than the x-coordinate of the current node, and a node is to the left side of the

current node if its x-coordinate is smaller than the x-coordinate of the current node.

The proximity property of Voronoi diagram presents another useful concept in

reducing the search space. As pointed out in Chapter 3, Delaunay triangulation and

Voronoi diagram are dual structures. This means both contain the same information

although they are represented in different forms (O'Rourke, 1998). As discussed

previously, Delaunay triangulation is used to identify promising candidate edges

during the search process, therefore Voronoi diagram should contain similar

information that can be used to identify the promising candidate edge set. A Voronoi

diagram is a computational geometric structure that represents proximity information

about a set of points (Aurenhammer, 1991). The Voronoi diagram divides the nodes

into a set of polygons (called sites) of which the boundaries are perpendicular bisectors

between two nodes. The Voronoi polygon around each site consists of nodes that lie

closer to that site than to any other site. Finding the nearest neighbouring node means

74

identifying the boundary of the Voronoi region, because any point that lies inside the

region is its nearest neighbour (O'Rourke, 1998). Thus the boundary of the Voronoi

region can be used to identify nodes that are closer to that site than to others. Using

this principle, we can construct Voronoi diagram with only external nodes. This way,

the proximity information can be used to identify internal nodes that are nearer to one

particular external node than another.

A reduced candidate edge set called proximity candidate edge set can be defined as

nodes that are located both in the candidate edge set derived from Delaunay

triangulation (as explained in Chapter 3) and candidate edge set derived from Voronoi

diagram. The intersection of these two sets is the proximity candidate edge set, which

can be used to select candidate neighbouring city to be included in the tour with

priority. If there is no other internal node in the same Voronoi region as the external

node, then the intersection of the two sets is null. In this case, let the proximity

candidate edge set to be the same as the candidate edge set from Delaunay

triangulation for that node. This procedure is only applied to external nodes because

the Voronoi diagram is constructed using the external nodes only. For all other internal

nodes, the proximity candidate edge set is the same as that defined in Chapter 3, which

is based on the edges derived from Delaunay triangulation. The procedure of finding

the proximity candidate edge set is given in Figure 5.1.

75

procedure find_proximity_candidate_edge_set

begin

1. Apply the algorithm of Delaunay triangulation to all nodes in the problem. For each node x,
if node y is connected to node x via the edge of Delaunay triangulation, then y is included in
the candidate set for node x. Call this candidate edge set Dx.

2. Apply the algorithm of the Voronoi diagram to find the Voronoi regions for external nodes
only.

3. For each external node x on convex hull, if internal node y is in the same Voronoi region as
x, then y is included into the Voronoi candidate edge set for x. Call this candidate edge set
Vx.

4. If no other internal node is in the same Voronoi region as x, then let Vx = 0.

5. For each external node x, find the intersection of Dx and Vx, {Dx n Vx}. Call this the
proximity candidate edge set Px.

6. IfPx = 0, then let PX = DX.

7. For all other internal node y, let Py = Dy.

end

Figure 5.1: Find proximity candidate edge set procedure

Figure 5.2 shows an 8-city problem, which will be used to explain how the procedure

of find_jproximity_candidate_edge_set works. Figure 5.3 shows the Voronoi diagram

that is constructed using external nodes (1, 4, 3, 6, 7). Figure 5.4 shows the diagram

that combines Figures 5.2 and 5.3. In this diagram, the boundary of Voronoi region is

displayed in bold. To demonstrate how the above procedure works, consider node 3.

Based on the edges of Delaunay triangulation its candidate edge set is D3 = {2, 4, 5,

6}. Its candidate edge set using the proximity approach of Voronoi diagram as

explained above is V3 = {5, 2, 8}. Therefore the proximity candidate edge set P3 = {D3

n V3} = {2, 5}. Nodes 4 and 6 are in the candidate edge set derived from Delaunay

triangulation, however they are not in the same Voronoi region as node 3. Although

node 8 is in the same Voronoi region as node 3, but it is not in the candidate edge set

D3, therefore it will be discarded. This shows that only nodes 2 and 5 will form the

proximity candidate edge set for node 3, and the number of promising neighbouring

nodes to be selected during the state transition process is reduced from four in D3 to

76

two in P3.

Figure 5.2: Delaunay triagulation of an 8-city problem

Figure 5.3: Voronoi diagram for external nodes only

Figure 5.4: Combined Delaunay triagulation and Voronoi diagram

The second factor to consider is the travelling direction of a given tour. It is known

that in any optimal TSP tour, nodes that are located on the convex hull are visited in

77

the order in which they appear on the convex hull boundary. Otherwise, it will contain

intersection of paths that will not lead to optimal solution (Lawler et al, 1985; Reinelt,

1994; Cesari, 1996). One of the properties of Delaunay triangulation is, its boundary

forms the convex hull (Aurenhammer, 1991). Thus for a node on the boundary of

convex hull, it is joined to two other neighbouring nodes on the convex hull through

the edges of Delaunay triangulation. Using the search strategy as defined in the SLA*-

TSP approach in Chapter 3, both edges are included for consideration during the

search process. However, it is only necessary to consider only one of these two nodes,

depending on the direction the tour travels. If the tour travels in a clockwise direction,

then it is more likely that this node will go to the node on its left side, and not to the

node on its right side. Similarly if the tour travels in an anti-clockwise direction, then it

will travel to the node on its right side, and not to its left. In this case, the node to its

left can be pruned from the search space.

The example in Figure 5.2 is used to illustrate the above idea. In this example, the

convex hull is made up of nodes (1, 4, 3, 6, 7). Each node on the convex hull is

connected to two other nodes on the boundary of the convex hull. At node 3, it is

joined to nodes 4 and 6 through the edges of Delaunay triangulation. Node 4 has its x-

coordinate smaller than node 3, and is to the left of node 3; node 6 is hence located to

the right of node 3. As explained above, one of these nodes can be pruned from the

search space depending on the direction the tour travels. If the direction the tour travels

is anti-clockwise, then node 3 is likely to travel to node 6, and it is not necessary to

consider node 4. On the other hand, if the direction of the tour is clockwise, node 3 can

only travel to node 4, rather than node 6. This way only one of the nodes needs to be

selected during the search process and the other node can be excluded from the search

space.

78

A s discussed above, some nodes can be discarded from the search space depending on

the direction the tour travels. The restrictive search approach proposed in this chapter

is designed to select the candidate neighbouring city via the edges of only one triangle

from the Delaunay triangulations. The triangle to be selected depends on the direction

the tour travels. The following rule can generally be applied to assist in identifying the

triangle. Before the procedure is examined, the following terms will be defined first. A

node can be divided into quadrants, and they are labelled as first, second, third and

fourth in a clockwise direction (see Figure 5.5). A right-to-left order refers to searching

the triangle from the current node by travelling to the node on its left. A left-to-right

order refers to searching the triangle from the current node by travelling to the node on

its right.

4th
quadrant

Anti- clo ckwis e
direction

3rd
quadrant

1st
quadrant

current
node

>*

2nd
quadrant

Clockwise
direction

<C 1 O
right-to-left order left-to-right order

Figure 5.5: Direction of searching for triangle

The procedure to search for the triangle is based on the overall direction of the tour:

clockwise or anti-clockwise. Assuming the case where the direction of travel is

clockwise, if there exists candidate neighbouring nodes to the left of the current node,

then the search of the triangle will be made in a right-to-left order from the third

quadrant in a clockwise direction. Otherwise, the search will be carried out in a left-to-

right order starting from the first quadrant in a clockwise direction if the candidate

79

neighbouring nodes are to its right. In the other case where the direction of travel is

anti-clockwise, if there are candidate neighbouring nodes to its right, then the search of

the triangle is made in a left-to-right order starting from the second quadrant in anti

clockwise direction. Otherwise, the search is carried out in a right-to-left order starting

from the fourth quadrant in anti-clockwise direction if there are candidate

neighbouring nodes to its left.

The following 4-city example shown in Figure 5.6 is used to explain the above idea. If

the tour is travelling in a clockwise direction and the tour starts with node 2, then the

complete tour will be 2-1-4-3-2. On the other hand, a tour that is travelling in an anti

clockwise direction will visit the nodes in the order of 2-3-4-1-2. In both cases, the

tour is the same however the order the cities travel is different. Thus if the tour starts

with node 2 and the tour travels in a clockwise direction, then the search of triangle

will be performed in a right-to-left manner from the third quadrant because there is one

node to the left of node 2. This means the search of the next node to be added to node

2 will begin from the third quadrant of node 2 in a clockwise direction. This way it will

select neighbouring nodes based on triangle 2-1-4.

Figure 5.6: Example 1 to illustrate the search direction

It is important to note that it is the overall direction of the tour that decides which way

to search for the candidate neighbouring nodes. To illustrate this point, assuming the

tour now starts at node 4 and the direction of the tour is clockwise (see Figure 5.7).

80

There are neighbouring nodes on both sides of node 4, which of the above rule should

be applied? In this case, the search should begin from the first quadrant of node 4, and

not the third quadrant, in a clockwise direction. If the search were to begin from the

third quadrant, then the tour formed is 4-1-2-3-4, which travels in anti-clockwise

direction. On the other hand, by starting the search from the first quadrant, then the

tour formed is 4-3-2-1-4, which is in a clockwise direction.

Figure 5.7: Example 2 to illustrate the search direction

Finally, the question still remains as to which triangle from Delaunay triangulation is

to be selected during the tour construction process. It is reasonably clear that if

possible, one should avoid long edges when searching for optimal tour, because too

many long edges in the tour will not lead to shorter tour. Therefore the proximity

candidate edge set provides useful information that can be used in identifying the

triangle. Convex hull provides a good initial subtour, and internal nodes inside the

convex hull can be inserted between the external nodes to form a tour in the order in

which the tour travels along the boundary of the convex hull. If there are internal nodes

between two external nodes, then it is clear that they will be inserted between the

external nodes by following the direction of the tour. By using the characteristic of the

convex hull described above, and at the same time, taking the advantage of direction of

travels, it is proposed in this research to select the first triangle (by following the

search direction as defined above) that has both neighbouring nodes in the proximity

81

candidate edge set, and both nodes must not have been selected before. If the triangle

contains nodes that have been selected before, then the search will continue to the next

adjoining triangle until a triangle that satisfies the above condition is found. In the

event no triangle is found, then it is required to start the search process again to find

the first triangle that has at least one of its neighbouring nodes in the proximity

candidate edge set. The procedure to find the triangle is summarised in procedure

find_triangle in Figure 5.8.

procedure find_triangle

begin
1). For each node i, find proximity candidate edge set P; using procedure

find_j>roximity_candidate_edge_set.

2). For each node, divide the node into four quadrants. In a clockwise direction name the
quadrants: first, second, third and fourth.

3). Determine the direction of the tour: clockwise or anti-clockwise.

4). If the direction of the tour is clockwise, do rule 1 or 2:
Rulel
If there are more unvisited candidate neighbouring nodes to its left, start the
search in a right-to-left order from the third quadrant.
Rule 2
If there are more unvisited candidate neighbouring nodes to its right, start the
search in a left-to-right order from the first quadrant.

G o to step (6).

5). If the direction of the tour is anti-clockwise, do rule 3 or 4:
Rule 3
If there are more unvisited candidate neighbouring nodes to its right, start the
search in a left-to-right order from the second quadrant.
Rule 4
If there are more unvisited candidate neighbouring nodes to its left, start the
search in a right-to-left order from the fourth quadrant.

G o to step (6).

6). Let i be the last city added to the tour, follow the search direction defined above to find
the first triangle that has both candidate neighbouring nodes in P;. If not found, then
return to start the search process again to find the first triangle that has at least one
candidate neighbouring node in Pj.

end

Figure 5.8: Procedure of find triangle

The procedure to find triangle as described above is simple in concept. However we

may face a situation where sub-optimal solution is obtained because a very limited

82

number of candidate edges are considered during the search process. It is possible that

in situation where there are a large number of internal nodes grouped near to one

another, the rules as defined in the procedure find_triangle may not be that easy and

straightforward to apply. In circumstances like this, it would be advantageous to

include more candidate neighbouring nodes from more than one triangle so that all

promising edges that are likely to be in the optimal tour are not omitted during the

restrictive search process. Therefore, it is suggested that the search for triangle should

be augmented to include all triangles either to its left or right depending on the

direction the tour travels. This way, the overall direction of the tour still plays an

important role in deciding which triangles are to be selected. The rule to search for the

triangle may be modified as follows when one wants to augment the search space to

include candidate neighbouring nodes from more than one triangle. If the tour travels

in a clockwise direction, then start the search for triangles in a left-to-right manner so

that all triangles located to its right are selected. Similarly, if the tour travels in an anti

clockwise direction, then start the search in a right-to-left manner so that all triangles

to its left are included for consideration. This is a cautious approach to ensure all

promising edges that are likely to form the optimal tour are not excluded from

consideration during the tour construction process. It is necessary to maintain a

balance between reducing the search space and at the same time ensuring that all

possible promising neighbouring nodes are included for consideration during the

search process.

The search space of the restrictive search approach proposed in this chapter is much

smaller comparing to the approach of SLA*-TSP in Chapter 3. By combining the

properties associated with the proximity concept of Voronoi diagram, the direction of

the tour and the way the triangle is searched, together with the characteristic of optimal

83

tour and convex hull, the restrictive approach is able to consider only neighbouring

nodes that are most likely to result in optimal tour.

5.3 Restrictive SLA*-TSP approach

This section presents the modified procedure of SLA*-TSP approach by incorporating

the procedure for finding proximity candidate edge set and triangle as described in

Section 5.2. The step-by-step application procedure is the same as that presented in

Chapter 3, except steps 0 and 4. Step 0 is replaced with procedure

find_j)roximity_candidate_edge_set to find the candidate neighbouring nodes. Step 4

of the algorithm has been modified, by including the procedure find_triangle as part of

the search strategy. The modified procedure of the SLA*-TSP that includes the new

search strategy as defined above is called the restrictive SLA*-TSP approach, and is

given below:

Let Si be the 1th state with its tour Pi(l ,2,...,i,l), where 1 is the city of origin and i

is the last city of the tour. Its heuristic estimate h(i) is the minimum

spanning tree of the remaining (n-i) cities. Si is the goal state when i = n.

d(i,j) be the Euclidean distance between city i and city j.

H(i) be the estimated tour length for Si, which consists of the tour Pi and

h(i).

Step 0: Apply procedure find_proximity_candidate_edge_set.

Step 1: Locate the city of origin as the one with the smallest x-coordinate; choose

the city with the largest y-coordinate to break ties.

84

Step 2: Put the root state on the backtrack list called O P E N .

Step 3: Call the top-most state on the OPEN list Sj. If Sj is the goal state, stop.

Otherwise continue.

Step 4: Use the search strategy defined in procedure find_triangle to find the (i+1)

city with min{[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,i+l)+d(i+l,l)] +h(i+l)} from

neighbouring cities of i; break ties randomly. If no neighbouring city of i can

be found, go to step 6.

Step 5: If {[d(l,2)+d(2,3)+...+d(i-l,i)+d(i,l)] + h(i)} > min{[d(l,2)+d(2,3)+...+d(i-

l,i)+d(i,i+l)+d(i+l,l)] + h(i+l)}, add Si+i to the OPEN list as the top-most

state; otherwise replace h(i) with [d(i,i+l)+d(i+l,l) + h(i+l) - d(i,l)].

Step 6: Remove Si from OPEN list if it is not the root state.

Step 7: Go to step 3.

5.4 Examples

Three examples are included in this section to demonstrate the implementation of the

restricted SLA*-TSP approach. The first example is the 8-city problem, which was

given in Chapter 3. The second example is a 14-city problem (BURMA 14) that was

used in the computation experiment in Chapter 4. The third example is a randomly

generated 12-city problem. Finally a discussion in terms of performances with the two

approaches: SLA*-TSP and restrictive SLA*-TSP, is presented.

85

5.4.1 Example 1

Example 1 is the 8-city problem which was used in Chapter 3 for demonstration of

SLA*-TSP (see Section 3.4.1, page 37). By using the procedure given in Section 5.2,

the first step is to identify the proximity candidate edge set for each city. In this

example, the convex hull is made up of cities {1,4,3,6,7}, and Voronoi diagram was

constructed based on these five cities (see Figure 5.3, page 77). Using the procedure

find_j)roximity_candidate_edge_set, the proximity candidate edge set for each city is

identified. Table 5.1 shows the elements in the candidate edge set derived from

Delaunay triangulations, Voronoi diagram using external cities only, and proximity

candidate edge set. Column 1 shows the city and column 2 indicates if the city is on

convex hull. Column 3 presents the candidate edge set developed using Delaunay

triangulation Di, column 4 gives a list of internal cities that are in the same Voronoi

region as the city on convex hull (Vi), and column 5 shows the proximity candidate

edge set Pi = {Dj n Vi}. For internal cities that are not on the convex hull, a "-" in

column 4 is used to show that Vj is not applicable. Table 5.1 also shows which rule

from the procedure find_triangle has been applied, and which triangle has been used to

identify the candidate neighbouring cities during the search process.

The complete forward search process for this problem is given in Table 5.2. The

presentation of Table 5.2 is the same as the presentation format used in Chapter 3 in

which only the forward search processes are shown. The step-by-step implementation

of the restrictive SLA*-TSP approach will not be described here. The discussion will

focus on how the triangle is selected for each city during tour construction process and

the rule that is used during the search process. The discussion will be presented in the

order the cities are visited in a clockwise direction.

86

City
i

1

2

3

4

5

6

7

8

On
convex
hull

V
X

V
V
X

V
V
X

Candidate edge set

From Delaunay
triangulation, D;

4,7

3, 5, 6, 8

2, 4, 5, 6

1,3,5,7,8

2, 3 4, 8

2,3,7,8

1,4,6,8

2,4,5,6,7

From Voronoi
diagram, V,

0

-

2,5,8

0

.

