
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1985

Solving Tree Problems on a Mesh-Connected Processor Array Solving Tree Problems on a Mesh-Connected Processor Array

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
85-518

Atallah, Mikhail J. and Hambrusch, Susanne E., "Solving Tree Problems on a Mesh-Connected Processor
Array" (1985). Department of Computer Science Technical Reports. Paper 438.
https://docs.lib.purdue.edu/cstech/438

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SOLVING 1REE PROBLEMS ON A MESH-eONNECfED
PROCESSOR ARRAY

MikIJail J. Atallah
Susanne E. Hambrusch

CSD·TR·518
May 1985

SOLVING TREE PROBLEMS ON A MESH-CONNECTED PROCESSOR ARRAyt

MikJuzil J. Atallah and Susanne E. Hambrusch

Department of Computer Sciences
Pwdue University

West Lafayette, IN 47907.

____"Anbsttlr"."ctL -----

In this paper we present techniques that result in 0 ('1';) time algorithms for computing many

properties and functions of an n -node forest stored in an ,r,zxV;; mesh of processors. Our algo­

rithms include computing simple properties like the depth, the height, the number ofdescendents,

the preorder (resp. postorder, inorder) number of every node, and a solution to the more complex

problem of computing the Minimax value of a game tree. Our algorithms are asymptotically

optimal since any nonbivial computation will require nrJ;) time on the mesh. All of our algo-

rithms generalize to higher dimensional meshes.

Key Words

Analysis of algorithms, graph theory I mesh of processors. parallel computation.

t This work was supported by Ihe Office of Naval Research uDder CoalraCt NOOOl4--84-K-0502 8Ild by !he
Natiocal Science Foucdalion uDder Grants DCR·84-S1393 and DMC-84-13496.

- 2-

1. Introduction

Suppose we have 8 ..r;)(.'!; mesh of processors as shown in Figure 1, where each processor

has a fixed (i.e., 0 (I» number of storage registers. and can communicare only with its four

neighbours. The description of an n -node undirected forest is stored in the mesh; i.e., each pro­

cessor contains an edge {i ,n of the forest. Typical problems to be solved on a forest, which are

not only interesting in their own right but also arise as subproblems in other graph problems [AX,

H, Te, TV], are rooting every tree in the forest (the result is called a diIected forest), computing

the depth, the height, and the number of descendents of every node in a directed forest, and com­

puting the preorder (resp. postorder, inonicr) number [AHU] of every node in a directed forest

Figure 1. A 4x4 mesh with shuffied row-major indexing

While an algorithm designed for the Shared Main Memory model can always be simulated

on a mesh (or any other fixed interconnection network), such a simulation usually does not result

in the most efficient algorithm, since special chanlcteristics and properties of the mesh are not

taken into consideration. We present techniques that result in OrJ;) time algorithms for the

above mentioned basic problems, for computing the Minimax value of a game tree. and for a

number of other problems. These techniques will be useful to anyone designing algorithms for

the mesh. a popular model for parallel computation. The algorithms reported in [GRK] for solv­

ing basic nee problems on the mesh take 0 ('I'; logn) time, and are obtained by implementing, on

the mesh, ideas developed for parallel algorithms on the Shared Main Memory model [lIeS, TC,

TV]. Stout [S] has independently solved some of the problems considered in Section 3 in 0 ('I';)

time by using an approach different from OUTS.

1bis paper is organized as follows. Section 2 gives an 0 ('I';) time algorithm for a problem

whose solution is a subroutine of all the algorithms described in the subsequent sections. In

- 3 -

Section 3 we show how to solve a number of basic tree problems in 0 rJ;) time; Le., finding

the depth, the height, the number of descendents, and preorder (resp. postorder, inonier) number

of every node of a directed tree, and turning an undirected tree iDlO a directed one. Section 4

gives an 0(4;) time algorithm for the problem of computing the Minimax value. This latter

algorithm uses the results of the previous sections. In Section S we ex.plain how to extend our

results to forests, and point out how to use our techniques for optimally. evaluating an arbitrary

arithmetic expression tree and for solving other graph problems on the mesh. The paper assumes

dIat the reader is familiar with the standard data movements that can be done in time 0 (..J;) on

the mesh (see [NS I, NS2, U] for details).

2. Weighted Ranking ora Linear Chain

In order to compute the height, the depth, and many other tree functions in time 0 c.-J;), it

is necessary to be able to solve the following problem in 0 (of;) time. Assume an n -edge

directed linear chain is stored in a -.I; x:J; mesh of processors. Every processor contains one arc

of the fonn (i ,succ (i», where node succ(i) is the immediate successor of node i, IgSn, in the

------jlinearchaiIrdefined-by-the-functioIrSUCc-:-if i is dtei.asr-node-on-the-ch.aiIr,1:hen-no-processo,rr--------­

contains an arc of the fonn (i ,succ (i». The processor containing an arc (i ,succ(i» also contains

a weight Wi associated with node i (if succ (i) is the last node in the chain, then that processor

also contains W.flIl:<:(i». The rank R (i) of a node i is the sum of the weights of its predecessors

(including itself) in the chain defined by the succ function. See Figure 2.1(a) for an example. If

the mesh contains a collection of node-disjoint chains rather than a unique chain, then obviously

the rank of a node is with respect to the chain to which the node belongs. In this section we show

how to compute the rank R (i) of every node i in 0 rT,;) time.