0

0

-

Proximity
candidate edge
set, P(

4,7

3,5,6,8

2,5

1,3,5,7,8

2, 3 4, 8

2,3,7,8

1,4,6,8

2,4,5,6,7

Rule applied
(procedure
find_triangle)

Rule 2

Rulel

Rule 2

Rule 2

Rule 2

Rulel

Rule 1

Rule 2

Triangle
selected

A1-7-4

A2-3-5

A3-5-2

A4-1-7

A5-2-8

A6-3-2

A7-6-8

A8-6-2

Table 5.1: Proximity candidate edge set for the 8-city problem

Iteration
1

2

3

4

5

Level-0
(4,4) *
13070
(4,4)*
15891
(4,4)*
18548
(4,4)*
23093
(4,4)
23093

Level-1
(4,1,4)
15891
(4,1,4)
15891
(4,1,4)
18548
(4,1,4)
23093
(4,1,4)
23093

Level-2

(4,1,7,4)
15740
(4,1,7,4)
18548
(4,1,7,4)
23093
(4,1,7,4)
23093

Level-3

(4,1,7,8,4)
18548
(4,1,7,8,4)
18548
(4,1,7,6,4)
23093
(4,1,7,6,4)
23093

Level-4

(4,1,7,8,6,4)
24215
(4,1,7,6,2,4)
22218
(4,1,7,6,2,4)*
22300

Level-5

(4,1,7,6,2,3,4)
21931
(4,1,7,6,2,3,4)
22300

Level-6

(4,1,7,6,2,3,5,4)
21480
(4,1,7,6,2,3,5,4)
22300

Level-7

(4,1,7,6,2,3,5,8,4)
22300
(4,1,7,6,2,3,5,8,4)
22300

Table 5.2: Forward search process for 8-city problem using the restrictive approach

The direction of the tour is clockwise, and the starting city is city 4. From city 4, rule 2

of procedure find_triangle is applied. Rule 2 is used in this instance because its

unvisited candidate neighbouring cities are located to its right. The first triangle that

has both candidate neighbouring cities in the proximity candidate edge set P4 is

triangle A1-4-7. Therefore the selection of the neighbouring city to the tour can be

made from city 1 or 7, and city 1 is selected because it has the minimum estimated tour

length. From city 1, rule 2 is applied because its unvisited candidate neighbouring city

is to its right. The search begins from the first quadrant. However, there is no triangle

in the first quadrant and the search continues to the second quadrant. It is found that

there is no triangle that satisfies the condition that both unvisited candidate

87

neighbouring cities in Pi, therefore the search process continues. This time the triangle

with at least one unvisited neighbouring city in Pi is selected, and the triangle is A1-4-

7. In this case, the neighbouring city for city 1 is city 7; city 4 is excluded because it is

already in the partial tour. From city 7, rule 2 is once again applied because its

neighbouring node is to its right. This time the first triangle encountered is A 7-6-8 and

the state generated is state (4,1,7,8,4). This state has the minimum estimated tour

length that is greater than the estimated tour length of its parent state, therefore

backtracking occurs and heuristic update takes place (see iteration 2 as shown in Table

5.2).

In the third iteration, the search progresses from (4,4), (4,1,4), (4,1,7,4), (4,1,7,8,4).

The last city added to the partial tour is city 8, and rule 2 is applied to find the triangle.

Although both sides of city 8 have unvisited neighbouring cities, it is rule 2 that is

applied because it will result in a tour that is consistent with the clockwise direction of

travel. The first triangle that has both unvisited neighbouring cities is A8-6-2.

In iteration four, the search starts from (4,4), and continues to (4,1,4), (4,1,7,4),

(4,1,7,6,4). The last city in this partial tour is city 6, which has its unvisited

neighbouring nodes to its left. This time rule 1 is applied, and the first triangle

encountered is A2-3-6 and the state with the minimum estimated tour length of 22218

is (4,1,7,6,2,4). From city 2, rule 1 is again applied and the first triangle encountered is

A2-3-5. From city 3, rule 2 is used and the first triangle is A3-5-2. From city 5, rule 2

is again used and the triangle found is A5-2-8, and the state generated is

(4,1,7,6,2,3,5,8,4). At this stage, more heuristic estimates and backtracking steps will

be carried out until an optimal tour of (4,1,7,6,2,3,5,8,4) with tour length 22300 is

88

found (see iteration 5 in Table 5.2). Results from Table 5.2 shows that the restrictive

approach only takes five forward search trials to reach the optimal solution.

5.4.2 Example 2

Example 2 is a problem of fourteen cities (BURMA 14) obtained from TSPLIB

(Reinelt, 1991). This problem was one of the four problems used in the performance

analysis of SLA*-TSP in Chapter 4. Figure 5.9 shows the combined Delaunay

triangulations and Voronoi diagram using the approach described in Section 5.2. In the

diagram, single-line shows the Delaunay triangulations and the bold-line shows the

Voronoi regions.

Figure 5.9: Combined Delaunay triangulations and Voronoi diagram for B U R M A 1 4

Table 5.3 shows the elements in the candidate edge sets and the triangle that is found

for each city. The layout and presentation format of Table 5.3 are the same as Table

5.1 above. In this example, it can be seen that proximity candidate edge sets for

internal cities are the same as the candidate edge set defined using Delaunay

triangulations, however the proximity candidate edge sets for external cities 2, 5, 6, 7

have reduced, except city 1 which remains the same.

89

A s with the previous example, the explanation on h o w the forward search and

backtracking processes took place in the restrictive SLA*-TSP approach will not be

discussed. On the other hand, the discussion concentrates on examining how the

triangles are determined and the rule that has been used during the search process. The

discussion will be presented in the order the cities are visited in a clockwise direction.

The direction the tour travels is clockwise, and the tour starts from city 5.

City
i

1

2

3

4

5

6

7

8

9

10

11

12

13

14

On
convex
hull

V
V
X

X

V
V
V
X

X

X

X

X

X

X

Candidate edge set

From Delaunay
triangulation, D;

2,7,8,9,13

1,3,4,5,11,13

2,4,11

2,5,10,11

2,4,6,10,14

5,7,14

1,6,8,12,14

1,7,9,12

1,8,12,13,14

4,5,11,13,14

2,3,4,10,13

7,8,9,14

1,2,9,11,14

5,6,7,9,10,12,13

From Voronoi
diagram, V,

0

3,11

_

_

4,10,13

14

8,9,12

.

-

.

_

_

_

-

Proximity
candidate edge
set, P;

2,7,8,9,13

3,11

2,4,11

2,5,10,11

4,10

14

8,12

1,7,9,12

1,8,12,13,14

4,5,11,13,14

2,3,4,10,13

7,8,9,14

1,2,9,11,14

5,6,7,9,10,12,13

Rule applied
(procedure
findjriangle)

Rulel

Rule 2

Rule 2

Rulel

Rulel

Rulel

Rulel

Rule 2

Rule 2

Rule 2

Rule 2

Rule 2

Rule 2

-

Triangle
selected

A1-7-8

A2-3-11

A3-2-11

A4-2-3

A5-4-10

A6-5-14

A7-6-14

A8-1-7

A9-1-8
A9-8-12

A10-13-14

All-10-13

A12-8-7

A13-9-1

-

Table 5.3: Proximity candidate edge set for B U R M A 1 4

The tour starts with city 5, and it is likely to travel to the neighbouring nodes to its left;

otherwise it will not lead to a tour that travels in clockwise direction. Therefore rule 1

of procedure find_triangle is used, and the first triangle that has both candidate

neighbouring cities is A5-4-10. Using the algorithm of SLA*-TSP, city 4 is included

in the partial tour. From city 4, rule 1 is again applied and the triangle selected is A4-

90

2-3. This time, city 2 is added to the partial tour. From city 2, rule 2 is applied because

its unvisited neighbouring cities are to its right. The proximity candidate edge set for

city 2, P2 = {3, 11}, therefore the first triangle that has both unvisited candidate

neighbouring cities in P2 is A2-3-11. From city 3, rule 2 is again applied and the

triangle selected is A3-2-11. In this instance, there is no triangle that has both

unvisited neighbouring cities in proximity candidate edge set P3. Therefore the search

needs to start again, and the triangle that has at least one unvisited neighbouring city is

A3-2-11. The same rule (i.e. rule 2) applies for cities 11, 10, 13, 9, 12, and 8, because

each of these cities has unvisited neighbouring nodes located to its right. In the case of

node 9, the cautious approach that has been discussed in Section 5.2 has been used.

Instead of considering candidate neighbouring nodes from only one triangle, all

triangles that are to its right are considered. In this instance, triangles A9-8-12 and

A9-1-8 have been selected. After that, rule 1 is applied to cities 1, 7 and 6, because it

must travel to the neighbouring nodes to its left in order for the tour to travel in a

clockwise direction. The last city is city 14, and it is not necessary to select any

triangle for this city. The results are summarised in Table 5.3.

The complete forward search trials are shown in Table B.l in Appendix B. The results

from Table B.l shows that it takes 35 forward search trials to reach the optimal

solution using the restrictive SLA*-TSP approach.

5.4.3 Example 3

The test approach in this example is adapted from the randomly generated problem in

Chapter 4. It is a 12-city randomly generated problem that exhibits clustering of nodes.

It consists of four clusters with 3 nodes in each cluster. The nodes are located within a

(0,100) square and the square is divided into 16 equal rectangles (see Figure 5.10).

91

Three nodes are randomly generated within each rectangle according to a uniform

distribution. In this example, the nodes are selected from square 1,4, 13 and 16.

4

3

2

1

8

7

6

5

12

11

10

9

16

15

14

13

Figure 5.10: Structure of problems tested

Figure 5.11 shows the combined Delaunay triangulations and Voronoi diagram of the

problem. As with previous examples, the Delaunay triangulations are constructed

based on all nodes in the problem and the Voronoi diagrams constructed are based on

external nodes only. The single-line shows the Delaunay triangulation and the bold

lines show the boundary of Voronoi regions formed by nodes that lie on the convex

hull. Table 5.4 shows the elements in the candidate edge set Dj, Vj and Pj. The layout

and presentation format of Table 5.4 is the same as Table 5.1

Figure 5.11: The combined Delaunay triangulation and Voronoi diagram of Example 3

92

City
i

1

2

3

4

5

6

7

8

9

10

11

12

On
convex
hull

V
X

X

X

V
V
X

V
X

V
V
X

Candidate edge set

From Delaunay
triangulation, D,

2,3,6,8

1,3,4,6,7

1,2,7,8,9

2,5,6,7,10,12

4,6,10

1,2,4,5

2,3,4,8,9,11,12

1,3,7,9,11

3,7,8

4,5,11,12

7,8,10,12

4,7,10,11

From Voronoi
diagram, Vj

2,3

_

_

-

4

0

_

7,9

_

12

0

-

Proximity
candidate edge
set, P;

2,3

1,3,4,6,7

1,2,7,8,9

2,5,6,7,10,12

4

1,2,4,5

2,3,4,8,9,11,12

7,9

3,7,8

12

7,8,10,12

4,7,10,11

Rule applied
(procedure
find_triangle)

Rule 3

Rule 4

_

Rule 4

Rule 4

Rule 4

Rule 3

Rule 4

Rule 4

Rule 4

Rule 4

Rule 3

Triangle
selected

A1-8-3

A2-1-3

-

A4-5-6

A5-4-6

A6-1-2

A7-11-12

A8-7-9

A9-7-3

A10-4-5

All-10-12

A12-10-4

Table 5.4: Proximity candidate edge set of Example 3

As with Example 2, this section focuses on how the triangle is selected and the

application of SLA*-TSP will not be discussed. It is assumed that the tour travels in an

anti-clockwise direction, and the tour starts with city 8. From city 8, rule 4 of

procedure frndjriangle is applied, because its neighbouring nodes are to its left. The

first triangle that has both candidate neighbouring nodes in the proximity candidate

edge set of P8 is A8-7-9. The next city to consider is city 9. Again rule 4 is applied

because its neighbouring cities are to its left. This time A 9-7-3 is selected. This is

followed by city 7, and rule 3 is used to find triangle A7-11-12. City 11 uses rule 4 to

find triangle All-10-12 because its neighbouring cities are to its left. Then city 12

uses rule 3 to find A12-10-4. Rule 4 is applied to cities 10, 4, 5, 6, 2, and triangles

found are A10-4-5, A4-5-6, A5-4-6, A6-1-2, and A2-1-3 respectively. Then city 1

uses rule 3 to find triangle A1-8-3 and city 3 is the last city added to the tour. The

results is summarised in Table 5.4.

93

Table B.2 of Appendix B shows the complete forward search trials of this problem.

From Table B.2, it shows that only 14 forward search trials are required to obtain

optimal solution using the restrictive search approach.

5.4.4 Discussion

Table 5.5 summarises the results for the above three examples. The table compares the

number of forward searches each problem takes using both the SLA*-TSP and the

restrictive search approach. The number of heuristic updates needed in both

approaches for each problem is also included in the table. To compare the performance

f ., . - _ RestrictiveSLA*-TSP . * A * *u
of these two approaches, the ratio of is computed for the
SLA*-TSP

number of forward search as well as that of heuristic updates.

Example

1

2

3

N o of
cities

8

14

12

Number of forward search

SLA*-
TSP

18

786

26

Restrictive
SLA*-TSP

5

33

14

Ratio

28%

4%

54%

Number of heuristic updates

SLA*-
TSP

74

5601

124

Restrictive
SLA*-TSP

9

182

37

Ratio

12%

3%

30%

Table 5.5: Summary of results for three examples

Results from Table 5.5 show that the restrictive SLA*-TSP approach substantially

outperforms the SLA*-TSP approach. Problem in Example 2 shows that the number of

heuristic updates in the restrictive search approach is only 3% of the SLA*-TSP

approach, with a saving of 97%. Even the clustered problem in Example 3, which is

the worst of the three, the number of heuristic updates in the restrictive SLA*-TSP

approach is only 30% of the SLA*-TSP approach, with a saving of 70%. As discussed

in Chapter 4, in problems that exhibit clustering or grouping of nodes, the value of the

94

heuristic estimate is greater than otherwise. This is because the minimal spanning tree

includes those edges that are between the clusters and results in a higher value of

heuristic estimate. Therefore problems that exhibit clustering or grouping of nodes will

be relatively advantageous to the approach of SLA*-TSP. On the other hand, when the

restrictive search approach is applied to problems that do not exhibit clustering

characteristics, a very substantial saving in terms of the number of heuristic updates

can be achieved.

Table 5.6 shows the results of the number of states generated in the search process.

The number of states is calculated based on the number of candidate neighbouring

nodes generated. It can be seen that the restrictive search approach generates fewer

states. This is because each time the tour is expanded, it considers a very limited

number of promising neighbouring nodes depending on the direction of the tour. On

the other hand, in the SLA*-TSP approach it needs to consider all unvisited

neighbouring nodes that are connected through the edges of Delaunay triangulation.

Example

1

2
3

N o of cities

8

14
12

SLA*-TSP

90

34560

4800

Restrictive SLA*-TSP

16

512
512

Ratio

18%

2%
11%

Table 5.6: Number of states generated in the search process

Initial study from these three examples has indicated that the search space of SLA*-

TSP approach can be much improved by considering only the most promising

candidate neighbouring nodes during the tour construction process. The improvement

is achieved through the use of knowledge pertaining to the convex hull, Voronoi

diagram, direction of the tour and the direction of search.

95

5.5 Conclusion

In this chapter, it has shown that knowledge based on the computational geometric

characteristics of Euclidean TSP can be utilised to identify a reduced set of candidate

nodes to be included in the search process. The contribution of this chapter is the

development of the restrictive SLA*-TSP approach in which the search strategy has

utilised the characteristics of Voronoi diagram, direction of the tour, and the direction

of search. In this restrictive approach, only the most promising neighbouring nodes are

included for consideration during the tour construction process. It is believed that the

restrictive SLA*-TSP approach could present an effective alternate approach in

addressing TSP; in particular the selection of promising cities based on the proximity

information of Voronoi diagram and the way the direction is integrated in the search

strategy.

96

CHAPTER 6: CONCLUSIONS

6.1 Overview of research

The principal emphasis of this research is the development of a heuristic learning

approach to construct TSP tour by utilising the underlying computational geometric

properties of Euclidean TSP. This thesis centred on two issues of tour construction

heuristics that had not been pursued previously.

1. Greedy and myopic natures of tour constructions.

This thesis developed a dynamic tour construction approach by using the

heuristic learning approach of SLA*. Dynamic tour construction aims to

change the configuration of the tour while the tour is under construction. The

backtracking and heuristic updating features in SLA* offer an opportunity for

this to occur.

2. Search strategy based on the underlying computational geometric properties of

Euclidean TSP .

This thesis focuses on two-dimensional Euclidean TSP. Computational

geometric properties associated with Euclidean TSP such as Delaunay

triangulation and Voronoi diagrams are utilised to ensure that only promising

cities that are likely to lead to an optimal tour are included for consideration in

the tour construction process.

97

This research shows that SLA*-TSP is a powerful heuristic learning approach that can

be used to construct tour dynamically. The tour configuration process is constantly

changing during the tour construction process until a solution is obtained. It has

demonstrated that by utilising the computational properties and characteristics

associated with Euclidean TSP, the search process considers only promising cities that

are likely to result in optimal solution. Knowledge concerning Delaunay triangulation,

Voronoi diagram, the direction of the tour travels and direction of search for triangle

can be embedded in a restrictive search approach to reduce search space.

6.2 Results of research

In the pursuit of the above topics, the following results were obtained.

1. Development of SLA*-TSP approach.

A state space transformation process that includes state definition, state

transition operator and state transition cost has been developed. This is to allow

TSP to be formulated as a state-space problem so that SLA*-TSP can be

applied. The implementation approach of SLA*-TSP has been developed.

2. Development of two search strategies based on the underlying computational

geometric properties of Euclidean TSP.

The first strategy utilises the characteristics of Delaunay triangulations in

defining search space. The second strategy is more restrictive, it utilises the

proximity property of Voronoi diagram, convex hull, direction the tour travels

and the direction of search for an appropriate triangle. This latter strategy

98

selects an appropriate triangle from Delaunay triangulation, which contains

information of the candidate edges that are likely to lead to the optimal tour.

3. Investigation of quality of heuristic estimate in determining the performance of

SLA*-TSP.

The distribution of nodes on the problem influences the heuristic estimate

because it influences the computation of minimal spanning tree. In problems

that exhibit clustering or grouping of nodes, it will lead to a better quality of

heuristic estimate. This is because when the clusters are well separated, long

edges linking clusters tend to be included in the minimal spanning tree.

The research also shows that the application of SLA*-TSP with a learning threshold

approach can be used to improve the computation time for large sized problems at the

sacrifice of the optimal solution. By including the learning threshold in the algorithm,

SLA*-TSP with learning threshold approach is able to find an approximate solution

with a known quality. The advantage of this approach is that the maximum amount of

sacrifice is known before hand.

6.3 Contribution of the research

Conventional tour construction heuristics is myopic and greedy in nature. This

research addresses the above gaps in conventional tour construction heuristics for

traveling salesman problem. With the application of heuristic learning algorithm

SLA*, the work presented here shows that the tour can be constructed dynamically

through the use of local and global distance information. Along the search process, the

backtracking and forward search processes can repetitively lead to deletion and

99

addition of cities from and to the tour. This dynamic construction of the tour is made

possible through the consideration of both the local tour information and the global

tour estimation, which is updated continuously along the search process.

The work presented here shows that by utilising the computational geometric

properties of Euclidean TSP, the performance of the heuristic learning feature of

SLA*-TSP can be enhanced. Firstly, the search capability of SLA*-TSP is enhanced

by the solution space selection of the Delaunay triangulations. In addition, through the

integration of Voronoi diagram, operating as a decision boundary, with the direction of

search for the triangle, a more intelligent restrictive SLA*-TSP approach has been

developed. This restrictive approach makes the selection of promising cities based on

the proximity information of Voronoi diagram, and the sense of direction of search is

integrated in the search strategy to avoid unnecessary search. This is an approach that

has not been pursued previously.

This research has demonstrated that a well-developed heuristic learning algorithm in

artificial intelligence such as SLA* can present an effective alternate way of

addressing traditional TSP. The research has shown that the heuristic learning

approach together with the underlying computational geometric properties of

Euclidean TSP can be integrated in such a way that the tour can be constructed

dynamically in which the configuration of the tour can be constantly updated during

the tour construction process. The characteristics of computational geometry has been

utilised to define a reduced search space so that only the promising candidate edges are

included in the tour construction process.

100

6.4 Future research

Based on the findings of this research, future research needs to be conducted to offer a

more complete and comprehensive heuristic learning framework to solve TSP. The

following issues warrant further investigation.

- One of the major weaknesses of the current computer implementation is its

inefficient memory handling. Further research needs to be carried out to

improve the design of the data structures to improve the efficiency of memory

handling. One of the possible methods is to use tree structure so that the state

and the value of the updated heuristic estimate can be stored and retrieved more

efficiently.

- The major factor influencing the performance of SLA*-TSP is the heuristic

estimate. Minimal spanning tree is used in this research to compute the

heuristic estimate. However, further research can to be investigated to find an

alternative method, if any, to compute the heuristic estimate that has a value as

close to the optimal solution as possible. Investigations can be conducted to

determine the suitability of other lower bound, such as assignment problem, to

be used as a heuristic estimate.

- The SLA*-TSP with learning threshold approach allows the algorithm to find

an approximate solution with a desired range of certainty. This feature is

particularly important in practical situations when an exact solution is not

required, but the speed of computation is. However, there is a need to better

understand the way backtracking is delayed in relation to the neighbourhood

101

and geometric properties of the nodes when learning threshold is included.

Further research needs to be conducted to examine this relationship.

102

REFERENCES

Angeniol, B., Vaubois, G. and Texier, J. 1988. Self-Organising Feature Maps and the

Traveling Salesman Problem. Neural Networks, 1, 289-293

Applegate, D., Bixby, R., Chvatal, V. and Cook, W., 1998, On the Solution of

Traveling Salesman Problems, Doc.Math.J.DMV Extra Volume ICM III 645-656

Aurenhammer, F. 1991. Voronoi Diagrams - A Survey of a Fundamental Geometric

Data Structure. ACM Computing Surveys, 23(3), 345-405

Baker, K. 1974. Introduction to Sequencing and Scheduling. John Wiley & Sons

Bartholdi, J. and Platzman, L. 1988. Heuristics Based on Spacefilling Curves for

Combinatorial Problems in Euclidean Space. Management Science, 34, 291-305

Bentley, J.J. 1992. Fast Algorithms for Geometric Traveling Salesman Problems.

ORSA Journal on Computing, 4(4), 387-411

Burke, L. 1994. Neural Methods for the Traveling Salesman Problem: Insights from

Operations Research. Neural Networks, 7(4), 681-690

Carpaneto, G. and Toth, P. 1980. Some New Branching and Bounding Criteria for the

Asymmetric Traveling Salesman Problem. Management Science, 26, 736-743

Carpaneto, G., Dell'Amico, M. and Toth, P. 1995. Exact Solution of Large-Scale

Asymmetric Traveling Salesman Problems. ACM Transactions on Mathematical

Software, 21(4), 394-409

103

Cerny, V. 1985. A Thermodynamical Approach to the Traveling Salesman Problem:

an Efficient Simulation Algorithm. Journal on Optimization Theory and Application,

45,42-51

Cesari, G. 1996. Divide and Conquer Strategies for Parallel TSP Heuristics.

Computers Operations Research, 23(7), 681-694

Christofides, N. and Eilon, S. 1972. Algorithms for Large-Scale Traveling Salesman

Problems. Operational Research Quarterly, 23(4), 511-518

de Berg, M., van Kreveld, M, Overmars, M. and Schwarzkopf, O. 1997.

Computational Geometry: Algorithms and Applications, Springer-Verlag, Berlin

Dowsland, K. 1995. Simulated Annealing, in Reeves, C. (ed) Modern Heuristic

Techniques for Combinatorial Problems, Haksted Press, 20-69

Garey N.R. and Johnson, D.S. 1979. Computers and Intractability: a Guide to the

Theory Of NP-Completeness. W.H Freeman

Geman, S. and Geman, D. 1984. Stochastic Relaxation, Gibbs Distributions and The

Bayesian Restoration of Images. IEEE Trans on Pattern Analysis and Machine

Intelligence, PAMI-6, 721-741

Gendreau, M., Hertz, A. and Laporte, G 1992. New Insertion and Postoptimization

Procedures for the Traveling Salesman Problem. Operations Research, 40(6), 1086-

1094

Gendron, B. and Crainic, T.G. 1994. Parallel Branch-and-Bound Algorithms: Survey

and Synthesis. Operations Research, 42 (6), 1042-1066

104

Glover, F. 1990. Artificial Intelligence, Heuristic Frameworks and Tabu Search.

Managerial and Decision Economics, 11, 365-375

Glover, F. and Laguna, M. 1993. Tabu Search, in Reeves, C. (ed), Modern Heuristic

Techniques for Combinatorial Problems. John Wiley & Sons

Golden, B., Bodin, L., Doyle, T. and Stewart Jr, W. 1980. Approximate Traveling

Salesman Algorithms. Operations Research, 28(3), 694-709

Golden, B. and Stewart, W. 1985. Empirical Analysis of Heuristics, in Lawler, EX.,

Lenstra, J.K., Rinnooy Kan, A.H.G and Shmoys, D.B. (eds), The Traveling Salesman

Problem, 207-250, John Wiley & Sons

Gu, J. and Huang, X. 1994. Efficient Local Search with Search Space Smoothing: a

Case Study of the Traveling Salesman Problem (TSP). IEEE Transactions on Systems,

Man, and Cybernetics, 24(5), 728-735, 1994

Holland, J. 1975. Adaptation in Natural and Artificial Systems. University of Michigan

Press

Hopfield, J.J. and Tank D.W. 1985. Neural Computation of Decisions in Optimisation

Problems. Biol. Cybern., 52, 141-152

Jedrzejek, C. and Cieplinski, L. 1995. Heuristic versus Statistical Physics Approach to

Optimization Problems. ACTA Physical Polonica B, 26(6), 977-996

Johnson, D.S. 1990. Local Optimization and the Traveling Salesman Problem, in

Proceedings 17th Colloquium on Automata, Languages and Programming, Lecture

Note in Computer Science, 443, 446-461

105

Johnson, D.S. and Papadimitriou, C.H. 1985. Performance Guarantees for Heuristics.

in Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (eds), The

Traveling Salesman Problem, 145-180, John Wiley & Sons

Karp. R.M. 1979. A Patching Algorithm for the Nonsymmetric Traveling Salesman

Problem. SIAMJ. Comput, 8, 561-573

Kirkpatrick, S., Gelatt, CD. and Vecchi, M.P. 1983. Optimisation by Simulated

Annealing. Science, 220, 671-680

Knox, J. 1994. Tabu Search Performance on the Symmetric Traveling Salesman

Problem. Computers Ops. Res. 21(8), 867-876

Kohonen, T. 1984. Self-Organisation and Associative Memory. Springer-Verlag,

Berlin

Kolen, A. and Pesch, E. 1994. Genetic Local Search in Combinatorial Optimization.

Discrete Applied Mathematics, 48, 273-284

Koulamas, C, Anthony, S.R. and Jaen, R. 1994. A Survey of Simulated Annealing •

Applications to Operations Research Problems. Omega International Journal

Management Science, 22(1), 41-56

Krasnogor, N., Moscato, P. and Norman, M.G. 1995. A New Hybrid Heuristic for

Large Geometric Traveling Salesman Problems Based on the Delaunay Triangulation.

Anales del XXVII Simposio Brasileiro de Pesquisa Operacional, Vitoria, Brazil, 6-8

Nov 1995

Kruskal, J. 1956. On the Shortest Spanning Subtree of a Graph and the Travelling

Salesman Problem. Proceedings of the American Mathematical Society, 48-50

106

Laporte, G., Potvin, J. and Quilleret, F. 1996. A Tabu Search Heuristic using Genetic

Diversification for the Clustered Traveling Salesman Problem. Journal of Heuristics,

2, 187-200

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G and Shmoys, D.B. 1985. The

Traveling Salesman Problem. John Wiley & Sons

Lin, S. 1965. Computer Solutions of the Traveling Salesman Problem. Bell Systems

Tech. J. 44, 2245-2269

Lin, S.C. and Hsueh, J.H.C. 1994. Simulated Annealing for the Optimisation

Problems. Physica A, 205, 367-374

Lin, S. and Kernighan, B.W. 1973. An Effective Heuristic for the Traveling Salesman

Problem. Operations Research, 21(2), 498-516

Lourenco, H. R. 1995. Job-Shop Scheduling: Computational Study of Local Search

and Large-Step Optimisation Methods. European Journal Of Operational Research,

83, 347-364

Mak, K.T. and Morton, A.J. 1993. A Modified Lin-Kernighan Traveling Salesman

Heuristic. Operation Research Letters, 13, 127-132

Mehlhorn, K. and Naher, S. 1999. LEDA: A Platform For Combinatorial and

Geometric Computing, Cambridge University Press

Miller, D.L. and Pekny, J.F. 1991. Exact Solution of Large Asymmetric Traveling

Salesman Problems. Science, February, 754-761

107

O'Rourke, J. 1998. Computational Geometry in C (second edition), Cambridge

University Press

Padberg, M. and Rinaldi, G. 1991. A Branch and Cut Algorithm for the Resolution of

Large-Scale Symmetric Traveling Salesman Problems. SIAMReview 33, 60-100

Papadimitriou, C. 1992. The Complexity of the Lin-Kernighan Heuristic for the

Traveling Salesman Problem. SIAM J. Comput. 21(3), 450-465

Papadimitriou, C. and Steiglitz, K. 1982. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall

Phan, C. 2000. Investigating Delaunay Triangulation as a Basis for a Travelling

Salesman Problem Algorithm. Transactions Of The Oklahoma Junior Academy Of

Science (Http://Oas.Okstate.Edu/Ojas/Phan.Htm)

Preparata, F.P. and Shamos, M.I. 1985. Computational Geometry: an Introduction.

Springer-Verlag, New York

Press W.H., Tuekolsky, S.A, Vetterling, W. and Flannery, B.P. 1992. Numerical

Recipes in C: the Art of Scientific Computing (2nd edition). Cambridge University

Press

Prim, R. 1957. Shortest Connection Networks and Some Generalizations. Bell Syst.

Tech. J, 36, 1389-1401

Reinelt, G. 1991. TSPLIB - A Traveling Salesman Problem Library. ORSA Journal

On Computing 3(4), 376-384

108

Http://Oas.Okstate.Edu/Ojas/Phan.Htm

Reinelt, G. 1992. Fast Heuristics for Large Geometric Traveling Salesman Problems.

ORSA Journal On Computing 4(2), 206-217

Reinelt, G. 1994. The Traveling Salesman: Computational Solutions for TSP

Applications. Springer-Verlag

Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M. 1977. An Analysis of Several

Heuristics for the Traveling Salesman Problem. SIAM J. Comput. 6(3), 563-581

Stewart Jr., W.R. 1992. Euclidean Traveling Salesman Problems and Voronoi

Diagrams, presented at the ORSA-CSTS Conference, Williamsburg, VA

Tate, D.M., Tunasar, C. and Smith, A.E. 1994. Genetically Improved Presequences for

Euclidean Traveling Salesman Problems. Mathematical and Computer Modeling,

20(2), 135-143

Usami, Y. and Kitaoka, M. 1997. Traveling Salesman Problem and Statistical Physics,

International Journal Of Modern Physics B, 11 (13), 1519-1544

Viswanathan, K.V. and Bagchi, A. 1993. Best-First Search Methods for Constrain

Two-Dimensional Cutting Stock Problems. Operations Research, 41(4), 768-775

Xu, J. and Kelly, J.P. 1996. A Network Flow-Based Tabu Search Heuristic for the

Vehicle Routing Problem. Transportation Science, 30(4), 379-393

Yip, P. and Pao, Y. 1995. Combinatorial Optimizations with Use of Guided

Evolutionary Simulated Annealing. IEEE Transactions On Neural Networks, 6(2),

290-295

109

Yu, D.H. and Jia, J. 1993. A N e w Neural Network Algorithm with the Orthogonal

Optimized Parameters to Solve the Optimal Problems. IEICE Transactions

Fundamentals, E76A(9), 1520-1526

Zamani, M.R. 1995. Intelligent Graph-Search Techniques: an Application to Project

Scheduling Under Multiple Resource Constraints. Phd Thesis

Zhang, W. 1999. State-Space Search: Algorithms, Complexity, Extensions and

Applications, Springer-Verlag, New York

110

APPENDIX A: PROGRAM LISTING

HI

//C++ program using LEDA library for SLA-TSP
//last modified: 17 April 2001

#define PRUNE
ttdefine NODE_TABLES
// commented out FAST_CODE to collect statistics during run time
//#define FAST_CODE

#include <stdio.h>
#include <math.h>
#include <time.h>
#include <values.h>
#include <stdlib.h>
ttinclude <string.h>
#ifndef BORLANDC
#include <sys/times.h>
#endif

#include <LEDA/geo_alg.h>
ttinclude <LEDA/graphwin.h>
#include <LEDA/window.h>
#include <LEDA/rat_kernel_names.h>
#include <LEDA/set.h>

#define COLOR_NORMAL black
#define COLOR_CURRENT_PATH red
#define COLOR_MIN_PATH yellow
#define COLOR_DELETED_PATH green
#define COLOR_PROPOSED_PATH cyan

#ifndef BORLANDC
fdefine max(a, b) ((a) < (b) ? (b) -. (a)
#define min(a, b) ((a) > (b) ? (b) : (a)

#endif

#define BIN_SIZE 1000

#ifdef NODE_TABLES
struct heuristicNode

{
float heuristic;

float *graphPtr;

In

struct binNode

{
struct heuristicNode *heuristicNodePtr;

int count;
struct binNode *nextBin;

};

#else

struct binNode

{
struct binNode *left;
struct binNode *right;
float heuristic;

112

float *graphPtr;
};

#endif

struct heuristicLookUpTable
{

struct binNode *binNodePtr;
};

char stringl[200];

int numpoints ;
int bin_size = BIN_SIZE;

#ifndef FAST_CODE
bool stepFlag = false; // -s
bool graphicFlag = false; // -g
bool statisticsFlag = false; // -S
bool displayOutputFlag = false; // -o
bool autoFlag - false;
bool endOfRunGraph = false;
bool graphSelectedFlag = false;
bool atRootFlag - true;
#endif

bool altThresholdFlag = false;
bool thresholdSelectedFlag = false;
bool randomPointFlag = false; // -r
bool filePointFlag = false; // -f

float maxX,maxY,minX,minY; // windows co-ordinate boundaries

float initThreshold =0.0; // -t
float currentThreshold = 0.0;

int startPoint = 1; // -p
char *progname;
bool backtrackFlag = false;

#ifndef FAST_CODE
int delayGap = 1;
char *outputFile = NULL; // -0

int stepBut, // button variables
clearBut,

autoBut,
exitBut;

unsigned int statsForwardSequenceCount = 0;
unsigned int statsFowardCount = 0;
bool statsforwardFlag = false;

unsigned int statsBacktrackSeguenceCount = 0;
unsigned int statsBacktrackSequenceRootCount = 0;
unsigned int statsBacktrackCount = 0;
unsigned int statsBacktrackRoot2Root = 0;