The obvious divide-and-conquer approach in which Ihe mesh is divided into four sub­

meshes, which are solved independently and subsequently merged, does not result in an efficient

algorithm. The problem is in the merging step: Chains may 'jump' a large number of times

between two submeshes, making it seemingly impossible to combine the four partial solutions in

Orr;;) time. Our algorithm too uses a divide-and-conquer strategy. It uses the above-mentioned

technique to solve, in time 0 (-.I;), a special case of the problem which has a property that allows

-4-

0 • 0 • 0 0 0 • 0 • 0 • 0 • 0

node If's , 9 5 4 6 • 3 7

wi ·s

""'" 9 • 7 6 5 4 3 2

"j , linear chain: 2 is the last node aDd 7 is [he
first node in the chain.

2

,
o

9 5

4

o
4

o
6

o

• 3

,
o
7

(b) after step 4 of algorithm CHAIN_RANK.

Figure 2.1

lhe merging of subsolutions in time 0 rJ;). The algorithm for the general case uses the one for

the special case in order to reduce. in 0 (..f;) time, the initial problem of size n to one of size no

more than n/2. The recurrence for the time T(n) taken by the algorithm computing the ranks is

shown to be of the fonn T(n)::; c.,J;; +T(nI2}, which implies that T(n} is 0 (V;;). Before giv-

ing a precise description of the general ranking algorithm, we describe how to efficiently compute

the ranks in chains of a special type.

Assume that k processors of the mesh contain onc arc each. kSn. which together define a

collection H of node-disjoint chains, and that for every arc (i ,suec(i» the property i>succ(i)

holds. Recall that a processor containing an arc (i ,succ(i» ofH also contains the weight associ­

ated with node i. If i is a node on H, then the rank of i with respect to H is denoted by RH(i).

and it is the sum of the weights of the predecessors of i in the.chain of H containing i. Algo­

rithm SIMPLE RANK. which computes theRH(i)'s in O(..J;;) time, uses both the row major and

the shuffled row-major indexing scheme for the processors of the mesh. Recall that in the

shuffled row-major indexing scheme the processors with indices 1,··· ,n/4 are the ones in sub­

mesh I. where submesh I is as shown in Figure 2.2. Within submesh I, the processors are indexed

using the shuffled row-major indexing scheme. Submeshes II, m, and IV are filled analogously.

See Figure 1 for an example and [TK] for precise definitions.

- 5-

II

IVIII

I
I
I
I
I
I

I- ---- --'-- - ---I
I
I
I
I
I

v.,

Figure 2.2

AlgorUhrn SIMPLE_RANK

Input: Collection H ofchains such that every arc (i .,Jucc(i» in H has the pmpeny i>succ(i).

Output: The RH(i)'s; i.e., at the end of the computation every processor containing an arc

(i ,succ(i» ofH also contains RH(i)·

Step 1: Sort the entries (i ,succ (i),w;) according to i and store them in the mesh according to the

shuffled row-major indexing scheme.

Comment Let H 11 be that portion of H obtained by considering only the arcs of H that are

stored in submesh a, ae {Ill ,III.IV}. Then after Step I, for every arc (i ,succ(i» in H Il'

the arc (succ(i), succ(succ (I))) is stored in H 0. where eisa. 'Ibis holds because of the pro­

perty i >succ (i).

Step 2: Recursively compute for each one of the four submeshes RioHrv the ranks with

respect to the portion of H stored in it; i.e., submesh a computes the RH..(i)'s. TIlls does

not yet give the final values of the RHO)'8, since a chain in H may extend over more than

onc 8ubmesh. But a chain in H cannot cross submesh boundaries more than 3 times,

because of the comment following Step 1. lbis last property is crucial for Step 3 to run in

o (..r,;) time. Note mat for every node i inHrv. we have RH,.,(i)=RH(i).

Step 3: In order to combine the results of Step 2 to obtain the ranks with respect to H • fiISt com­

bine the results in submesh I with those in II to get the RHruH.(i)'s, and simultaneously (in

parallel) combine the results in ill with those in IV to get the RH...,H,..(i)'s. 1ben combine

the two so obtained results in order to get the final ranks RH(i) of the nodes i in the upper

-6-

half (regions I and II). (por every node i in the lower haIf the final rank. is then already

known, since RH(i) = RHuruHrv{i).)

lmplementaJion of Step 3: We describe me "merging" step only for the case of combining

regions I and II to get the RHtvlIll(i)'s (the other computari,oDS of Step 3 are analogous).

First detennine in submesh II all arcs (i ,stICe(i» for which stICe (i) is the last node of a

chain in HII • Then, for every such j. do the following: (i) send RH,.(i) to the processor of

submesh I which contains the arc (stICe (i)J stICe (stICe (i»), and (ii) add the value of RHg(i)

10 lhe current rank of every node in HJ that is in the same chain as node stICe (i) (including

suce (i».

Determining the nodes i and performing step (i) can easily be done in 0 cr;;)time by wing

standard data movement techniques [V]. Step (ii) is done in 0 (,'l;) time by first deteIIDin­

iog the connected components induced by the arcs in HI so that arcs in the same connected

component can be arranged to occupy adjacent processors. 1bia takes 0 cr;;) time, since

the connected components of any n -node forest can be found in 0 (-I;) time by an easy

application of the techniques of [NSl]. (Actually it has recently been shown [RS,K] that this

holds for arbitrary graphs, not just forests.) After this connected components computation,

all RHIl(i)'s can be propagated to the appropriate entries in 0 c:l;) time.

End of Algorithm SIMPLE_RANK.

If we let F (n) be the time required for determining the ranks of all the nodes in H, then we have

F(n):5: F (n/2}+c-l; J which implies that F(n) is OcJ;;). It is clear that an analogous algorithm

exists for an H with i <succ (i) for every arc (i ,succ(i» in H. We now describe the algorithm

that computes the rank of every node with respect to arbitrary chains (i.e., chains in which

i <succ (i), respectively i>succ (i), does not hold for all i).