113

unsigned int remainingGraphHeuristicUpdates = 0;
unsigned int remainingGraphNoHeuristicUpdates = 0;
unsigned int subGraphHeuristicUpdates = 0;
unsigned int subGraphNoHeuristicUpdates = 0;

window WDD("DELAUNAY TRIANGULATION");
#endif

list<point> L; // list of points that make up
the graph
list<point> LPoint; // list of nodes removed from the
graph

#ifdef PRUNE
list<int> connectList; // used for determine is all no
visited points are still connects, used by path pruning algorthm
int edgeCounter; // used by the path pruning
algorithm
set<point> externalPoints; //a set of all points that are
on the external edges of the graph
set<string> externalEdges;
#endif

GRAPH<point,int> DT; // The Graph defining the
Delaunay Triangle
GRAPH<point,int> remainingGraph; // The Remaining Graph after the
current processing points have been removed

GRAPH<point,int> previousGraph;
GRAPH<point,int> tempPreviousGraph;

node firstNode,
is to be processed

currentNode;
graph being processed

stack<GRAPH<point,int> > graphStack;

struct heuristicLookUpTable *graphLoopUpTablePtr;
struct heuristicNode *tempGraphHeuristicNodePtr;

struct heuristicLookUpTable *subGraphLoopUpTablePtr;
struct heuristicNode *tempSubGraphHeuristicNodePtr;

//***

node GetFirstNode(list<point>& L,GRAPH<point,int>& DT, int
startPoint);
float GetDistance(point &pStart,point &pEnd);
void deleteNode(point& p,GRAPH<point,int>& G);
int MSTcmp(const edge &el,const edge &e2);
float calculateMSTPathLength(GRAPH<point,int>& G, list<edge>& el);

#ifndef FAST_CODE
void processMouse(void) ;
void FindScalingFactors(float *xFact,float *yFact);
void displayMinSpanningPath(GRAPH<point,int>& G,list<edge>& el);

// first node in the graph that

// The current node of the

114

void displayGraph(GRAPH<point,int>& G, bool clearFlag);
void displayWholeGraph(void);
void displayCurrentPath(list<point>& listPoints) ;
void displayProposedPath(point& pl,point& p2);
ttendif

int isDeletedPoint(point &pEnd);
node getGraphNodeFromPoint(GRAPH<point,int>& G,point &pl);
void InitLookUpTables(void);

//*********************

#ifdef NODE_TABLES
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point
&P) ;
void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer);
void InsertGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer);
int myGraphBsearch(float *ptsBuffer, struct binNode *binNodePtr,int
size);
float getGraphUpdatedHeuristic(GRAPH<point,int>& G,point &p) ;
//*********************
void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float
heuristic);
void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,points
endPoint,float heuristic);
void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer);
void InsertSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic, float *ptsBuffer);
int mySubGraphBsearch(float *ptsBuffer, struct binNode
*binNodePtr,int size);
float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G,point &p);
#else
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point
&P) ;
void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer);
float getGraphUpdatedHeuristic(GRAPH<point,int>& G, point&
startPoint);
//*********************
void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float
heuristic);
void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point &p,float
heuristic);
void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer);
float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, point&
endPoint);
#endif
float redLineLength(void);
int cmpPts(float *pl, float *p2, int count);
void processArguments (int argcchar *argv[]);
void readlnGraph(char *fileName);
void generateRandomGraph(int points,int xlow,int ylow,int xhigh,int
yhigh,int prec);
void displayUsage(void);

115

•k-k'k'k-k'k-k'k-kie-k

int main(int argc, char *argv[])
{

progname = "sk4";
processArguments(argc, argv) ;

#ifndef FAST_CODE
ofstream progOutput;
if (outputFile)
{

progOutput.open(outputFile,ios::out);
if (!progOutput.good())

{
fprintf(stderr,"Unable to open output file\n");
displayUsage();
exit(0);

}
}

#endif

time_t startTime = time(NULL);

ttifndef FAST_CODE
float xfact,
yfact;

if (graphicFlag)
{

StepBut = WDD.button("STEP") ;
clearBut = WDD.button("CLEAR");

autoBut = WDD.button("AUTO");
exitBut = WDD.button("EXIT");

FindScalingFactors(&xfact,&yfact);
WDD.init(minX-xfact,maxX+xfact,minY-yfact);

WDD.display(window::center,window::center);
WDD.start_buf feringO ;

}
#endif

InitLookUpTables();

// setup DELAUNAY_TRIANGLE DIAGRAM using list L in graph DT
DELAUNAY_TRIANG(L,DT);

#ifndef FAST_C0DE
if (graphicFlag)
displayGraph(DT,true); // display initial graph

#endif

#ifdef PRUNE
edge e;
forall_edges(e,DT)
{
if (DT[e] == HULL_EDGE)

116

{
char strBuffer[50];

ostrstream ostr(strBuffer,50);

node v = DT.source(e), w = DT.target(e);
point pi;
pi = DT[v].to_point();
if (externalPoints.member(pi) == false)

externalPoints.insert(pi);
ostr « pi;
pi = DT[w].to_point();
if (externalPoints.member(pi) == false)

externalPoints.insert(pi);
ostr << pi;
ostr « '\0';
externalEdges.insert(strBuffer) ;

}
#endif

firstNode = currentNode = GetFirstNode(L,DT,startPoint) ;

#ifdef PRUNE
point pi = DT[firstNode].to_point();

if (externalPoints.member(pi) == true)
{
edgeCounter = 1;

connectList.append(1);
}
else
{
edgeCounter = 0;
connectList.append(0) ;

}
#endif

remainingGraph = DT; // copy graph into a remaining buffer
previousGraph = DT;

LPoint.append(DT[firstNode].to_point()); // store first point

ttifndef FAST_CODE
if (graphicFlag)
processMouse();

else if (stepFlag)
{

cout << "Enter 's' to step\n" ;
cin » stringl;
cout « endl;

}
#endif

for (;;)
{

// get the list of adjacent nodes to the current node
list<node> adjNodes = remainingGraph.adj_nodes(currentNode);
point pStart,

pEnd;

117

int numAdjNodes = adjNodes.size(); // get the
number of adjacent nodes

int flag - 0;
int index = 0;
node minNode;
float minValue;
float mainGraphMSTLength;
point minPoint;

#ifndef FAST_C0DE
bool minUpdateFlag;

#endif

float tempDistance = 0;
GRAPH<point,int> tempGraphGraph;

node tempNode;

if (LPoint.sizeO > 1)
{

int i,
j ;

point xl,
x2 ;

list_item listPtr;

j = LPoint.sizeO;

xl = LPoint.front();
listPtr = LPoint.first();

for (i = 1 ; i < j ; i++)
{

listPtr = LPoint.succ(listPtr);
x2 = LPoint.contents(listPtr);
tempDistance+= xl.distance(x2);
xl = x2;

}
}

int Kounter = 0;
forall(tempNode,adjNodes)
{

pStart = remainingGraph[currentNode].to_point();
pEnd = remainingGraph[tempNode].to_point();

if (isDeletedPoint(pEnd))
continue;

// check if endpoint has more that one adjacent node
list<node> tempAdjNodes =

remainingGraph.adj_nodes(tempNode);

node tempTempNode;

int nodeCounter = 0;

#ifdef PRUNE
bool externalEndPointFlag = externalPoints.member(pEnd);

118

bool externalStartPointFlag =
externalPoints.member(pStart) ;

int numAdjacentActiveHullPoints = 0;
#endif

forall(tempTempNode,tempAdjNodes)
{

point tPoint =
remainingGraph[tempTempNode].to_point() ; ;

if (isDeletedPoint(tPoint))
continue;

nodeCounter++;

#ifdef PRUNE
if (externalEndPointFlag &&

externalPoints.member(tPoint))
{
char strBuffer[50];

ostrstream ostr(strBuffer,40);
ostr « pEnd;
ostr « tPoint;

ostr « '\0';
if (externalEdges.member(strBuffer))

numAdjacentActiveHullPoints++;
}

#endif
}

if (LPoint.sizeO == numpoints -1)
nodeCounter++;

if (nodeCounter == 0)
continue;

#ifdef PRUNE
if (externalEndPointFlag && edgeCounter == 1 &&

numAdjacentActiveHullPoints == 2 && !externalStartPointFlag)
continue;

#endif

Kounter++;

float distance^ pStart.distance(pEnd);

float tempVall = distance +tempDistance +
pEnd.distance(LPoint.frontO) -(tempDistance+
pStart.distance(LPoint.front 0)) ;

GRAPH<point,int> tempGraph;

tempGraph = remainingGraph;

deleteNode(pStart,tempGraph);
tempGraphGraph = tempGraph;

ttifndef FAST_CODE

119

if (graphicFlag)
{

if (flag == 0)
{

list<point> newPointList;

node v;

forall_nodes(v,tempGraph)

newPointList.append(tempGraph[v].to_point()) ;

DELAUNAY_TRIANG(newPointList,tempGraph);

list<edge> el =
MIN_SPANNING_TREE(tempGraph,MSTcmp) ;

displayWholeGraphO ;
displayMinSpanningPath(tempGraph,el);

mainGraphMSTLength =
calculateMSTPathLength(tempGraph,el) ;

if (displayOutputFlag)
cout«"\nCalcuated MST for

remaining graph: " « mainGraphMSTLength« endl;
if (outputFile)

progOutput«"\nCalcuated MST for
remaining graph: " « mainGraphMSTLength« endl;

float tempHeuristic =
getGraphUpdatedHeuristic(tempGraph,pStart) ;

if (tempHeuristic != 0)
{

if (displayOutputFlag)
cout « "Updating Above

MST Heuristic Estimate From: "
« mainGraphMSTLength

« " To: "
<< tempHeuristic

« endl;

if (outputFile)
progOutput « "Updating

Above MST Heuristic Estimate From: "
« mainGraphMSTLength
« " To: "

« tempHeuristic
<< endl;

remainingGraphHeuristicUpdates++;

mainGraphMSTLength - tempHeuristic;

}
else

remainingGraphNoHeuristicUpdates++;

120

processMouseO ;

tempGraph = tempGraphGraph;
}
flag++;

}
else

#endif
{

if (flag == 0)
{

float tempHeuristic =
getGraphUpdatedHeuristic(tempGraph,pStart) ;

if (tempHeuristic != 0)
{

#ifndef FAST_CODE
if (displayOutputFlag)

cout « "Using Updated MST
Heuristic Estimate: "

« tempHeuristic
<< endl;

if (outputFile)
progOutput « "Using

Updated MST Heuristic Estimate: "
<< tempHeuristic

<< endl;
remainingGraphHeuristicUpdates++;

#endif

mainGraphMSTLength = tempHeuristic;

}
else

{

#ifndef FAST_CODE

remainingGraphNoHeuristicUpdates++;

#endif

list<point> newPointList;

node v;

forall_nodes(v,tempGraph)

newPointList.append(tempGraph[v].to_point());

DELAUNAY_TRIANG(newPointList,tempGraph);

list<edge> el =
MIN_SPANNING_TREE(tempGraph,MSTcmp);

mainGraphMSTLength =
calculateMSTPathLength(tempGraph,el) ;

121

#ifndef FAST_CODE
if (displayOutputFlag)

cout«"\nCalcuated MST for
remaining graph: " « mainGraphMSTLength« endl;

if (outputFile)
progOutput«" \nCalcuated

MST for remaining graph: " << mainGraphMSTLength<< endl;
#endif

StoreGraphHeuristic(tempGraph,mainGraphMSTLength,pStart);
tempGraph = tempGraphGraph;

}

#ifndef FAST_CODE
if (stepFlag)
{

cout « "Enter 's' to step\n" ;
cin >> stringl;

cout « endl;
}

#endif

}
flag++;

}

#ifndef FAST_CODE
if (displayOutputFlag)

cout « "Start Point: "
<< pStart
<< " Proposed Path End Point: "
<< pEnd
<< endl;

if (outputFile)
progOutput « "Start Point: "

« pStart
« " Proposed Path End Point: "

« pEnd
<< endl;

bool updateFlag = false;
#endif

deleteNode(pEnd,tempGraph);

float tempVal2;

#ifndef FAST_CODE
if (graphicFlag)
{

list<point> newPointList;

node v;

forall_nodes(v,tempGraph)
newPointList.append(tempGraph[v].to_point());

DELAUNAY_TRIANG(newPointList,tempGraph);

122

file:///nCalcuated

displayWholeGraphO ;
displayGraph(tempGraph,false);

displayCurrentPath(LPoint);
displayProposedPath(pStart,pEnd);

list<edge> el =
MIN_SPANNING_TREE(tempGraph,MSTcmp) ;

displayMinSpanningPath(tempGraph,el);

tempVal2 =
calculateMSTPathLength(tempGraph,el);

if (displayOutputFlag)
cout << "Loop distance is: "

<< tempVail
« " MST of SubGraph is:

<< tempVal2
« " Total is: "

« (tempVall + tempVal2)
« endl;
if (outputFile)

progOutput « "Loop distance is: "
<< tempVall

« " MST of SubGraph is:
<< tempVal2
« " Total is: "

« (tempVall + tempVal2)
« endl;

float updatedHeuristic =
getSubGraphUpdatedHeuristic(tempGraph,pEnd);

if (updatedHeuristic)
{

if (displayOutputFlag)
cout << "Loop distance is: "

<< tempVall
« " Heuristic Update of MST of

SubGraph is:
<< updatedHeuristic

« " Total is: "
« (tempVall + updatedHeuristic)
<< endl;
if (outputFile)

progOutput « "Loop distance is:
ll

<< tempVall
« " Heuristic Update of MST

of SubGraph is: "
<< updatedHeuristic

« " Total is: "
« (tempVall +

updatedHeuristic)
« endl;

updateFlag = true;

tempVal2 = updatedHeuristic;

}
}

123

else
ttendif

{

float updatedHeuristic =
getSubGraphUpdatedHeuristic(tempGraph,pEnd);

if (updatedHeuristic != 0)
{

ftifndef FAST_C0DE
if (displayOutputFlag)

cout << "Loop distance is: "
<< tempVall
« " Heuristic Update of MST of

SubGraph is:
« updatedHeuristic

« " Total is: "
« (tempVall + updatedHeuristic)

<< endl;
if (outputFile)

progOutput << "Loop distance is:
11

« tempVall
« " Heuristic Update of MST of

SubGraph is:
<< updatedHeuristic

<< " Total is: "
« (tempVall + updatedHeuristic)

« endl;
updateFlag = true;

#endif
tempVal2 = updatedHeuristic;

}
else
{

list<point> newPointList;

node v;

forall_nodes(v,tempGraph)

newPointList.append(tempGraph[v].to_point());

DELAUNAY_TRIANG(newPointList,tempGraph);

list<edge> el =
MIN_SPANNING_TREE(tempGraph,MSTcmp);

tempVal2 =
calculateMSTPathLength(tempGraph,el);

StoreSubGraphHeuristic_2(tempGraphGraph,pEnd,tempVal2);

#ifndef FAST_C0DE
if (displayOutputFlag)

cout « "Loop distance is: "
« tempVall

« " MST of SubGraph is:

124

« tempVal2
« " Total is: "

« (tempVall + tempVal2)
« endl;

if (outputFile)
progOutput << "Loop distance is:

n

<< tempVall
« " MST of SubGraph is:

<< tempVal2
« " Total is: "

« (tempVall + tempVal2)
<< endl;

#endif
}

}

float tempVal3 = tempVall + tempVal2;

if (index == 0)
{

minPoint = pEnd;
minNode = tempNode;

minValue = tempVal3;
#ifndef FAST_CODE

minUpdateFlag = updateFlag;
#endif

}
else if (minValue > tempVal3)
{

minPoint = pEnd;
minNode = tempNode;

minValue = tempVal3;
#ifndef FAST_CODE

minUpdateFlag = updateFlag;
#endif

}

index++;

#ifndef FAST_C0DE
if (graphicFlag)
processMouse();

else if (stepFlag)
{

cout « "Enter 's' to step\n" ;
cin >> stringl;
cout << endl;

}
#endif

}

if (Kounter == 0)
{

point pi;

#ifdef PRUNE
int connectListValue;
connectListValue = connectList.back();

connectList.Pop();

125

edgeCounter -= connectListValue;
#endif

tempGraphGraph = remainingGraph;

pEnd = LPoint.back();
deleteNode(pEnd,tempGraphGraph);
StoreSubGraphHeuristic(tempGraphGraph,minPoint,MAXFLOAT);

remainingGraph = graphStack.pop();
LPoint.Pop();

pi = LPoint.back();

currentNode= getGraphNodeFromPoint(remainingGraph,pi);

pStart = LPoint.back();

ttifndef FAST_CODE
if (graphicFlag)

{
displayWholeGraph();
displayGraph(remainingGraph,false); //

display initial graph
displayCurrentPath(LPoint);

}

if (graphicFlag)
processMouse();

else if (stepFlag)
{

cout « "Enter 's' to step\n" ;
cin » stringl;
cout « endl;

}
#endif

continue;
}

#ifndef FAST_CODE
if (minUpdateFlag)

subGraphHeuristicUpdates++;
else

subGraphNoHeuristicUpdates++;

if (displayOutputFlag)

{
cout « "Main Graph MST: "
« mainGraphMSTLength

« " Min value is "
<< minValue
« endl;

if (laltThresholdFlag && thresholdSelectedFlag)
{ cout « "Current Threshold: " « currentThreshold

<< endl;
cout « "learning: " « (minValue -

mainGraphMSTLength) «endl; }
}

126

if (outputFile)
{

progOutput « "Main Graph MST: "
« mainGraphMSTLength
<< " Min value is "

« minValue
« endl;

if (laltThresholdFlag && thresholdSelectedFlag)
{ cout « "Current Threshold: " « currentThreshold

<< endl;
cout << "learning: "<< (minValue -

mainGraphMSTLength) «endl; }
}

#endif

tempPreviousGraph = remainingGraph;
graphStack.push(remainingGraph);

deleteNode(pStart,remainingGraph);

currentNode=minNode;
LPoint.append(remainingGraph[minNode].to_point()); //

store first

#ifdef PRUNE
int connectListValue = 0;
if (externalPoints.member(minPoint) &&

[externalPoints.member(pStart))
connectListValue = 1;

edgeCounter += connectListValue;
connectList.append(connectListValue) ;

#endif

// check for backtrack
float thresholdCalc;

if (altThresholdFlag)
thresholdCalc = mainGraphMSTLength *(1

+currentThreshold);
else

{ if (IbacktrackFlag)
thresholdCalc = mainGraphMSTLength

+currentThreshold;
else thresholdCalc = mainGraphMSTLength;}

if (thresholdCalc <= minValue)
point pi;

#ifndef FAST_CODE
statsforwardFlag = false;

if (IbacktrackFlag)
statsBacktrackSequenceCount+ +;

#endif
backtrackFlag = true;

#ifdef PRUNE
int connectListValue;
connectListValue = connectList.back();

127

#endif

connectList.Pop () ;
edgeCounter -= connectListValue;

remainingGraph = graphStack.pop();
LPoint.Pop();

pi = LPoint.back();
currentNode= getGraphNodeFromPoint(remainingGraph,pi);

StoreSubGraphHeuristic(tempGraphGraph,minPoint,minValue);
StoreGraphHeuristic(tempGraphGraph,minValue,pStart);

#ifndef FAST_CODE
if (backtrackFlag && remainingGraph.number_of_nodes()

== numpoints)
statsBacktrackSequenceRootCount++;

if (atRootFlag)
statsBacktrackRoot2Root++;

atRootFlag = false;
statsBacktrackCount++;

#endif

if (remainingGraph.number_of_nodes() == numpoints)

#ifndef FAST_CODE

point:"

same to point:

display initial graph

if (displayOutputFlag)
cout « endl

« endl
« " Backtrack - Graphs the same to

« pi
« " "
<< endl;
if (outputFile)

progOutput << endl
« endl

« " Backtrack - Graphs the

<< pi
« " "
<< endl;

if (graphicFlag)

displayWholeGraph();
displayGraph(remainingGraph,false); //

displayCurrentPath(LPoint);
processMouse();

else if (stepFlag)
{

cout « "Enter 's' to step\n" ;
cin » stringl;
cout << endl;

}
atRootFlag = true;

#endif

128

backtrackFlag = false;
currentThreshold - initThreshold;
continue;

}

#ifdef PRUNE
connectListValue = connectList.back();

connectList.Pop();
edgeCounter -= connectListValue;

#endif

remainingGraph = graphStack.pop();
LPoint.Pop();

pi = LPoint.back();
currentNode= getGraphNodeFromPoint(remainingGraph,pi);

#ifndef FAST_CODE
if (displayOutputFlag)

cout << endl
« endl

<< " Backtrack - POP twice to point: "
<< pi
« " "
« endl;

if (outputFile)
progOutput << endl

« endl
« " Backtrack - POP twice to

point: "
<< pi

« " "
<< endl;

if (graphicFlag)
{

displayWholeGraph();
displayGraph(remainingGraph,false); //

display initial graph
displayCurrentPath(LPoint);
processMouse();

}
else if (stepFlag)
{

cout << "Enter 's' to step\n" ;
cin >> stringl;
cout « endl;

}
#endif

continue;
}

previousGraph = tempPreviousGraph;

#ifndef FAST_CODE
if (graphicFlag)

processMouse() ;
else if (stepFlag)
{

129

cout << "Enter 's' to step\n" ;
cin >> stringl;
cout << endl;

}
#endif

if (altThresholdFlag)
thresholdCalc = mainGraphMSTLength *(1

+currentThreshold);
else

{ if (IbacktrackFlag)
thresholdCalc = mainGraphMSTLength

+currentThreshold;
else thresholdCalc = mainGraphMSTLength;)

numpoints)
{

if (thresholdCalc >= minValue && LPoint.sizeO ==

time_t endTime = time(NULL);

float pathDistance = redLineLength();
int i,j;
i = endTime;
j = startTime;
cout « "Number of Points: " « numpoints « endl;
cout « "Real Run Time: " « (i - j) « endl;
cout « "LEDA time calculation: " « used_time()« endl;

#ifndef FAST_CODE
if (outputFile)

{
progOutput « "Number of Points: " « numpoints

<< endl;
progOutput « "Real Run Time: " « (i - j)

« endl;
progOutput « " LEDA time calculation: " «

used_time()« endl;
}

#endif

#ifndef BORLANDC
struct tms timeBuff;

times (SctimeBuf f) ;

double xx = timeBuff.tms_utime;

double userTime = xx/CLOCKS_PER_SEC;

cout « "CPU User Time: " « userTime « endl;

#ifndef FAST_CODE
if (outputFile)

progOutput « "CPU User Time: " « userTime
<< endl;
#endif

xx = t imeBu f f.tms_s t ime;

double sysTime = xx/CLOCKS_PER_SEC;

130

cout << "OS System Time: " << sysTime « endl;

#ifndef FAST_CODE
if (outputFile)

progOutput « "OS System Time: " « sysTime
« endl;
#endif
#endif

cout << "Minimum Path ";
ttifndef FAST_CODE

if (outputFile)
progOutput « "Minimum Path ";

#endif
point xxxx;
forall(xxxx,LPoint)

{
cout << xxxx;

ttifndef FAST_CODE
if (outputFile)

progOutput « xxxx;
#endif

}
cout « LPoint.front() « endl;

ttifndef FAST_CODE
if (outputFile)

progOutput « LPoint.front() « endl;
#endif
LPoint.append(LPoint.front());

cout « "Path length is: " « pathDistance « " Closed
Loop distance is: " « redLineLength() «endl;

cout « "Init Threshold Value: "« initThreshold « endl;

#ifndef FAST_CODE
if (statisticsFlag)
{

cout « "Forward operations: " «
statsFowardCount « " Forward Sequences: " «
statsForwardSequenceCount « endl;

cout « "Backtrack operations: " «
statsBacktrackCount « " Backtrack Sequences: " «
statsBacktrackSequenceCount « endl;
cout « "Backtrack to root: " «
statsBacktrackSequenceRootCount « " Backtrack root to root: «
statsBacktrackRoot2Root « endl;

cout « "Heuristic Updates Used in Remaining Graph:
" « remainingGraphHeuristicUpdates « endl;

cout « "No Heuristic Updates Used in Remaining Graph:
" « remainingGraphNoHeuristicUpdates « endl;

cout « "Heuristic Updates Used in Sub-Graph: " «
subGraphHeuristicUpdates « endl; _

cout « "No Heuristic Updates Used in Sub-Graph:
« subGraphNoHeuristicUpdates « endl;

#ifdef NODE_TABLES
cout « "Remaining Graph Bin Statistics" « endl;

131

int i;

for (i = 0 ; i <= numpoints ; i++)
{
int sum = 0;

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr + i)-
>binNodePtr;

while (binNodePtr)
{

sum += binNodePtr->count;
binNodePtr = binNodePtr->nextBin;

}

cout « i « "-" << sum << " " ;
}
cout « endl;

cout « "SubGraph Bin Statistics" « endl;

for (i = 0 ; i <= numpoints ; i++)
{
int sum = 0;

struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr +
i)->binNodePtr;

while (binNodePtr)
{

sum += binNodePtr->count;
binNodePtr = binNodePtr->nextBin;

}

cout << i « "-" « sum « " ";
}
cout << endl;

#endif
}

#endif

cout « "Program Terminated\n" << endl;

#ifndef FAST_C0DE
if (outputFile)
{

progOutput << "Path length is: " << pathDistance << "
Closed Loop distance is: " « redLineLength () «endl ;

progOutput « "Init Threshold Value: " «
initThreshold « endl;

if (statisticsFlag)
{

progOutput << "Forward operations: " <<
statsFowardCount « " Forward Sequences: " <<
statsForwardSequenceCount << endl;

progOutput << "Backtrack operations: "
<< statsBacktrackCount « " Backtrack Sequences: " <<
statsBacktrackSequenceCount « endl;

132

progOutput << "Backtrack to root: " «
statsBacktrackSequenceRootCount « " Backtrack root to root: " <<
statsBacktrackRoot2Root << endl;

progOutput « "Heuristic Updates Used in
Remaining Graph: " « remainingGraphHeuristicUpdates << endl;

progOutput « "No Heuristic Updates Used in
Remaining Graph: " « remainingGraphNoHeuristicUpdates << endl;

progOutput « "Heuristic Updates Used in Sub-
Graph: " << subGraphHeuristicUpdates << endl;

progOutput « "No Heuristic Updates Used in
Sub-Graph: " << subGraphNoHeuristicUpdates << endl;

#ifdef NODE_TABLES
progOutput « "Remaining Graph Bin Statistics"

<< endl;
int i;

for (i = 0 ; i <= numpoints ; i++)
{
int sum = 0;

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr +

while (binNodePtr)
{

sum += binNodePtr->count;
binNodePtr = binNodePtr-

}

progOutput « i « "-" « sum « " ";
}
progOutput « endl;

progOutput « "SubGraph Bin Statistics" « endl;

for (i = 0 ; i <= numpoints ; i++)
{
int sum = 0;

struct binNode *binNodePtr;

binNodePtr =
(subGraphLoopUpTablePtr + i)->binNodePtr;

while (binNodePtr)

{
sum += binNodePtr->count;

binNodePtr = binNodePtr-
>nextBin;

}

progOutput « i « "-" « sum « " ";

}
progOutput « endl;

#endif
}

i)->binNodePtr;

>nextBin;

133

}
progOutput << "Program Terminated" « endl;

if (endOfRunGraph)
{

graphicFlag = true;
stepBut = WDD.button("STEP");

clearBut = WDD.button("CLEAR");
autoBut = WDD.button("AUTO");

exitBut = WDD.button("EXIT");

FindScalingFactors(&xfact,&yfact);
WDD.init(minX-xfact,maxX+xfact,minY-yfact);
WDD.display(window::center,window::center);
WDD.start_bufferingO ;

}

if (graphicFlag)
{

autoFlag = false;
displayWholeGraph();

displayGraph(remainingGraph,false); // display
initial graph

displayCurrentPath(LPoint);
processMouse();

WDD.stop_buffering();
}
#endif

return 0;
}

if (ialtThresholdFlag)

{
if (IbacktrackFlag)

if (mainGraphMSTLength < minValue)
currentThreshold = currentThreshold -

minValue+ mainGraphMSTLength;
}

else
{ if (mainGraphMSTLength > minValue)

currentThreshold = initThreshold;
// if (mainGraphMSTLength <= minValue)
// currentThreshold = 0.0;

}
}

#ifndef FAST_CODE
if (graphicFlag)

{
displayWholeGraph();

displayGraph(remainingGraph,false); // display
initial graph

displayCurrentPath(LPoint);
processMouse();
}

else if (stepFlag)

cout « "Enter 's' to step\n" ;

134

}

cin >> stringl;
cout << endl;

if (displayOutputFlag)
cout << endl
<< endl

« " Move Forward "
<< endl;

if (outputFile)
progOutput << endl

<< endl
« " Move Forward

« endl;

if (IstatsforwardFlag)
statsForwardSequenceCount++;

statsforwardFlag = true;
atRootFlag = false;
statsFowardCount++;

#endif
backtrackFlag = false;

}
return 0;

}

#ifndef FAST_CODE
void processMouse(void)
{

int but;
if (autoFlag && WDD.get_mouse() != NO_BUTTON)
{

but = WDD.read_mouse() ;
if (but == exitBut)

exit(0);
else if (but == autoBut)

autoFlag = !autoFlag;
return;

else if (but == clearBut)

WDD.clear();
return;

else

WDD.flush_buffer();
return;

}

if (autoFlag)

{
WDD.flush_buffer();
time_t ti;

ti = time(NULL);
ti +=delayGap;
while (ti > time(NULL))

135

return;
}

while (true)
{

but = WDD.read_mouse() ;

if (but == exitBut)
exit(O);

else if (but == autoBut)

autoFlag = !autoFlag;
return;

else if (but == clearBut)

WDD.clear();
return;

else

WDD.flush_buffer();
return;

}
}

void FindScalingFactors(float *xfact,float *yfact)

{
// Calculates a value for a scaling factor that will allow
// the whole graph to be displayed in a window

*xfact = (maxX -minX)/100*5;
*yfact = (maxY - minY)/100*10;
float xgap = maxX-minX+2* *xfact;
float ygap = maxY-minY+2* *yfact;

float sfact = WDD.heightO/ygap;

float cal_xgap = WDD.width()/sfact;

if (xgap < cal_xgap)
*xfact += (cal_xgap - xgap)/2;

return;
}

#endif

node GetFirstNode(list<point>& L,GRAPH<point,int>& DT, int

startPoint)
{

static node v;
point p;

int i = 1;
forall(p,L)
{
if (i++ == startPoint)

break;
}

136

forall_nodes(v,DT)
if (DT[v].to_point() == p)

return v;

return NULL;
}

void deleteNode(point& p,GRAPH<point,int>& G)
{

node v;
list<edge> el;

forall_nodes(v,G)
C

if (G[v].to_point() == p)
{

// removed to giveabout .5% gain
// el = G.adj_edges(v);
// G.del_edges(el);

G.del_node(v);
break;

}
}
return;

}

#ifndef FAST_CODE
void displayGraph(GRAPH<point,int>& G,bool clearFlag)
{

node v;
edge e;

WDD.set_line_width(1);
WDD.set_node_width(4);

WDD.set_color(COLOR_NORMAL);

if (clearFlag)
WDD.clear();

forall_nodes(v,G)
WDD.draw_filled_node(G[v].to_point());

forall_edges(e,G)
{

node v = G.source(e), w = G.target(e);
WDD.draw_segment(G[v].to_point(),G[w].to_point());

}

WDD.flush_buffer();

}

void displayWholeGraph(void)

{
node v;
edge e;

WDD.set_line_width(1);

137

WDD.set_node_width(4);

WDD.set_Color(COLOR_DELETED_PATH);

WDD.clear();

forall_nodes(v,DT)
WDD.draw_filled_node(DT[v].to_point());

forall_edges(e,DT)
(

node v = DT.source(e), w = DT.target(e);
WDD.draw_segment(DT[v].to_point 0,DT[w].to_point());

}

WDD.flush_buffer();
}

void displayProposedPath(point& pl,point& p2)
{

WDD.set_line_width(4);
WDD.set_COlor(COLOR_PROPOSED_PATH);
WDD.draw_segment(pi,p2);

WDD.flush_buffer();
}

void displayCurrentPath(list<point>& listPoints)

{
int i= 0;

if (listPoints.length() <= 1)
return;

WDD.set_line_width(4) ;
WDD.set_color(COLOR_CURRENT_PATH);

point pl,p2,x;
forall(x,listPoints)
{

if (i == 0)
{

pl = x;
i++;

continue;
}
i++;
p2 = x;

WDD.draw_segment(pl,p2);
pl = p2;

}
WDD.flush_buffer();

}

void displayMinSpanningPath(GRAPH<point,int>& G, list<edge>& el)

(
edge e;
WDD.set_line_width(4);

138

WDD.set_color(COLOR_MIN_PATH);

forall(e,el)
{

node v = G.source(e), w = G.target(e);
WDD.draw_segment(G[v].to_point(),G[w].to_point());

}
WDD.flush_buffer();

}

#endif

float calculateMSTPathLength(GRAPH<point,int>& G, list<edge>& el!