AIgorUhm CHAIN_RANK

Input: Every processor contains an arc (i ,succ(i» and a weight wi. The function succ defines

an n -edge linear chain.

Output: Every processor containing (i .succ (i» also contains R (i). the sum of the weights of the

predecessors of node i in the n -edge linear chain defined by the function succ.

-7-

Step I: Let n 1 Crespo n 2) be the number of ProcesSOIB containing an cOlly with succ (i)< i (resp.

succ (i» i). Determine which of n 1 and fJz is me larger, and broadcast lhe outcome to every

processor. Without loss of generality the algorithm assumes throughout that n l~n 2. (Note

that in this case n 1~/22.n 2')

Step 2: Let H be the collection of chains obtained. by considering only those arcs (i ,succ(i»
with succ (i)< i. From Step 1 it follows that the total number of arcs of the chains in H is at

least n/2. The RH(i)'s are computed in OrJ;) time as described in algorithm

SIMPLE_RANK.

Step 3~ For every chain in H. determine the node that is the immediate predecessor of the first

node of that chain in the original input chain. For a given chain in H ,let 1 be this: node. For

example, in Figure 2.I(a) node 3 is the immediate predecessor of node 8. and node 8 is the

first node of the chain (8,6), (6,4), (4,1). Broadcast / to all the other nodes in the same

chain. This is done, in parallel for all chaim of H. in time orT,;) by using known tech­

niques.

Comment.' The purpose of this step is to reduce the problem. of computing the ranks of

nodes on H to that of computing the rank of the immediate predecessor of the first node of

every chain in H. If (/ ,succ (I» is an arc with succ (I) being the first node of a chain in H,

and R (/) is known, then the final rank of every node 11 in the same chain in H as succ (I) is

RH(v}i-R (I).

Step 4: Modify the original input chain by "bypassing" the chains in H as follows: Let

ito' .. ,it_I, it be a chain in H and succ (/)=i 1 for some I. RH(i I), ... ,RH(i,,) have already

been computed by the previous call to SIMPLE_RANK.. Set succ(I) equal to it (i.e., the

last node of the chain) and set the weight of node it to RH(i,,). (RH(i,,) is stored in the pro­

cessor containing the arc (i"_loi.l:J.) See Figure 2.1(b) where succ(3) is set to 1 and the

weight of node 1 is set to 4. This new weight now reflects the weight of the "bypassed"

nodes. Note that the surviving chain has length npnl2, and that the (yet to be computed)

ranks of nodes on that chain are the same as their ranks in the original full chain.

Comment: Recall that in the chain i h ... ,it, every ij knows RH(ij) as well as ncx:le l.

Therefore when, at a later stage, we know R (I). then R (ij) is obtained by simply adding

- 8 -

Step 5: Compress the n2 arcs of the surviving chain so that they are stored in the v;;.'><"l;;; top­

left submesh. See Figure 2.3. Use the ~xV;z submesh to IeCUIBively solve the remaining

problem: that ofcomputing ranks of the nodes in the surviving chain.

Figure 2.3

Step 6: Update the ranks of the nodes in H. as explained in the comment following Step 3. Note

that the nodes in the chain used by the recursive call of Step 5 do not need to update their

ranks (since these ranks are computed correctly by the recursive call).

End of Algorithm CHAIN_RANK.

The correctness proof of the above algorithm is easy and is omitted. lbat it runs in time

o(..f;;) follows from the fact that the data movements required in every step can be done in

o (.J;) time and that Step 5 makes a recursive callan a square mesh of size VIZ~ where

n~n 12. Note that the algorithm can easily be modified to compute the rank of a linear chain

consisting of en arcs stored in the mesh such that every processor contains DO more than c arcs

(c and c being constants). TItis concludes the description of the weighted ranking algorithm,

which will be used as subroutine by the algorithms in the following sections.

3. Some Applications of Chain-Ranking

lbis section shows how algorithm CHAIN_RANK (given in Section 2) can be used to

optimally compute various tree functions on the mesh. The idea is to create, from the input tree

T, a linear chain chain(T) and to use algorithm CHAIN_RANK on chain{T}. The weights

assigned to the nodes of chain (T) depend on which particular tree function is being computed.

- 9-

We also show how to root an undirected tree in 0 rr;;) lime. The results of this section follow

from Section 2 without roo much effon. and the idea of creating a linear chain from a tree is a

well known technique [TV]. A more complex tree computation, which makes use of the results

of this section in an interesting way, will be described in Section 4. We start by describing how

to create a linear chain from a given tree.

Let T be an n -node tree rooted at node r. T is represented by the arcs (i ,p (i», where p (i)

is lhe parent of node i. lSiSn. Each processor of the mesh contains exactIy one arc, wilh a

"dummy" arc (r ,0) present for the root r. Imagine "wrapping" a chain around T in the manner

depicted in Figure 3.1(a), where the dashed line represents the chain. Note that the chain goes

through a node y B(Y)+1 times. where B(y) is the Dumber of children of node v. Furthermore,

from node v the chain visits the children ofv in increasing order of their index.

(M)(4.0)

(1,0) (1,2)

,',0 a...~''''
,,' (1,1)

,,' ,."...D~.......