{
point pis,pit;
node nls,nlt;
float dist = 0.0;
edge e;

forall(e,el)
{

nls = source(e);
nit = target(e);

pis = G[nls].to_point();
pit = G[nlt].to_point();

dist += pis.distance(pit);
}
return dist;

int MSTcmp(const edge &el,const edge &e2)

{
GRAPH<point,int> *G;

node nls,nlt,n2s,n2t;
point pls,plt,p2s,p2t;

G = (GRAPH<point,int> *)graph_of(el);

nls = source(el);
n2s = source(e2);

nit = target(el);
n2t = target(e2);

pis = (*G)[nls].to_point()
pit = (*G)[nit].to_point()
p2s = (*G)[n2s].to_point()
p2t = (*G)[n2t].to_point()

return cmp_distances(pls,plt,p2s,p2t)

int isDeletedPoint(point &pEnd)

{
point x;

forall(x,LPoint)
{

if (x == pEnd)
return 1;

139

}
return 0;

}

node getGraphNodeFromPoint(GRAPH<point,int>& G,point π
{

node v;

forall_nodes(v,G)
{

if (G[v].to_point() == pl)
return v;

}
cerr << "Point not in graph" << endl;

exit(1);
return v;

void InitLookUpTables(void)
{

graphLoopUpTablePtr = new heuristicLookUpTable[numpoints+1];
if (!graphLoopUpTablePtr)
{

cerr « endl « "NO MEMORY FOR LOOKUP TABLE (1)" « endl
t

exit(1);
}
memset((void

*)graphLoopUpTablePtr,'\0',sizeof(heuristicLookUpTable) *
(numpoints+1));

#ifdef NODE_TABLES
tempGraphHeuristicNodePtr = new heuristicNode[bin_size];

if (!tempGraphHeuristicNodePtr)
{

cerr « endl « "NO MEMORY FOR TEMP HEURISTIC (2)" «
endl ;

exit(1);
}

#endif

subGraphLoopUpTablePtr = new
heuristicLookUpTable[numpoints+1];

if (!subGraphLoopUpTablePtr)

cerr « endl « "NO MEMORY FOR LOOKUP TABLE (3)" « endl

f

exit(l);
}
memset((void

*)subGraphLoopUpTablePtr,'\0',sizeof(heuristicLookUpTable) *
(numpoints+1));

#ifdef NODE_TABLES
tempSubGraphHeuristicNodePtr = new heuristicNode[bin_size];

140

if (ItempSubGraphHeuristicNodePtr)
{

cerr « endl « "NO MEMORY FOR TEMP HEURISTIC (4)" «
endl ;

exit(l);
}

#endif
}

#ifdef NODE_TABLES
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,points
startPoint)
{

int numOfNodes = G.number_of_nodes();

float *ptsBuffer = new float[LPoint.size() * 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (5)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

* (ptsBuf fer + i) = x.xcoordO;
i++;
MptsBuffer + i) = x.ycoordO;
i++;

}

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr =

new binNode;
if (IbinNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (6)" «

endl
exit(1);

}
binNodePtr->count - 1;

binNodePtr->nextBin = NULL;

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size];

if (!binNodePtr->heuristicNodePtr)

{

141

cerr « endl « "NO MEMORY FOR BIN NODE (7)" «
endl ;

exit(l);
}
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size);
binNodePtr->heuristicNodePtr[0].heuristic = heuristic;
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer;

}
else

StoreGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);
}

void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer)
{

int pos;

while (binNodePtr)
{

if ((pos = myGraphBsearch(ptsBuffer,
binNodePtr,LPoint.sizeO)) == -1)

{
if (binNodePtr->count == bin_size)
{

if (binNodePtr->nextBin == NULL)
{

if ((binNodePtr->nextBin = new binNode)
== NULL)

{
cerr « endl « "NO MEMORY FOR

exit(l);
}

binNodePtr->nextBin->count = 1;
binNodePtr->nextBin->nextBin = NULL;

binNodePtr->nextBin->heuristicNodePtr = new

heuristicNode[bin_size];

if (!binNodePtr->nextBin-

>heuristicNodePtr)
{

cerr « endl « "NO MEMORY FOR
BIN NODE (9) " « endl ;

exit(1);
}

memset(binNodePtr->nextBin-
>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size);

binNodePtr->nextBin-
>heuristicNodePtr[0].heuristic = heuristic;

binNodePtr->nextBin-
>heuristicNodePtr[0].graphPtr = ptsBuffer;

return;
}

binNodePtr = binNodePtr->nextBin;
continue;

BIN NODE (8) " « endl

142

InsertGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);
return;
}
else

{
if (binNodePtr->heuristicNodePtr[pos].heuristic <

heuristic)
binNodePtr->heuristicNodePtr[pos].heuristic =

heuristic;
return;

}
}
cerr « endl « "IMPOSSIBLE CONDITION (10)" « endl ;

exit(l);
}

void InsertGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic, float *ptsBuffer)
{

int low,
high,
mid,
result;

// set up a binary search to find the insertion point
high = binNodePtr->count -1;
low = 0;

while (low <= high)
{

mid = (high + low)/2;
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,LPoint.size());
if (result < 0)

high = mid -1;
else if (result > 0)

low = mid + 1;
else

// the condition is impossible and indicates a major problem
cerr « endl « "IMPOSSIBLE CONDITION (11)" «

endl ;
exit(l);

}
}

// move elements from insertion point to a holding buffer
memmove(tempGraphHeuristicNodePtr,tbinNodePtr-

>heuristicNodePtr[low],(binNodePtr->count - low)*sizeof(struct
heuristicNode));

binNodePtr->heuristicNodePtr[low].heuristic = heuristic;
binNodePtr->heuristicNodePtr[low].graphPtr = ptsBuffer;

// move schedule nodes back to the backtrack position plus one
memmove(kbinNodePtr-

>heuristicNodePtr[low+1],tempGraphHeuristicNodePtr,(binNodePtr->count
- low)*sizeof(struct heuristicNode));

143

// increament the count of schedule nodes in the current backtrack
node

binNodePtr->count++;
return;

}

int myGraphBsearch(float *ptsBuffer, struct binNode *binNodePtr,int
size)
{
// binary search the backtrack node for the key
// return -1 if not found or keys position in backtrack node

int low,
high,
mid,
result;

high = binNodePtr->count -1;
low = 0;

while (low <= high)
{

mid = (high + low)/2;
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,size);
if (result < 0)

high = mid -1;
else if (result > 0)

low = mid + 1;
else

return mid;
}
return(-1);

}

float getGraphUpdatedHeuristic(GRAPH<point,int>& G, pointSc

startPoint)
{

int numOfNodes = G.number_of_nodes();

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)
return 0;

float *ptsBuffer = new float[LPoint.size() * 2] ;
if (IptsBuffer)

cerr « endl « "NO MEMORY FOR POINT BUFFER (12)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)

144

{
*(ptsBuffer + i)
i++;
*(ptsBuffer + i)
i++;

}

int pos;

while (binNodePtr)
{

if ((pos = myGraphBsearch(ptsBuffer,
binNodePtr, LPoint.sizeO)) != -1)

{
delete ptsBuffer;

return binNodePtr->heuristicNodePtr[pos].heuristic;
}

binNodePtr = binNodePtr->nextBin;
)

delete ptsBuffer;
return 0;

}

//***

void StoreSubGraphHeuristic(GRAPH<point,int>& G,point& endPoint,float
heuristic)
{

int numOfNodes = G.number„of_nodes0;

float *ptsBuffer = new float[LPoint.size() * 2];
if (iptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (13)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

* (ptsBuffer + i) = x.xcoordO;
i++;
* (ptsBuffer + i) = x.ycoordO;
i++;

}

struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)

{

= x.xcoord() ;

= x.ycoord();

145

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr
= new binNode;

if (!binNodePtr)
{

cerr « endl « "NO MEMORY FOR BIN NODE (14)" «
endl ;

exit(1);
}

binNodePtr->count = 1;
binNodePtr->nextBin = NULL;

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size];

if (!binNodePtr->heuristicNodePtr)
{

cerr « endl « "NO MEMORY FOR BIN NODE (15)" «
endl ;

exit(1);
}
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size);

binNodePtr->heuristicNodePtr[0].heuristic = heuristic;
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer;

}
else

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);

}

void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point&
endPoint,float heuristic)
{

int numOfNodes = G.number_of_nodes();

float *ptsBuffer = new float[LPoint.size() * 2 + 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (16)" « endl

exit(l);
}

point x;

int i = 0;
forall(x,LPoint)
{

* (ptsBuffer + i) = x.xcoordO;
i++;
* (ptsBuffer + i) = x.ycoordO;
i + + ;

}

* (ptsBuffer + i) = endPoint .xcoordO ;

i++;
*(ptsBuffer + i) = endPoint.ycoord();

146

i++;

struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)
{
binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr

= new binNode;
if (!binNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (17)" «

endl
exit(l);

}
binNodePtr->count = 1;

binNodePtr->nextBin = NULL;

binNodePtr->heuristicNodePtr = new heuristicNode[bin_size];

if (!binNodePtr->heuristicNodePtr)
{

cerr « endl « "NO MEMORY FOR BIN NODE (18)" «
endl

exit(1);
}
memset(binNodePtr-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size);

binNodePtr->heuristicNodePtr[0].heuristic = heuristic;
binNodePtr->heuristicNodePtr[0].graphPtr = ptsBuffer;

}
else

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);

}

void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer)
{

int pos;

while (binNodePtr)
{

if ((pos =
mySubGraphBsearch(ptsBuffer,binNodePtr,LPoint.size())) == -1)

{
if (binNodePtr->count == bin_size)
{

if (binNodePtr->nextBin == NULL)
{

if ((binNodePtr->nextBin - new binNode)
== NULL)

{
cerr « endl « "NO MEMORY FOR

BIN NODE (19)" « endl ;
exit(1);

147

}

binNodePtr->nextBin->count = 1;
binNodePtr->nextBin->nextBin = NULL;

binNodePtr->nextBin->heuristicNodePtr = new

heuristicNode[bin_size];

if (!binNodePtr->nextBin-
>heuristicNodePtr)

{
cerr « endl « "NO MEMORY FOR

BIN NODE (20)" « endl ;
exit(1);

}
memset(binNodePtr->nextBin-

>heuristicNodePtr,'\0',sizeof(heuristicNode)*bin_size);
binNodePtr->nextBin-

>heuristicNodePtr[0].heuristic = heuristic;
binNodePtr->nextBin-

>heuristicNodePtr[0].graphPtr = ptsBuffer;
return;

}

binNodePtr = binNodePtr->nextBin;
continue;

}

InsertSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);

return;
}
else

if (binNodePtr->heuristicNodePtr[pos].heuristic <

heuristic)
binNodePtr->heuristicNodePtr[pos].heuristic =

heuristic;
return;

}

cerr « endl « "IMPOSSIBLE CONDITION (21)" « endl ;

exit(l);
}

void InsertSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float

heuristic, float *ptsBuffer)

{
int low,

high,
mid,
result;

// set up a binary search to find the insertion point
high = binNodePtr->count -1;
low = 0;

while (low <= high)

{
mid = (high + low)/2;

148

result = cmpPts(ptsBuffer,binNodePtr-
>heuristicNodePtr[mid] .graphPtr,LPoint.size()) ;

if (result < 0)
high = mid -1;

else if (result > 0)
low = mid + 1;

else
{

// the condition is impossible and indicates a major problem
cerr « endl « "IMPOSSIBLE CONDITION (22)" « endl

exit(1);
}

}

// move elements from insertion point to a holding buffer
memmove(tempSubGraphHeuristicNodePtr,kbinNodePtr-

>heuristicNodePtr[low],(binNodePtr->count - low)*sizeof(struct
heuristicNode));

binNodePtr->heuristicNodePtr[low].heuristic = heuristic;
binNodePtr->heuristicNodePtr[low].graphPtr = ptsBuffer;

// move schedule nodes back to the backtrack position plus one
memmove(SbinNodePtr-

>heuristicNodePtr[low+1],tempSubGraphHeuristicNodePtr,(binNodePtr-
>count - low)*sizeof(struct heuristicNode));

// increament the count of schedule nodes in the current backtrack
node

binNodePtr->count++;
return;

}

int mySubGraphBsearch(float *ptsBuffer, struct binNode
*binNodePtr,int size)
{
// binary search the backtrack node for the key
// return -1 if not found or keys position in backtrack node

int low,
high,
mid,
result;

high - binNodePtr->count -1;
low = 0;

while (low <= high)
{

mid = (high + low)/2;
result = cmpPts(ptsBuffer,binNodePtr-

>heuristicNodePtr[mid].graphPtr,size) ;
if (result < 0)

high = mid -1;
else if (result > 0)

low = mid + 1;
else

return mid;
}
return(-1);

149

}

float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, point&
endPoint)
{

int numOfNodes = G.number_of_nodes();
struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)
return 0;

float *ptsBuffer = new float[LPoint.size() * 2 + 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (23)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

*(ptsBuffer + i) = x.xcoord();
i++;
*(ptsBuffer + i) = x.ycoord();
i++;

}
MptsBuffer + i) - endPoint .xcoord() ;
i++;
* (ptsBuffer + i) = endPoint.ycoordO ;
i++;

int pos;

while (binNodePtr)
{

if ((pos = mySubGraphBsearch(ptsBuffer,
binNodePtr,LPoint.size()+1)) != -1)

{
delete ptsBuffer;

return binNodePtr->heuristicNodePtr[pos].heuristic;
}

binNodePtr = binNodePtr->nextBin;
}

delete ptsBuffer;
return 0;

}

#else
void StoreGraphHeuristic(GRAPH<point,int>& G,float heuristic,point
&p)
{

150

int numOfNodes = G.number_of_nodes();

float *ptsBuffer = new float[LPoint.size() * 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (24)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

*(ptsBuffer + i)
i++;
*(ptsBuffer + i)
i++;

}

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)
{
binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr =

new binNode;
if (IbinNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (25)" «

endl ;
exit(1);

}
binNodePtr->left = NULL;

binNodePtr->right = NULL;
binNodePtr->heuristic = heuristic;
binNodePtr->graphPtr = ptsBuffer;

}
else

StoreGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);
}

void StoreGraphUpdatedHeuristic(struct binNode *binNodePtr,float
heuristic,float *ptsBuffer)

{
struct binNode *tempPtr;
int result;

while (binNodePtr)
{

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr, LPoint.sizeO) ;

tempPtr = binNodePtr;
if (result == 0)
{

if (binNodePtr->heuristic < heuristic)
binNodePtr->heuristic = heuristic;

= x.xcoord() ;

= x.ycoord() ;

151

return;
}
else if (result == -1)

binNodePtr = binNodePtr->left;
else

binNodePtr = binNodePtr->right;
}

binNodePtr = new binNode;
if (!binNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (26) " « endl ;

exit(l);
}
binNodePtr->left = NULL;

binNodePtr->right = NULL;
binNodePtr->heuristic = heuristic;
binNodePtr->graphPtr = ptsBuffer;

if (result == -1)
tempPtr->left = binNodePtr;

else
tempPtr->right = binNodePtr;
return;

float getGraphUpdatedHeuristic(GRAPH<point,int>& G, points
startPoint)
{

int numOfNodes = G.number_of_nodes();

struct binNode *binNodePtr;

binNodePtr = (graphLoopUpTablePtr + numOfNodes)->binNodePtr;
if (binNodePtr == NULL)

return 0;

float *ptsBuffer = new float[LPoint.size() * 2];
if (iptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (27)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

* (ptsBuffer + i) = x.xcoordO;
i++;
* (ptsBuffer + i) = x.ycoordO;
i++;

}

while (binNodePtr)

{
int result;

152

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size());

if (result == 0)
{

delete ptsBuffer;
return binNodePtr->heuristic;

}
else if (result == -1)

binNodePtr = binNodePtr->left;
else

binNodePtr = binNodePtr->right;
}

delete ptsBuffer;
return 0;

}

//***

void StoreSubGraphHeuristic(GRAPH<point,int>& G,point &p,float
heuristic)
{

int numOfNodes = G.number_of_nodes();

float *ptsBuffer = new float[LPoint.size() * 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (28)" « endl

exit(1);
}

point x;

int i = 0;
forall(x,LPoint)
{

* (ptsBuffer + i) = x.xcoordO;
i++;
*(ptsBuffer + i) = x.ycoord();
i++;

}

struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr

= new binNode;
if (!binNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (29)" «

endl ;
exit(1);

}
binNodePtr->left = NULL;

binNodePtr->right = NULL;
binNodePtr->heuristic = heuristic;
binNodePtr->graphPtr = ptsBuffer;

153

}
else

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);
}

void StoreSubGraphHeuristic_2(GRAPH<point,int>& G,point &p,float
heuristic)

C
int numOfNodes = G.number_of_nodes();

float *ptsBuffer = new float[LPoint.size() * 2];
if (IptsBuffer)

{
cerr « endl « "NO MEMORY FOR POINT BUFFER (30)" « endl

exit(1);

}

point x;

int i = 0;
forall(x,LPoint)

{
* (ptsBuffer + i) = x.xcoordO;
i++;
* (ptsBuffer + i) = x.ycoordO;
i++;

}
*(ptsBuffer + i) = p.xcoord();
i++;
* (ptsBuffer + i) - p.ycoordO ;
i + +;

struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr;

if (binNodePtr == NULL)

{
binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr

= new binNode;
if (!binNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (31)" «

endl ;
exit(l) ;

}
binNodePtr->left = NULL;

binNodePtr->right = NULL;
binNodePtr->heuristic = heuristic;
binNodePtr->graphPtr = ptsBuffer;

}
else

StoreSubGraphUpdatedHeuristic(binNodePtr,heuristic,ptsBuffer);

}

void StoreSubGraphUpdatedHeuristic(struct binNode *binNodePtr,float

heuristic,float *ptsBuffer)

154

{
struct binNode *tempPtr = binNodePtr;

int result;

while (binNodePtr)
{

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size());

tempPtr = binNodePtr;
if (result == 0)
{

if (binNodePtr->heuristic < heuristic)
binNodePtr->heuristic = heuristic;

return;
}
else if (result == -1)

binNodePtr = binNodePtr->left;
else

binNodePtr = binNodePtr->right;
}

binNodePtr = new binNode;
if (IbinNodePtr)

{
cerr « endl « "NO MEMORY FOR BIN NODE (32)" « endl ;

exit(l);
}
binNodePtr->left = NULL;

binNodePtr->right = NULL;
binNodePtr->heuristic = heuristic;
binNodePtr->graphPtr = ptsBuffer;

if (result == -1)
tempPtr->left = binNodePtr;

else
tempPtr->right = binNodePtr;
return;

float getSubGraphUpdatedHeuristic(GRAPH<point,int>& G, points

endPoint)
{

int numOfNodes = G.number_of_nodes();
struct binNode *binNodePtr;

binNodePtr = (subGraphLoopUpTablePtr + numOfNodes)->binNodePtr,•

if (binNodePtr == NULL)
return 0;

float *ptsBuffer = new float[LPoint.size() * 2 + 2];
if ('ptsBuffer)

cerr « endl « "NO MEMORY FOR POINT BUFFER (33)" « endl

exit(l);

}

point x;

155

int i = 0;
forall(x,LPoint)
{

*(ptsBuffer + i) = x.xcoord();
i++;
*(ptsBuffer + i) = x.ycoord();
i + + ;

}
*(ptsBuffer + i) = endPoint.xcoord();

i++;
*(ptsBuffer + i) = endPoint.ycoord();

i++;

while (binNodePtr)

{
int result;

result = cmpPts(ptsBuffer,binNodePtr-
>graphPtr,LPoint.size()+1);

if (result == 0)
{

delete ptsBuffer;
return binNodePtr->heuristic;

}
else if (result == -1)

binNodePtr = binNodePtr->left;
else

binNodePtr = binNodePtr->right;
}

delete ptsBuffer;
return 0;

}

#endif

float redLineLength(void)
{

float tempDistance = 0.0;

if (LPoint.sizeO > 1)
{

int i,
j ;

point xl,
x2;

list_item listPtr;

j = LPoint.size();

xl = LPoint.front();
listPtr = LPoint.first();
for (i = 1 ; i < j ; i++)
{

listPtr = LPoint.succ(listPtr);
x2 = LPoint.contents(listPtr) ;
tempDistance+= xl.distance(x2);
xl = x2;

}
}

return tempDistance;

}

156

int cmpPts(float *pl, float *p2, int count)
{

int i ;
count = count*2;
for (i = 0 ; i < count ; i++,pl++,p2++)

if (*pl < *p2)
return -1;

else if (*pl > *p2)
return 1;

return 0;
}

void processArguments(int argc,char *argv[])
{

char *cptr;

if (argc == 1)
{

displayUsage() ;
exit(0);

}

cptr = argv[l];

if (strlen(argv[l]) == 1)
{

fprintf(stderr,"Invalid first argument\n");
displayUsage();
exit(0);

}

if (*cptr ! = '-')
{

fprintf(stderr,"Expecting a '-' in front of an
option\n");

displayUsage();
exit(0);

}

int i ;

#ifndef FAST_C0DE
int counter = 0;
bool unknownFlag = false;

for (i = 1 ; i < (int)strlen(argv[l]) ; i++)

{
// graphic flag

if (*(cptr + i) == 'g')
{

if (graphSelectedFlag)
{

fprintf(stderr,"The 'g' option has been
repeated or 'G' is also specified\n");

displayUsage();

157

exit(O) ;
}
counter++;
graphSelectedFlag = true;

graphicFlag = true;
continue;

if (* (cptr + i) == 'GO
{

if (graphSelectedFlag)
{

fprintf(stderr,"The 'G' option has been
repeated or 'g' is also specified\n");

displayUsage();
exit (0);

}
counter++;
graphSelectedFlag = true;

endOfRunGraph = true;
continue;

// Step flag
if (*(cptr + i) == 's')

{
if (stepFlag)

{
fprintf(stderr,"The 's' option has been

repeated\n");
displayUsage();

exit(0);
}
counter++;

stepFlag = true;
continue;

// Statistics flag
if (*(cptr + i) == 'SO

{
if (statisticsFlag)

{
fprintf(stderr,"The 'S' option has been

repeated\n");
displayUsage();

exit(0);
}
counter++;

statisticsFlag = true;
continue;

// Display Stepped Output flag
if (Mcptr + i) == 'o')

{
if (displayOutputFlag)

{

158

fprintf(stderr,"The 'o' option has been
repeated\n");

displayUsage();
exit(0);

}
counter++;

displayOutputFlag = true;
continue;

unknownFlag = true;
}

if (unknownFlag && counter)
{

fprintf(stderr,"Unknown argument entered in first
parameter\n");

displayUsage();
exit(0);

}

if (strlen(argv[l]) > 2 && unknownFlag)
{

fprintf(stderr,"Unknown arguments entered in first first
parameter\n");

displayUsage();
exit(0);

}

#endif

#ifndef FAST_CODE
char *validOptions = "rftTpOdb";

#else
char *validOptions = "rftTpb";

#endif
// r - random points
lit- input file
// t - threshold
/IT- alternate threshold
// p - point
// 0 - output file
// d - delay

int startlndex;

#ifndef FAST_CODE
if (counter)

startlndex = 2;
else

#endif
startlndex = 1;

while (startlndex != argc)

{
cptr = argv[startlndex] ;

bool found = false;

for (i = 0 ; i < (int)strlen(validOptions) ; i++)

{

159

if (*(cptr+l) == validOptions[i])
{

found = true;
break;

}
}

if (Ifound)
{

fprintf(stderr,"Unknown argument in parameter
%d\n",startlndex);

displayUsage();
exit(O);

}

if (argc < startlndex +1)
{

fprintf(stderr,"Invalid number of parameters
provided\n");

displayUsage();
exit(O);

}

if (strlen(cptr) != 2 || *cptr != '-')
{

fprintf(stderr,"Expecting a '-' in front of
parameter %d\n",startlndex);

displayUsage();
exit(0);

}

if(*(cptr +1) == 't')
{

if (thresholdSelectedFlag)
{

fprintf(stderr,"The 'f option has been
repeated or ' T' is also specified\n");

displayUsage();
exit(0);

}
initThreshold = currentThreshold = (float)atof(

argv[startlndex+l]);
startIndex+=2;

thresholdSelectedFlag = true;

}
if (Mcptr + 1) == 'T')
{

if (thresholdSelectedFlag)

fprintf(stderr,"The 'T' option has been

repeated or ' t' is also specified\n");
displayUsage();

exit(0);

initThreshold = currentThreshold = (float)atof(
argv[startlndex+l]);

altThresholdFlag = true;
thresholdSelectedFlag = true;

startIndex+=2;

160

}
else if (*(cptr +1) == 'p')

{
startPoint = atoi(argv[startlndex+l]);

if (startPoint < 1)
{

fprintf(stderr,"Invalid start point entered:
%s\n",argv[startlndex+l]);

displayUsage();
exit(O);

}
startIndex+=2;

}
else if (Mcptr +1) == 'b')

{
int binSizeValue = atoi(argv[startlndex+l]);

if (binSizeValue < 1 || binSizeValue > 3)

fprintf(stderr,"Invalid bin size (Enter 1,2

or 3)\n")
displayUsage();
exit(O);

}
if (binSizeValue == 1)

bin_size = 1000;
else if (binSizeValue == 2)

bin_size = 10000;
else

bin_size = 100000;
startIndex+=2;

}

#ifndef FAST_CODE
else if (*(cptr +1) == 'd')

delayGap = atoi(argv[startlndex+l]);
if (delayGap < 1)

fprintf(stderr,"Invalid delay entered:

%s\n",argv[startlndex+l]);
displayUsage();
exit(0);

}
if (!graphicFlag)

fprintf(stderr,"Delay parameter requires the

selection of Graphics option\n");
displayUsage();
exit(0);

}
startIndex+=2;

}
else if (Mcptr +1) == '0')

outputFile = argv[startlndex+l];
FILE *fp;

if ((fp = fopen(outputFile,"w")) == NULL)
{ ' r.-,

fprintf(stderr,"Unable to open output tile
%s\n",outputFile);

displayUsage();

161

exit(O) ;
}

fclose(fp);
startIndex+=2;

}
#endif

else if (Mcptr +1) == 'f')
{

if (argc < startlndex +2)
{

fprintf(stderr,"Expecting a filename as last
parameter - none supplied\n");

displayUsage();
exit(O);

}
else if (argc > startlndex +2)
{

fprintf(stderr,"Too many parameters supplied
- must be last set of parameter\n");

displayUsage();
exit(O);

}

filePointFlag - true;
cptr = argv[startlndex + 1] ;
readlnGraph(cptr) ;
startIndex+=2 ;

}
else if (Mcptr +1) == 'r')

{
if (argc < startlndex +7)

{
fprintf(stderr,"Invalid number of parameters

supplied for generating random points\n");
displayUsage();
exit(O) ;

}

else if (argc > startlndex +7)
{

fprintf(stderr,"Invalid number of parameters
supplied for generating random points\nmust be last set of
parameters\n");

displayUsage();
exit(O);

}
randomPointFlag = true;

int points,
xlow,

ylow,
xhigh,
yhigh,

prec ;
points = atoi(argv[startlndex + 1]) ;
xlow = atoi(argv[startlndex + 2]) ;
ylow = atoi(argv[startlndex + 3]) ;
xhigh = atoi(argv[startlndex + 4]) ;
yhigh - atoi(argv[startlndex + 5]);

162

file:///nmust

prec = atoi(argv[startlndex + 6]);
generateRandomGraph(points,xlow,ylow,xhigh,yhigh,prec);

startIndex+=7;
}

}

if (startPoint > numpoints)
{

fprintf(stderr,"Invalid start point entered: %d (>
number of points in graph: %d) \n",startPoint,numpoints);

displayUsage();
exit(0);

}

if (IrandomPointFlag && !filePointFlag)
{

fprintf(stderr,"No data source specified - either file or
random point generation\n");

displayUsage();
exit(0);

}
}

void readInGraph(char *fileName)
{

FILE *fp;

fp = fopen(fileName,"r") ;

if (fp == NULL)

fprintf(stderr,"File %s does not exist\n", fileName);
displayUsage();
exit(0);

}

fscanf(fp,"%d",Snumpoints) ;

point p;

int i ;

for (i=0; i<numpoints ;i++)

{
float a,b;

int count;

count = fscanf(fp,"%f %f",&a,&b);

if (count != 2)

fprintf(stderr,"Invalided data in file\n");
displayUsage();

exit(0);
}

if (i == 0)
{

maxX=minX=a;

163

maxY=minY=b;
}

else
{

maxX=max(maxX,a)
minX=min(minX,a)
maxY=max(maxY,b)
minY=min(minY,b)

}
p = point(a,b);

L.append(p);
}
fclose(fp);

}

void generateRandomGraph(int points,int xlow,int ylow,int xhigh,int
yhigh,int prec)
{

numpoints = points;
int i ;

// randomize(); // removed by diniz

srand(time(NULL));
float *xPtr, *yPtr;

xPtr = (float *) malloc(numpoints *sizeof(float));
yPtr = (float *) malloc(numpoints *sizeof(float));

if (!(xPtr && yPtr))
{

fprintf(stderr,"No memory left to generate random
points\n");

exit(O);
}

point p;
int mult = 1;
for (i = 0 ; i < prec ; i++)
mult *= 10;

for (i = 0 ; i < numpoints ; i++)
{
int loop = 1;

while (loop)
{

int ii;
float j,k,l;

j = rand()%(xhigh - xlow);

k = rand();

while ((1 = randO) == 0)

MxPtr+i) = xlow + j +
((float)((int)((k/1)*mult)%mult)/mult);

164

j = rand()%(yhigh - ylow);
k = rand();

while ((1 = rand()) == 0)
t

MyPtr+i) = ylow + j +
((double)((int)((k/1)*mult)%mult)/mult);

if (MyPtr+i)> yhigh || MxPtr + i) > xhigh)
continue;

loop = 0;
for (ii = 0 ; ii < i ; ii++)

if (MxPtr + i) == MxPtr + ii) && MyPtr +
i) == *(yPtr + ii))

{
loop = 1;

break;
}

}

if (i == 0)
{

maxX=minX= MxPtr + i) ;
maxY=minY=MyPtr + i) ;
}

else
{

maxX=max(maxX, MxPtr + i))
minX=min(minX, MxPtr + i))
maxY=max(maxY, MyPtr + i))
minY=min(minY,*(yPtr + i))

}

p = point (MxPtr + i), MyPtr + i)) ;
L.append(p);

}
FILE *fp;

fp = fopen("random.dat","w");

if (fp)
{

fprintf(fp,"%d\n",numpoints) ;

for (i = 0 ; i < numpoints ; i++)
fprintf (fp, "%.*f %.*f\n",prec, MxPtr +

i),prec,*(yPtr + i));
fclose(fp);

}
}

void displayUsage(void)

{
#ifdef FAST_CODE

fprintf(stderr,"Usage: FAST VERSION \n");
fprintf(stderr,"%s [<-p|t|T|b value>....] <-f value>|<-r

values>\n",progname);
#else

165

fprintf(stderr,"Usage:\n") ;
fprintf(stderr,"%s [<-gGsSo>] [<-p|t|T|b|0|d value>....] <-f

value>|<-r values>\n",progname);
fprintf(stderr,"-g: show in graphic step mode\n");
fprintf(stderr,"-G: show graphic at program termination\n");
fprintf(stderr,"-s: step through in text modeXn");
fprintf(stderr,"-S: calculate and display statistics about the

current problemXn");
fprintf(stderr,"-o: display step output to screen\n");

#endif
fprintf(stderr,"-p value : select a start point for the

processing [1.. number of graph points]\n");
fprintf(stderr,"-t value : use a numerical threshold value in

this calculationXn");
fprintf(stderr,"-T value : use a percentage threshold value in

this calculationXn");
fprintf(stderr,"-b value : use to change binsize 1 - 1000, 2 -

10000 or 3 - 100000\n");
#ifndef FAST_CODE

fprintf(stderr,"-d value : delay (in seconds) between screen
updates in auto graphics modeXn");

fprintf(stderr,"-0 value : file name of file were output is
sentXn");
#endif

fprintf(stderr,"-f value : file name of input data file\n");
fprintf(stderr,"-r values : random graph generation 6 values

expectedXn");
fprintf(stderr," numPoints - number of pointsXn");
fprintf(stderr," xlow - lowest x value limit of

random pointsXn");
fprintf(stderr," ylow - lowest y value limit of

random pointsXn") ,-
fprintf(stderr," xhigh - highest x value limit of

random pointsXn");
fprintf(stderr," yhigh - highest y value limit of

random pointsXn");
fprintf(stderr," precision - number of decimal

places in pointXn");
fprintf(stderr,"Note: random point problem written to a file -

random.dat");
}

166

APPENDIX B: SUMMARISED SEARCH

RESULTS FOR EXAMPLES 2 AND 3 IN

CHAPTER 5 USING THE RESTRICTIVE

SEARCH APPROACH

167

I CO

00

"c3
> 0)

eo
* • «

CN3
^ N

P 4

o

CT»

eo

C*i

C0

i n

<̂

CO

o

e n

o a

O S
c o
C O
e-"

C 4
C O
o o

<=>
o a

o a
e o
o o
c=>
t-i

O O
c n

t—"

e o

e—«

O O
e n

t—•

e o
e n

<T-3

t n

o f

e n

^T.

"""".
tri"

t o
cn"
eo"

CO~

c*C
""**1

tn_
co"

co"

to"

L O
C O

CO*
o f

i n

"?
C O
C O

era"

t n

e>f

in"

i n
o f

in"

***£
in"

*
i n
«n"

C O
e n
era

eri
o a

e n

c—I
0 3

c n

o a
e o
c o
C O
c«a

C-3
e o

C O
o a

o a
e o
C O
e d
CS3

e>a
e o

e d

C 4
O O

*̂
o a

o o

o d

i n
e n
CO*

co"

CNC
tri"

t n
C O

-
oa"
C O

i n

5?
C O

ca"
C O

*̂'
iri"

i n

o f

in"

i n

of
C O

i n

i n
CO*

""I
i n

C"T
cri"

*
i n
i n

C O
C O
e n
o o
eri
o a

o a
i n
i n
e d

c o
csa
i n
i n
e d
C 4

o a
i n
i n
e d
o a

o a
i n

e d
CN3

c o
o a
i n
i n
e d
co. <=>
o a
i n
i n
O O
o a c o
C O
i n
i n
o a

__ i n
o f

co"

C O
• ^

in"

i n

2

C O

i n

i n
Co"

c o

i n

i n

eo"

in"

i n
C O

i n

i n

i n

*
i n
i n

o a
i n
C O
t-;
C O

o o
o a
e o
c s
o a

o o
o a
e o
C O
e d
o a

o o
o a
e o
C O
e d
o a
o o
o a
C O
e d
o a

e o
o a
C O
C O
o d
o a
o a

C O
o d
o a

C O

s
co"

•^r

i n
co"

ZU
c o
o f

i n

**?
4̂*

C O
o f

i n

i n

C O
o f
^?

i n

i n
eo"
o f

i n

i n
o a

i n

i n

i n

*
i n
i n

C O
c n
C O
eri
o a

i n
m
C O
o d
o a

C O
i n
i n

<=>
e d
o a

i n
i n
C O
o d
o a

C O
C O
i n
c n
o d
o a
C O
C O
i n
c n
o d
o a C O
C O
i n
c n
e d
o a co>
C O
i n
e n
e d
o a

i n
c n
C O

co"

m "

C O

co"

i n

i n

C O

in"

i n
C O

i n

i n

in"

in"

C—

C O
C O
o o
eri
o a

o a

c n

<=>
eri
o a

o a

e n
C O
eri
o a
o a
•«W
c n
C O
eri
o a o a

c n
C O
eri
O d
o a

c n
C O
eri
o a

i n
o f

e n
C O

co"

in"

i n
o f
co"

C O

in"

i n
co"

C O

in"

in]

C O

in"

C O

in"

i n

in*

*
M " T

in"

oc

i n
C O
C O

C O

C O
C O
e o
eri
o a

C O
C O
o o
eri
o a

C O
C O
e o
eri
o a

C O
C O
e o
eri
o a

C D
C O
O O
eri
o a

C O
C O
o o
eri
o a

i n

°*£
co"
co"

C O

in"

i n
C O

C O

co"

LriT

i n
C O

C O

*̂"
tri"
in_

**•*£
i n

in]
C O

i n

c*r
in"

*
in
in"

en

c o
C O
C O
e n
eri
o a

o a

G
C O
eri
o a

o a
t-H
C O
C O
eri
o a

o a

G
C O
eri
o a o a

G
C O
eri
o a o a

G
C O
eri
o a o a

G
C O
eri
o a

U)
ocT
oa"

cri"

eri"

o f
co"

""*£ i n

t o

cn"

co"

r*
oa"
e o

*"**C
i n

"?
en"

_ T

oa"

in"

i n
erf
C O

co"

o f

eri"

i n
co"

C O

5 o a
co"

in"

in"
co"

rf
o f
C O

i n

trT

oa"
co"
• ^

i n

i n
oa"
co"

•^
i n

co"

in"

in"

in"

*

o a

t—"

C O

C O
C O c n
C O
eri
o a

C O
C O
C O
eri
o a

C O
C O
e o
eri

o a

C O
C O
c n
o o
eri
o a

C O
C O
e n
o o
eri
o a

C O
C O
c n
e o
cri

o a

C O
C O
c n
e o
eri
o a
C O
C O
c n
e o
eri
o a C O
C O
c n
e o
cri
o a C O
C O
c n
o o
o S
o a

CO_

o a

cn"
co"

co"

5-
L P

cri
co"

2

co"

L 7 ^

c o

2
C O

i n

i n
co"

co"

tri"

C"T

C O

in*

C O

iri"

in

i n

LfO
iri"

o a

o a
C O

o a
C O

C O
C O
C O
c n
cri
o a

C O
C O
c o
o->
cri
o a

C O
C O
C O
c n
eri
o a

C O
C O
C O
c n
cri
o a
C O
C O
C O
c n
cri
o a C O
C O
C O
c n
cri
o a
C O
C O
C O
c n
cri
|oa

C O

co"

in"

c~f"T

C O

****1
in"

cri£
•***!

i n

iri~

*
i n
iriT

ev
1 OS

C O
e n
C O
C O
C O
C O

o a

G
C O
eri
o a C O
C O
C O
C O
C O

C O
C O
C O
C O

C O
C O
C O
e o
C O
C O

_
— i
C O
oa"

en^
co"
"™1.