" ..-,' (.5,3)
...,,' -~" ... ',. _ 'v_..... _- "(2Pl .0' 0":,('.)-------,('~'o~--~~2'=_"~,,..,('_P)__

f '" ... 'V~I (5,1) [(5,2)
/(2,1), / J? I

I ,0... ' / ~~..,. , I
/ ~." ... , I " I I,. "' ,......"
, "',,' 1" , I0-- ""0 ,~ 1 I

(f (8.0) ~ ? (8,l)

\ f, ,, ,
"o

(3P)

8

,------~

7

,,,,,,

, ,

, , ,

6

"------

4J--

(b)

Figuno 3.1

For the purpose of making the 2n -1 nodes on the chain distinct from each other, we distinguish

between the various occurrences of node 11 on the chain by referring lO them as vo.··· .1IB(y). If

node w is the i -tb child of node 11 in T. 15i2)(1I), then. in the chain. node lIi is the successor of

node wBC"')' and node 11"_1 is the predecessorofnodew()o We refer to the chain obtained in this

way from a tree T as chain (T). For the tree T shown on Figure 3.1(a), chain(T) is shown in

Figure 3.2(b). Throughout this paper, ifw=t.'k is a node on chain(T), then we assume that a pro­

cessor containing that node can tell that it is the k IJI occurrence of node 11 ofT (this can easily be

-10 -

achieved by storing node w='\/,t as a pair (v .k), as done in Figure 3.1(b)).

Given a tree T. the following algorithm. creates elwin (T) in OrJn) time.

Algorithm CREATE_CHAIN

Input: n arcs (i.p (i» mat define an in-tree T rooted at node,.. with a dummy arc (r ,0) out of the

root. Node p (i) is the parent of j in T.

Output: 2n-2 arcs (w ,succ (w» that describe chain (T).

Step 1: For every node i in T detennine BU), the number of children of j; i.e., the number of

arcs U,p UJ) with PU)=i.

Step 2: For every arc (i ,P (i» determine s (i), the number of children ofp (i) that are no greater

than i; i.e.• the number of arcs U,pU» with PU'FP (i) andjc:::i.

Step 3: Por every arc (i J) of T (except (r ,0» generate two directed arcs of cluJin{T), namely

Us (i),i 0) and (i o(i)J.r(i)+I)·

End of Algorithm CREATE_CHAIN.

Both the S(i)'s of Step 1 and the s(i)'s of Step 2 can easily be computed in 0 rJ;) time,

Step 3 IS done In constant orne, and thus cI,ain (T) can be created in 0 ('J7i) time.

We now rom our attention to the problem of computing the depth of every node v in an n­

node rooted tree T. In the first step of the algorithm we creare chajn (T) using algorithm

CREATE_CHAIN. In the second step of the algorithm we set a weight for every node in the

chain as follows. If (Vi ,wj) is an arc in the chain. then node Wi has a weight of +I if and only if

the arc (w ,v) is in T (i.e., p (w)=v), and node Wj gets a weight of-1 otherwise (i.e., ifp (v)=w).

The weight of the first node in chain (T) is set to O. We then call algorithm. CHAIN_RANK to

determine the rank of every node in the chain. The depth of every node V in T is then the rank of

va in chain (T). (Actually, the rank of any v1 in chain (T) will do, since it too equals the rank of

v 0') Correctness follows from the definition of depth and the way weights were assigned to the

nodes of chain (T).

Computing the number ofdescendents of every node in time 0 rJ;) is similar to the depth

computation, and we only describe the differences. We assign to every node Vj in chain (T) a

weight of +1 if i=o(v), and a weight of 0 if o:!:;;i<B(v). In other words, me last occurrence of

- 11 -

node 11 of T on chain (T) is given a weight of unity, while other occurrences of 11 are given a

weight of zero. The number of descendents of 11 in T is equal to R(va<I')}-R {v 0). the rank. of the

last occurrence of v minus the rank of ilS first occurrence on chain (T).

We now describe how to compute the height of every node in a tree T. The algorithm.

begins by computing the depth of every node in T. as explained above. A byproduct of lhis depth

computation is chain (T). Observe that the height of v equals the depth of the deepest node in the

subtree of v minus the depth of v. If we let z(v) denote this deepest leaf under node 11, then

depth(z(v» is simply the maximum rank of any node which occurs between 1/0 and 1'6(11) in

chain (T). We briefly outline how to compute depth (z (\I)) in 0 c:J;) time, in parallel for every

node v.

Assume that the arcs of chain (T) are stored in the mesh in row-major order according to

the depth of the nodes in chain (T). First determine for every row i lite maximum nmk associ-

sted with an arc stored in row j, and broadcast this value to all the processors in column j,

l~js;V;. The computation of these max-row values can easily be done in OcJ;) time. The

maximum rank of any node which occur.> between 11 0 and 1I3(v) (and which is the depth of leaf

----~,"C_v)tcould-be-one_ofthe~w-v1l1oes,or It couldoe fhe maximum of two partial rows. Let

j I (resp. j I) be the row (resp. column) of the processor containing the arc (1I(),suec(vo». and let

j 2 (resp. Jv be the row (resp. column) of the processor containing the arc (w ,v 6(v»' In parallel,

detennine for every node 11 0 the maximum rank in row i 1 (resp. i:i) beginning at column J I (resp.

ending at column J2). The depth of node z (v) is the maximum of these two values and the max­

row values of rows i l+l,··· ,i r 1. By taking the later values from row i h we avoid any

'congestion' problems. Ibis concludes the description of the algorithm. for computing the height

The following theorem summarizes the above results:

Theorem 3.1 Given that an n-node directed tree is stored in the mesh. the depth, the height, and

the number of descendenls of every node can be computed in time 0 (.f;).

Other consequences of the result of Section 2 are stated below without proof, since the

proofs are very similar to the ones ofTheorem 3.1.

Theorem 3.2 Given that an n-node ordered and directed tree is stored in the mesh, the preorder,

postorder. and inorder numbers of every node can be computed in time 0 ("l;).