^-1.

c*a"
co"

"̂, tr>

t n
oo"
oa"

o f
co"

eo"

oa~
co"

"**£ iri"

in
e»a"

o f
co"

eo"

^_T

o f
co"

iri"

t o
o f

o f
CO*

>—r

o f
coT

cri"

_ i n
o f
co"

eo"

o f
C O

Iff

C O

C O

f̂
o f
C O
•«*•

iri"

in"
eo"

~̂1
o f
co"

in"

in"

o f
C O

in"

o f
C O

cri"

i n
C O

**al
iri"

in"
,*e*l
i n

2—
in"
in"

o-

o a
C O
i n

o a
C O

o a

c—•
c o
C O
C O

o a

t-«
e o
C O
C O

o a

B—•

C O
C O

o a

C O

C O

o a

c—«
C O
C O
C O

o a

t—•
C O
C O
C O

o a

t—
e o
C O
e o

o a

t—•
C O
C O
C O
o a

s
C O
C O o a

E—<
C O
C O
C O

C O

C O

i n
oo"
o f

o f
co"

CO*

— r
ccT

o f

in"

in"
o f

erf
co"

eo"

c-f
o f

iri"

. . i n
erf
co"

co"

co"
o f

u f

_l

i n
co"

-*-*f
co"
o f

in"

in_

ZZ
co"
o f

in"

cTT

e o
o f

iri"

tJO
eo"

of

****C
iri"
i n

of
uf

in"

*
5£*t

o a

ON

4>

>
0) J

eo

oa
^

vHI

1 3
v 4

o>

eo

p i

te

i n

^*

eo

co

o>

oa
t—i

cri
oa

C O
cn
cn
C O cri
oa

C O
cn
cn
C O cri
oa

C O
cn
cn
C O
eri
oa

C O
cn
cn
co
cri
oa

C O
cn
cn
C O
eri
oa
C O
cn
cn
C O
cri
oa oa

cn
oa
C O

oa
eo
cn
oa

oa
eo
en
oa
CO
C O

of
co"

C O

C O
Her

"—'— i n
cf

2

co"

***c
in*
i n

C O
HST

CrT

C O
ner"
iri"

C O
ne*""

iri"

iri*

*
in

i n
oa

oa
C O
oo

C O
cn
C O
C O
C O
C O

cn
C O
C O

C O
i n
e—•
C O
C O
C O
e*3

i n
t—«
e o
C O

C O

m
t—•
C O
C O
C O
i n
t—

C O

i n
of
en"
eo
co"

^s
of
C O

iri*

Si
en
co"

co"

of

cri"

C O
C O

o

of
C O
Her"

C O

_r
of
co"

iri"

IJO

of
c o

of
C O

iri"

co"

"""̂
iri"

in

in*

*
to"

C O
o a

o a

era

o a
C O

C O

Her
C O
C O

C O

C O

HCT
C O
C O

C O

ner

C O

C O

HBT
C O
C O

C O

i n

_̂" ed"

of

co"

^jT

tri"

in"
co"

cri"

eo"

co"
of

tri"

in
of
erf
C O

C O

_ J

C O

of
iri"

in
of
C O

eo"

C O

of
5£*t

i n
co*

eo"

C O

of

«—T

co"
o f
ner"

in"

"?
C O

of
Her"

C O

of
i n

of

tri"

i n
ner"
iri"

*
i n

t—•

o a
C O
C O

C O

oa
ncr
E—•
C O cri
oa

oa

m
cri
oa

oa

cri
oa

oa
ner
t-H
i n

oa

e — •

m
cri
oa

oa

i n

c—

oa
t—•

"*!
C O
oa
E-H

"*!
C O t—•
oa
t-H
ner
C O
C O l—•
oa
t—•
ner

. i n

ed"
erf

2"

co"
of

in"

oo"

of
co"
co"

_̂~
C O

of
t o

Gf
en"
C O

2

C O

of
tri*

i n
C O

eo"

C O

of
HC»*"

C O

— 7

C O

of
tri"

in

co"

of
Her"

C O

of

~°~
iri"

Co
of
ner"
iri"

**ll
tri"

*

oo
1 oa

oa
C O

o a

e o
Her
c n
cri
o a

C O

cn
eri
oa

C O
H«r
cn

C O

cn
cri
oa

c o

en

eo
oa
oo
C O

oo
oa
oo
C O
C O
oo
oa
O O

C O

oo
oa
oo

i n

of

S~
co"

^^
of
CO"

i n

of
nsr"

2"

of
C O

tri"

•*»•"

co"

of
co"

Ĵ*
of
C O

tri*

in

of
C O

in
of
C O

tri*

Co
C O
ncr
in"

in

tri"

i n

1 oa

C O

oa
C O
C O

O O
en
C O

oo
cn

oo
oa
C O

eo
cn

oo
en
C O

eo
cn
C O
C O

eo
en
C O
C O

eo
cn

S7
of
erf

zs eo"
-̂?
of
C O

tri*

in
cri"
ner"

co"

of
co"
Her"

tri"

sf C O

of
C O

—7
of
C O

"°1
tri"

in

of
C O

"•1

i n

of
C O

tri"

Co
C O
ner
trf

tri"

*
in

C O
C O

en

ner
C O
C O

i n
oo
C O
C O
C O

i n
eo
C O

i n
C O
C O
C O
C O

i n
e o
C O
C O

i n
o o
C O
C O
C O

i n
o o
C O
C O
C O

i n
oo
C O
C O
C O
i n
eo
C O

i n

oo"
of
erf

co"
ner"

tri"

of
of

eo

C O

e o

tri"

co"

C O

•JO

C O

tri"

C O

iri"

iri"

*

C O

eo
C O
C O
C O

i n
C O
C O

i n
C O
C O

C O

i n
C O
C O

i n
C O
C O

'**!
C O i n
C O
C O
ner
C O

i n
C O
C O

T
eo i n
C O
C O
Her

i n
cn"
co"

co"

of
of
Her*
tri"

co"
co"

of
eo"

—; of
C O

tri*

**?
of
C O

i n

of
C O

iri"

in*
C O
ner"

in"

ST
*a"
u f

*
i n

o a
C ?

oa
C O
c n

od
C O

e o

t-H
i n

C O
ner
t—«
i n
C O

C O

t-H
i n

C O
ner
i n

C O

C O
ner
i n

C O

C O

t—«
i n

C O

C O
ner
t-H
i n

_, m
to"
•nr"

E-H"

eo
erf

°~i.
co"

eo"

of
of
neT
iri"

t o
*a"
E-H_

OO,

of
°"i.

co"

C O

of
•^r"

——*
tr"T
c—r
ocT
of
of
to"

o

eo"
erf
iri*

i n
»—7
ocT
of
en"
eo"
eo"

eo"
of
"«"" tri"

i n
csef
of
of
evf

o "

co"
ersf

"'I
iri"

trT
of

°€ S2
eo"

— erf
of
tri"

t o

of
co"
co"

co"
of
to"

co"

SET
co"
of
t o

C O

of

"?
C O

of

i n
CO*

of

in
of

•^
tri*

in
in**

*__
i n
tri"

C O

m
eo

C O

eo
C O
C O

eri
oa

C O
c—• oa oo
co
era

oa
era t o
C O

ira

oa
t o
C O

era

ero
C O
i n
C O
era

oa
C O
t o
C O
C O

oa
c o
C O
C O

oa
C O
t o
C O
e o

oa
C O
i n
C O

t o
i n
oa
C O
B-H

t o
i n
oa
C O

m
t o
oa
C O
tr-

i n
t o
oa

„
i n

"̂ ^̂ e n

c—r

oo
erf

en
erf
eof

of
of
r̂*

tri"

t o

co"
t—^

oo
of
°"i erf
CO*

erf
of
~°1 tri"

i n
t-^

ocf
of
of
erf
to"

co"
of
•̂ c

—"
i n
— H

of
of
of
erf
to"

erf
erf
****1
tri"

i n

eaf
of
en
of
C O

erf
of
in*

in*

erf
of

uf

S"T
of
CO*

co"

of
*a""
tri"

2
2

of
of

"̂
trf

77!
CO*

of
iri"

"?
cf
of
tri"

in"
cf
of
trf

u7
of
tri"

cn

tri"

t o
tri"

c o

t o
oo t—•
C O

ra

oa
t o C O
era

=ri oa

C O

oa eo
C O
era

o a
era i n
C O

C O

oa
oo t o
C O

co"

oa
C O
i n
C O
C O

oa
C O
t o
C O
C O

oa
C O
en
C O

oa
C O
i n
C O
C O

oa
C O
t o
C O

B-H

t o
i n
oa
C O
t-H

i n
i n
oa
C O
B-H

m
t o
oa
C O
t-H

t o

o a
C O

., i n

^̂ CO_
t-H"

O O

of
OT>
era

eo"

erf
of
ner"

iri"

tra
to"

"*~V

ocL
of
°*7i. cf

cf

of
of H H T

iri*

*.__
5*r B - H *

CO~

of
of
C O

eo"

of
cf •er"

——*
i n

^̂ aeL
cS

oa_
erf

<=>
erf
of
na"
tri"

i n

ocf
of
o->
of
o

erf
of
to"

to"

of
of
co"

eo"

"̂ cf
of
in*

in
of
2
S
cf
cf
to"

2
CO*

cf
oa"

iri"

"Ti
cf
of

"°r
trf **?
cf
of
H O "

m "

in*
of
of
*o"
i n

of

*̂
uf

to"

uf
m
C O

tra
o o
B —
o o
C O
C O

tra
o o
E—•

°°.
C O

t n
oo
B—•
C O
C O
c o

era
o o u a
C O

C O

oa
C O u a
C O

C O

oa
ua
C O

C O

oa
C O
ua
C O
CO*

oa
C O
tn

C O
C O

oa
C O
u a
C O
C O

o a
e o
t o
C O
C O

t-H

ua
ua
oa
C O
t-H

t n
i n
oa
C O
t-H
ua

oa
C O

t"H
ua
ua
oa
1 e*9

o

«

o
u

a,

a
a

o-
1/2

H
I

*
CZ2
.—
s-
»5
1.

Ml
S
•-«
5 *

e
o

o
s-

a
* ,
u
I

I

cn
0)

u

o
s-

a
w
u

et

a>
•a
cu
5«

i-3

• •

ffl
cu

H

> •

CU

eo

o-

r—

- O

•er

m

rs

-

-

ON
oo"

ST
O N
r-.
o--"
eo

eeT

p—T
O N

CO

eeT
|HHT

eo"

O N

BO,

*
eejr
eo*

-•

rsi

eo
r—

r-
O N

rM

rs

NO"

f O

rs

N O

r*>.

eo"

r—*
eeT

eeT
P»*

*

<N-»

N O

N O

HOT
HOT

Inn
N O
O N
CN<

eo

l-Cl
N O

#"Nl
C*1

en
rf

r—*
O N

eo"

eo

p»"

eo*

co"
r-*
O N

eo

eeT
o»*

eeT
eo

T

N O

rs PH.

• eo
ro

rs

ed
r—

•-l-t

ed
p — •

rsi
b n

ed
P-.

rNi
Inn

ed
P N

eo
,—r

r*4

p—*
O N

CO*

C O

rf

P—"
O N

ed*

r—"
O N

cri

O N

of.

*
eeT
CO*

b # N

•CT
O N

rsj
r»"
m

C O
HOT

****!
O N

«N«>

Hcr

O N
r —

•er
m
O N
p —

HOT

p —
r"l

eeT
HOT

rf

P—T
O N "

eo

ocT
i—r

rf

—
!—._ O N

eo

O S

rf
_T

I—'"
Q C
CO*

C O

I-H"

s[

eeT
r-*
O N

O N

eo

*

N O

O N

r—•
N O

•er

—
HOT
P N

ner*

rNi
rNi
P —
p —

^ oo

rNi
rNi
p —
r-Hj

co

rNi
rNi
r —
r-.
C O
r*1

rs
rNi
r —
P*H
eo
m

rs
rN
r—
P—J
eo
r*-»

ccT
HOT

— •

p-^
ON"

eef.

co"

—*
P*"
O N

CO*

oo

P-"
O N

C O

eeT
P-[
O N

eeT

ocT
O N
C O

*
C O

r—

rNi
rs
i-r"
C O
HOT

i-ri
O N
P N

: ro

P N

r*\

O N
pn-

O N
r*i

i-n
O N
P**

O N
PH-

O N
#H1

O O

ner

rf

P**
ON*

S-

eo
CO*

rf
p-£
ON*

eo

C O

r-*

eeT

ocT
r**
ON*

eo

ccT
O N

eo

*
O O
CO,

PNI

L^%
OIHj

_J
O N
*er

N O
O N

PNI

PH"
O N
r^»

•HD

rNi

P*^

r^»

N O
O N

rs
P *
O N

N O
O N

rNi

p—"
O N
r^»

N O
O N

rsj
P *
O N

m

eo

oo

O N

CO*

c*oT

O N

CO*

eo"
O N

eo"

*
eo*

N O
O O

r*\

rN>
N O

N O
i-rt

H-T

rs
N O
N O
tr!

ner

rs
N O
N O
N O
bri
HIT

.

Hsr^
C O

r-j

-
p—^

o»*

C O

ner
CO*

rf

pf

eo
CO*

r-^

—*
P"^
O N

CO*,

O D

r^*

Z-
pf
ON*

CO*

PH*
ON*

eo*

co"
pf

eo*

ocT
O N

eo"

*
C O
eo*

(--i
N O
r^
HIT

_*

P*-
• o

ner

Jij*

r—m
N O

• ^

»
1—;
N O

ner

O N

p -

N O

ner

O N

P-HJ
N O

ner

N O

C O
O N

P—;
N O

=

oo_
r^l
•HO*

iriT
"er

ON_

O O
-o
i-rT
HOT

eo

HCT^

C O

rs

_-
P H -

ON*

ner

1^4

p—r
O N
eo

oo
<o
e^X

—"
p-^
t >

ed*

rf

z-
p-^"
ON"
oo"

p**
ON*

eo

eo*
p — *

£

eo*"
O N
eo*

*
ccT
eo*

urt

urt
P *

nor
LJ-I

ner

p*.

eo
N O

m HIT

__"

N O

•er

PNI

N O
fHHj

ner
_J
rNi
•er

s
ner

—• rs
ner

N O
r**
ner
rNi
ner

N O
no.
ner

rNi
ner

N O
<H-1
ner

rNi
ner

N O
m
ner
PNI
ner

—

„
C O

IN-l

rs
N O
kTt

•ar

r*4

O N

cô
CO*
t^4

N O
bTt

ner
2
rf

O N

eo
rf
• c

bX"
ner

rf

O N

*
So"*
NO*
Urt

•er

r^X

CO

•er
eo

rs

-
p*^
ON*

eo
•OP

rs"

p—*
O N "

C O

eo*
r^

—"
p—^
ONT
eo*

rf

z-
p*r
O N
CO*

p—T
ON*
oo"

eeT
P*{
o*T
ed*

eeT
ON*

ed*

eo*

rs
eo
p —

ner

O N
S O
HOT

N O

N O

b n
r —

brt
N O

P—

eo
N O

ro

—'

N O
r*-t
•er

rs

<e
r--t
ner
— rsi
ner

N O
»NHj

ner

—̂ rs
ner

N O
*N^
•er
rs
•er

N O

ner

rs
*«r

N O
m
•er
rs
•er

N O
»N->

•er

rs
ner

rNi

r. .̂ C O

r̂ T

rs

urt

•er

rs*

O N

CO*

co_

rs

Ln
•er

2
rs*

O N

eo
rf
N O

ury
ner

r^4

*
NO*
i-r>

•er

rf

oo

•ST

C O

fN4

-
P-^
O N

C O

•er
CO*

p f
ON*

O O

CO

rf

—"
p —
O N "

of

r*4

z p"£
oT
ce£

p—T
O K
ed"

So
r*T
O N
eo"

eo"

oo"
eo*

O N

O N

ner
eo

br»

•er
eo

•ar

Ln

ner
eo

I A

IHT>

oo

eo
N O
m
•er

—"

•er

rsi

N O
m
•er

—" rs
•er

-n
ner

_ rs
•er

N O

•er

rs
ner

N O
|N-t
•er
rs
•er

N O

•er

rs
ner

|N"|
HOT

rs
ner

m

,̂ ,̂ oa
rri"

rs
N O
br»

•er

rf

O N

CO*

C O

rs

urt
•er

2
rs*

O N

OS*

eo
rs
SB)

bTt

•or

ed"

*
ee
NO"

L O
ner*

rf

eo

eo

•er
s

rs

-
p*^
O N "

•er

rf

p-T
O N

CO*

O S

eo
r^S

—"
p»-
O"^
C O

rf
"̂

pf
o»T
eeT

p—T
ON*
oo"

eeT'
p*T
O N
C O

eeT
O N
eo*

ocT
eo*

O N

O N

ner
co

O N

O N

•er
eo

O N

O N

•ar
eo

O N

O N

eo

eo
N O

m ner
—̂ •er

N O

ner

rs
•er

N O
r*1
•HH-

—T
rs
•er

N O

•er

—̂ •?

N O

•er

rs
•er

N O

•er

rs
•er

N O
m
•er
rs
•er

<NH,

•er

rs
ner

•er