- 12-

In many graph algorithms there is a need to create a directed version of an undirected tree.

We next describe an algorithm that generates, in 0('1';) time, a rooted (directed) tree T from an

undirected tree Q. The undirected tree Q is initially stored in the mesh in the obvious way:

Each processor contains an (undirected) edge {x,y}. ISX',y Sn. Let r be abe node to be made the

root of T. The main idea of algorithm MAKE ROOTED is to first use Q to create a chain of T

(this is what the first four steps of the algorithm. do), and then to use algorithm CHAIN_RANK

on this chain to obtain T.

Algorithm MAKEY.OOTED

Input: n -1 edges {x,y} that form an undirected tree Q. and a designated node r.

Output: (n-l) arcs fanning an in-tree T rooted at r and which is a directed version of the input

ueeQ.

Step 1: In parallel for every node x determine d(x), the degree of node x in Q.

Step 2: In parallel for every node x. create d (x) copies of that node. and call them

zo, ...• xd(x}+ Then create a directed cycle ex of length 2d(z) that alternates between the

d (x) copies ofx and the d (x) neighbours of..r in Q ; ie.,

ex =.xOU Xl v ... Xd~}-l W Xo.

where u ,v, ... ,ware lhe neighbours of x in Q (the original neighbours, nQl the copies of

these neighboul1i).

•
Comment: The union of the Cx's consislS of :I: 2d(x)=O(n) arcs. each of which is

x=1

between a "real" node and a "copy" of another node.

lmplemenlation NOle: The arcs which make up the Cx's are created as follows. Create two

arcs (x iY) and (y ~) for every edge {x iY} of Q; for every so created arc (x iY) determine

s(x,y), the number of arcs (x,z) with z<y. Then replace every arc (xiY) by the arcs

(xs{:l:,y),y) and (y,x (s{:l:,y)+l) mod d(J:»'

Step 3: Replace every pair of arcs of the form. (x.tiY) and (x iYl) by the single arc (X.tiYl)' 1bis is

done by sorting the arcs of the ex's so that every arc (x.tiY) is in the same processor as the

arc (x OJl), and then having that processor remove both of these two arcs and create the new

arc (XlOJt>.

- 13 -

Comment: The effect of this step is to "stitch" the ex's together into one giant cycle that

goes through every copy of every node exactly once. The next step "opem" this cycle at

node r Cb thus creating chain (T).

Step 4: Create node 'dCr). which is an additional copy of the root node T. and change the arc

(ZioTO) to (Z,t,Td(r)' Note thai at this time the arcs we created form a chain of T. The fol­

lowing step extracts T from this chain.

Comment: The reader may have noticed that the copies of a node x do Dot necessarily

appear in the order XooX' 1•... on the chain. This is of no consequence.

Step 5: Use algorithm CHAIN_RANK on the chain obtained in the previous steps, with evcI)'

weight set to unity (i.e. every wi=1). Then for every edge {x,y} of Q. determine which of

the two arcs, (x.y) or (Y,x). is in T. lbis is done as follows. Let Xl (resp. Yt) be the

smallest-ranked occurrence ofx (resp. y) on the chain: If the rank of Xl is smaller than that

of y, then x is the parent of y in T and therefore arc (y,x) is in T. otherwise it is the arc

(x,y) which is in T (recall that T is an in-tree).

End of Algorithm MAKE_ROOTED.

Correctness of the above algorithm followS from the commenlS included in its description.

That it ruM in 0 (..r,;) time is also easy to see. once we know that CHAIN RANK runs in time

o(..r,;). We therefore have the following:

Theorem 3.3 Given that an undirected n -node tree is stored in the mesh. rooting that tree can be

done.in time 0 c:r;;).
The next section gives an 0 c.J;;) time algorithm for a more difficult tree computation: The

Minimax value problem for an n -node game tree.

4. Computing the Minimax Value.

TItis section contains a complex. but rather elegant result: An 0 c...J;) time algorithm for

computing the Minimax value of an arbitrary n -oode game tree. In this problem we are given an

n ~node directed tree T rooted at node r in which every leaf has a real. number, called the \'alue of

of the leaf, attached to it, and every internal node is of type Min or Max. If the value of every

-14-

leaf is either 0 or I, then the tree is called a 011 game tru. The problem is to compute VAL (T),

the value of the root r of T. If j is an internal node of type Min (!esp. Max), then the value of j

is the minimum (resp. maximum) of the values of the children of j. The main ingredients ofour

Minimax algorithm are a relationship between game trees with real values at the leaves and 011

game trees, an algorithm for efficiently computing the value of a 0/1 game tree, and the results of

Section 3.

We start by establishing the relationship between arbitrBIy game trees and 011 game trees.

We show how to reduce the problem of computing the value of an n-node game tree with real

values associated with the leaves to that of computing the values of logn successive instances of

011 game trees, where the i-th instance is of size at rnost cin andc<1 is a constant LetT be an

n -node game tree with A. leaves, and let a" ... ,Q),. be the numbers attached to its leaves (not in

any particular order). Without loss of generality assume a 1::;: ... Sa",. Let Tj be the 011 game

tree obtained from T by replacing every aj by 0 if aj<aj. and by 1 if ai~i' Let VAL(Tj) be the

value of the root of Tj. Observe that VAL (Tj) = 1 implies VAL (Tj) = 1 for every j<i, while

VAL (Tj) = 0 implies VAL(Tj) = 0 for every j>i. If we let a = max {i IVAL (Tj)=lJ , then we

have VAL(T)=aa. To see this, simply note that VAL (Tj) = 1 iff VAL(T)::;a;, and that

VAL (Tj) = 0 iff VAL (T)<aj. ('The notation just introduced will be used throughout this section.)

The above observations imply that, if VAL(Tj) can be computed in orltl) time, then

VAL (T) can be determined in 0 (II;10gll) time by using binary search to compute the largest i

such that VAL (Tj)=1. In this section we not only show how to compute VAL (Tj) in 0 ("l;) time,

but we also remove the logn factor, and thus obtain an 0 (.f;) time algorithm. for computing

VAL (T). We continue the discussion assuming that VAL(T;:) can indeed be computed in time

orin).
We henceforth assume that every internal node of a game tree T has at least two children.

If this is not so, then we can replace T by an equivalent tree j in which nodes with one child

have been eliminated by "bypassing" them (see Figure 4.1). This "bypassing" operation can be

done in 0 (...J;) time by using essentially the same techniques as in Section 2. and therefore we

omit the details of how this is done. The fact that every internal node ofT has at least two chil­

dren implies that A.> 11/2 (recall that A. is the number of leaves and n is the total number of nodes

- 1S-

ofT).

•

,

b

,

•

g

b

•

b

• ,

•

b

•

Figure 4.1

We achieve 0 c..f;) time perfonnance for VAL(T) by using binary search where after each

"probe" of the binary search, we reduce the problem size to 3/4 of the original size. 'That is. if

before a probe of the binary search the problem size was m. then

(i) the probe takes 0 (..r,;;)time, and

(ii) the problem can be reduced to an equivalent problem of size DO more than 3m /4, also in time

-------.O'IT("m)I~.---------------------------

This implies that the jill probe of the binary search will take time Orl(3/4i In). and therefore

the entire algorithm for computing VAL (T) takes 0 c:JtI} time. We leave the description of step

(i) (i.e.• how an m -node 011 game tree is evaluated in Oe,..r,;;) time) for later, and continue with

the discussion of the size reduction step. We give me details only -for the reduction which follows

the first probe of the binary search; i.e., after computing VAL (TAJi). Without loss of generality.

assume that the result of this first probe is VAL (Tm)=O; i.e.• the next probe will compute

VAL (T),/4)' The idea is not to use T)J4 itself in the next probe. but rather a smaller tree which has

the same value as T)J4. This is made possible by the following observation: Since all the subse-

quent probes will be on Tj's with j <IJ2, the values of the leaves in T which were 0 m, ... ,a).

will remain I in every such Ti . Therefore, we can "remove" the leaves containing the values

0).12, ••. ,a", from T, and, as far as subsequent probes are concerned. replace T by a new version

of T as follows:

(i) If j is a leafof T which contains an OJ with j'2>J2, then remove j from T.

(ii) Let k be an interior node of T that has at least one child removed in step (i) and that is of .

- 16-

type Max. Make k a leaf of T (by deleting ilB remaining children and their subtrees), and

give k the value a". lbe justification for this is obvious: In all subsequent 0/1 probes a

removed leaf (or leaves) will have value I, forcing the value of Ie to be 1 (because Ie is of

type Max). Making Ie a leaf with a value of a" achieves the same effect

(iii) Let Ie be an interior node of T that has all its children removed in step (i) and that is of type

Min. In this case make k .8 leaf ofT and give it the value 01. 1be justification for doing so

is similar to the one for (ii).

(iv) If the new version of T resulting from steps (i)-{iii) has any internal nodes with only one

child, then modify T so that these nodes are eliminated (this is done by "bypassing" those

nodes, as previously explained). The tree T resulting from this step will then have all its

internal nodes with at least two children each.

Note that the new tree created in steps (i)-(iv) has the same value as the original tree T. and

has no more than 3n/4 nodes (this last obseIVation follows from the fact that 'b-n/2 and that the

new tree has at least 'Al2 fewer nodes than the original one. since step (i) removes)J2 leaves).

Before proceeding with the next probe of the biDa!)' search, we compress the arcs describing the

----new--tree-T----Within-the-top-left-..[3n-l4-x--...[3n-l4-submes.h.and-it-is-within-this-smaller-submesh1::ha'~t ---------­

the rest of the computation will take place. 1be above discussion was for me case when the first

probe resulted in VAL (T)./2)=0. 1be case when VAL (Tm)=1 can be handled analogously.

In general, the number of steps needed for the size reduction of the i -th probe of the binary

search is 0 rJ(3/4i In) and therefore the total time taken by the algorithm is 0 rJ; }, if a given

n -node 011 game tree Q can be evaluated in 0 rJ;). Now we give an 0(..Jn} time algorithm for

computing VAL (Q). TIlls algorithm makes use of the following lemma, which generalizes the

results of sections 2 and 3 to rectangular meshes.

Lemma 4.1 Suppose that an n -node directed tree H is stored in an lxw rectangular mesh, where

n =l.w. Then the depth, the height, the number of descendents, and the preorder (resp. postorder,

inorder) number of every node can be computed in time 0 (l+w).

Proof: The results of [AI, KA] imply that any problem that can be solved in time 0rJ;) on a

,r,;xJ; mesh can also be solved in time O(l+w) on an hew mesh where l.w=n. This, together

with lheorems 3.1 and 3.2. implies the lemma. 0

- 17-

We need to state the algorithm for computing the value of a 011 game tree in tenns of a rec­

tangular mesh rather than a square mesh, because even though we may start with a square mesh,

the recursive calls (which are made on subtrees obtained from a centroid computation) will be for

rectangular meshes rather than square ones. (Insisting that recunive calls be on square sub­

meshes runs into trouble, since there may Dot be enough room in the original mesh for the

squares.)

Algorithm 0/1-VALUE

Input: An n -node 011 game tree Q, rooted at r. Every arc (i ,p (i» of Q is stored in one of the

processors of an Ixw rectangular mesh, where n=l.w.

Output: VAL (Q) stored in the top-left processor.

Step 0: If 1< 10 and w< 10. then solve the problem in constant time (e.g. using any brute force

algorithm). Otherwise proceed to Step 1.

Step 1: Find a centroid c of the tree Q. Recall that a centtoid of an n -node tree is a node whose

removal from the tree disconnects it into connected components none of which has more

than n12 nodes. (See [Kn] for a proof oflhe existence ofa centroid)

Implementation Note: Since the number of descendents of every node can be found in time

0(1+w), a centroid can be found in time O(l+w).

Step 2: Mark every node on the path from the the centroid c to the root r (including c and r) as

being "special".

ImpJement(l1jon Note: Step 2 is done in time O(l+w) as follows. F"mt, compute the preorder

number and the number of descendents of every node. Next, let every processor know the

preorder number of c and the number ofdescendents of c. Finally. the special nodes can be

marked in constant time by comparing, for every node j , its preorder number and number of

descendents with those of c (such a comparison will reveal whether that node is ancestor of

c. i.e. whether it is special).

Step 3: Let Q i •... •Q ~ be the collection of rooted trees resulting from Ihe removal of the special

nodes from Q. Let ri denote the root of Qi (see Figure 4.2). Note that, in tree T. the parent

of every rj is a special node. Assuming (without loss of generality) that l~. store the

descriptions of Q It ... •Q ~ in l; rectangular submeshes. as shown in Figure 4.3. If nj is the

- 18 -

number of nodes in Qj then the submesh containing the arcs of Qi is of size Ij'xw. where

'j=nj!w. Of course, no nj is larger than n12 (since c is a centroid) and therefore /{SI/2 for

every i. Store the arcs ofT that are not in any Qi (i.e.• the arcs that are incident to a special

node) in that part of the mesh not containing the description of any Qio as shown in Figure

4.3.

Figure 4.2

w

Ar ,
Q,

Q,

Figure 4.3

lmplementalion Note: Finding the various Qj'S is essentially a connected components computa­

tion which, as already stated, takes o(l+w) time. Compressing the Qj'S into the appropri·

ate submeshes is straightforward and we omit its details.

Step 4: Recursively compute VAL(Qi) in parallel for every Qi. IfT(' ,w) is the total time taken

by algorithm OIl-VALVE, then the cost of this step is DO more than T(//2,w), since every Ii

is no larger than 1/2. (Of course, if we had l<w then the cost of this step would be DO more

Ib,n T(I,w/2).)

Comment: After this step we have the value of every rio and Iherefore we now are left with the

- 19-

problem ofcomputing the values of the special nodes; i.e., the nodes on the path from c to r

in T (every Tj is a child ofone of these nodes). Actually, we are only interested in the value

of one of those special nodes: 1be root r. The next step comp.1tes the value ofT. and hence

that ofQ.

Step 5: Let H be the subtree of Q which consists of the special nodes and the Ti'S. Note that the

Tj 's are the leaves ofH. with a value of 0 or 1 attached to each of them. For every rj whose

value is 0 do the following. Let Pi be its pareot node. Remove'j from H. IfPi is of type

Min, then make Pi a teaf with value O. If Pi is of type Max and all of Pi'S children have

value 0, lIten make Pi a leaf with value O. The case when 'j has value 1 is symmetric.

Implementing this in O(/+w) time is trivial. After this step, H is a collection of (one or

more) chains. The first node in every chain in H has a value of 0 or 1 attached to iL One

such chain has r as the last node, and the final result we seek is the value of the filSt node in

the chain containing r. Computing lhat value can be be daDe in 0 (l+w) time by using the

techniques of Section 2.

End of Algorithm OIl-VALUE.

--------'COrrectness-of-the-above-algorithm.--is-easily-proven-by-induetion.----That-it-runs-1D-9-(-I"""l-w-)I---------­

time is a consequence of the fact that its running time T(l,w) satisfies the following recunence:

T(/ ,w)'; T(//2,w) +O(/+w) ifMax(/ ,wll'10, and l;<w

T(l,w)'; T(I,wI2) +O(I+w) ifMax(I,wll'IO, and I<w,

T(/,w)=O(l) ifMax (I ,w)< 10.

This implies that T{l,w;FO (l+w). We can therefore state the main result of this section.

Theorem 4.2 Given that an n -node game tree is stored in a ..r,j'x..J;; mesh, with a real number

associated with every leaf and every interior node being of type Min or Max, the Minimax value

of the tree can be computed in time 0 <:J;;).

s. Concluding Remarks

We have presented techniques that lead to OrJ;;) time algorithms for computing many tree

functions on a ..rnxVn mesh of processors. We now describe how to modify our algorithms to

handle the case when the input is a forest, rather than a tree. If the initial input in the ..rnx..J;;

- 20-

mesh is a forest, then we first find its connected components in 0 c.J;;) time. Let these com­

ponents be the trees Q I••.• ,Q~. Store Q 10 •.• •Q ~ in rectangular meshes as shown in Figure 4.3

(of course, in this case there are no remaining arcs). Since we have already shown that for a tree

stored in an I XW rectangular mesh our algorithms run in time 0 (l+w), the results for the forest

follow.

The techniques presented in this paper are not limited to the problems mentioned. They

can, for example, be used to obtain an 0 <:J;) time algorithm. for the problem of computing the

value of an arithmetic expression of length n. The algorithm. for this problem is based on the

ideas developed in references [H] and [MRJ. and the techniques of this paper merely make an

or&) time implementation possible on the mesh. S.R. Kosaraju has pointed out that an

approach similar to the one used in the algorithm for evaluating arithmetic expressions is an alter­

native way of establishing Theorem 4.2 without using biDaJy search.

Another problem for which our techniques result in an 0 (V;;) time solution is the problem

of optimally placing the minimum number of centers on the nodes or edges of a tree so that every

node of the tree is at most distance d away from a center. where d is given. The recursive algo.

----ritlun-for-doing-so-uses-a--eentroid-decompositioD-to--generate--the-subproblems-to-be-solved---------­

independently, and it uses a height computation to determine the bottom of the recursion. We

omit the details since they are of a similar flavour as the ones for Ihe Minimax algorithm.

Since ttees play a fundamental role in so many graph algorithms, it should come as no

surprise that the techniques of this paper also enable 0 c:rr;)solutions to many grnph problems,

where n now denotes the number of edges of the input graph. For example, the parallel algo­

rithm for finding Euler Tours described in [AV] can be implemented in 0 rJ;) time OD the mesh

(when the computation terminates, the processor containing edge e also contains its predecessor

and successor on the resulting Euler Tour). The parallel biconnectivity algorithm of [TV] can

also be implemented in time 0 rJ;), and so can the known parallel strong orientation algorithm

[A2, V]. Implementing these known algorithms in 0 c:rr;)time on the mesh makes crucial use of

our techniques, as the reader can easily verify.

All the algoritluns presented for the 2-dimensional mesh generalize to higher dimensional

meshes; Le., they can easily be modified to ron in time O(n Vd) on an d-dimensional mesh of n

- 21 -

processors.

References

[AI]

[A2]

[AHU]

[AK]

[AV]

[B]

[ORK]

[II]

[lies]

[Kn]

[K]

[KA]

[MR]

[NSl]

[NS2]

[KS]

[S]

rrC]

rrK]

rrv]

[U]

M. J. Atallah, 'Simulations Between Mesh-Connected Processor Arrays,' Proc. 23nd
Annual Allerton Conference on Communicalion. Control, and Computing, Monticello,
Illinois. October 1985.

M.1. Atallah, 'Parallel Strong Orientation of an Undirected Graph,' Info. Proc. Letters,
Vol. 18, No. I, January 1984, pp. 37-39.

A.V. Aho, J.E. Hopcroft. J.D. illlman, The Design and Analysif of Computer Algo­
rithms, Addison-Wesley, 1974.

M.1. Atallah, S.&. Kosaraju. 'Graph Problems on a Mesh-Connected Processor Array',
JACM, Vol. 31, No.3, pp. 649-ii67, July 1984.

M.1. Atallah and U. Vishkin, 'Finding Euler Tours in PamlleJ,' CSS Vol. 29, No.3,
December 1984, pp. 330-337.

R.P. Brent, 'The Parallel Evaluation of General Arithmetic Expressions,' JACM, Vol.
21, No.2, April 1974, pp. 201-208.

P.S. Gopalakrishnan, LV. Ramakrishnan, L.N. Kana1, 'Comp.1ting Tree Functions on
SIMD Computers', Proceedings of1985 1nrernanucnol Con/. on Parallel Processing,
pp.703-710, 1985.

S.E. Hambrusch. 'Parallel Algorithms for Bridge- and Bi-eonneetivity on Minimum
Area Meshes', Techn. Report. Purdue University, 1984.

D.S. Hirschberg. A.K. Chandra, D.V. Sarwate, 'Computing Connected Components on
Parallel ComputelS', CACM, pp. 461-464, Aug. 1979.

D.E. Knuth, The Art ofComputer Programming. Addison Wesley, Reading, MA.

S.&. Kosaraju. personal communication.

S.R. Kosaraju and M.1. Atallah, 'Optimal Simulations Between AlTays of ProceSSOIS,'
Purdue Univ. Compo Sci. Tech. Rept. 561, 1985.

G.L. Miller, 1.H. Reif, 'Parallel Tree Contraction and its Application', Proceedings of
26-rh FOCS, pp 478-489, 1985.

D. Nassimi, S. Sahni, 'Finding Connected Components and Connected ones on a
Mesh-connected Parallel Computer', SIAM J. on Comp., pp. 744-7S7. 1980.

D. Nassimi, S. Sahni, 'Data Broadcasting in SIMD Computers' ,IEEE Trans(Z{;tions on
Computers, pp. 101-106, 1981.

1. Reif, Q. Stout, personal communication.

Q.F. Stout, 'Tree-Based Graph Algorithms for Some Pamllel Computers,' Proc. of
1985/nr. Con/. on Parallel Processing, pp 727-730,1985.

Y.H. Tsin, F.Y. Chin, 'Efficient Parallel Algorithms for a Class of Graph Theoretic
Problems', SIAM J. on Computing, pp. 580-599, 1984.

C. Thompson, H. Kung, 'Sorting on a Mesh-eonnected Parallel Computer', CACM, pp.
263-271,1977.

R.E. Tarjan, U. Vishkin. 'Finding Biconnected Components and Computing Tree Func­
tions in Logarithmic Pamllel Time', Proc. of25-th FOCS, pp. 12-20, 1984.

J.D. Ullman. Computational Aspects ofVLSI, CSP, 1984.

- 22-

[V] U. Vishkin, •An Efficient Parallel Strong OrieolB.tion,' CS Dept. Tech. Rept.. Counmt
Inst.. NYU.

	Solving Tree Problems on a Mesh-Connected Processor Array
	Report Number:
	

	tmp.1307986960.pdf.hu6hg

