Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1985

Solving Tree Problems on a Mesh-Connected Processor Array

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Susanne E. Hambrusch
Purdue University, seh@cs.purdue.edu

Report Number:
85-518

Atallah, Mikhail J. and Hambrusch, Susanne E., "Solving Tree Problems on a Mesh-Connected Processor
Array" (1985). Department of Computer Science Technical Reports. Paper 438.
https://docs.lib.purdue.edu/cstech/438

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SOLVING TREE PROBLEMS ON A MESH-CONNECTED
PROCESSOR ARRAY

Mikhail], Atallah
Susanne E. Hambrusch

CSD-TR-518
May 1985

SOLYING TREE PROBLEMS ON A MESH-CONNECTED PROCESSOR ARRAYJr
Mikhail J. Atallah and Susanne E. Hambrusch
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907.

Abstract

In this paper we present techniques that result in 0(\1;) time algorithms for computing many
properties and functions of an n -node forest stored in an ¥ 3Vn mesh of processors. Our algo-
rithms include computing simple properties like the depth, the height, the number of descendents,
the preorder (resp. postorder, inorder) number of every node, and a solution to the more complex
problem of computing the Minimax value of a game tree. Qur algorithms are asymptotically
optimal since any nontrivial computation will require Q(\r;) time on the mesh. All of our algo-

rithms generalize to higher dimensional meshes,

Key Words

Analysis of algorithms, graph theory, mesh of processors, parallel computation.

1 This work was supported by the Office of Naval Research under Contract NDOQ14-84-K-0502 and by the
Nalional Science Foundation under Grants DCR-B4-51393 and DMC-84-13496.

1. Introduction

Suppose we have a ¥ x¥n mesh of processors as shown in Figure 1, where each processor
has a fixed (i.e., O(1)) number of storage registers, and can communicate only with its four
neighbours. The description of an # -node undirected forest is stored in the mesh; i.e., each pro-
cessor contains an edge {i,j} of the forest. Typical problems to be solved on a forest, which are
not only interesting in their own right but also arise as subproblems in other graph problems [AK,
H, TC, TV], are rooting every tree in the forest (the result is called a directed forest), computing
the depth, the height, and the number of descendents of every node in a directed forest, and com-
puting the preorder (resp. postorder, inorder) number [AHU] of every node in a directed forest.

3M9 1213

0111415

Figure 1. A 4x4 mesh with shuffied row-major indexing

‘While an algorithm designed for the Shared Main Memory model can always be simulated
on 2 mesh (or any other fixed interconnection network), such a simulation usually ch)es not result
in the most efficient algorithm, since special characteristics and properties of the mesh are not
taken into consideration. We present techniques that result in O(\’;) time algorithms for the
above mentioned basic problems, for computing the Minimax value of a game tree, and for a
number of other problems. These techniques will be useful to anyone designing algorithms for
the mesh, a popular model for paralle] computation. The algorithms reported in [GRK] for solv-
ing basic tree problems on the mesh take O (‘J; logn) time, and are obtained by implementing, on
the mesh, ideas developed for parallel algorithms on the Shared Main Memory model [HCS, TC,
TV]. Stout [S] has independently solved some of the problems considered in Section 3 in o0 n)

time by using an approach different from ours.

This paper is organized as follows. Section 2 gives an 0 (¥n) time algorithm for a problem

whose solution is a subroutine of all the algorithms described in the subsequent sections. In

-3-

Section 3 we show how o solve a number of basic tree problems in 0(";) time; ie., finding
the depth, the height, the number of descendents, and preorder (resp. postorder, inorder) number
of every node of a directed tree, and tuming an undirected tree into a directed one. Section 4
gives an O(\f;) time algorithm for the problem of computing the Minimax value, This latter
algorithm uses the results of the previous sections. In Section 5 we explain how to extend our
results to forests, and poiat out how to use our techniques for optimally evaluating an arbitrary
arithmetic expression tree and for solving other graph problems on the mesh. The paper assumes
that the reader is familiar with the standard data movements that can be done in time 0(\!;) on

the mesh (see [NS1, N§2, U] for details).

2. Weighted Ranking of a Linear Chain

In order to compute the height, the depth, and many other tree functions in time O(\!;), it
is necessary to be able to solve the following problem in 0(‘-';) time. Assume an n-edge
directed linear chain is stored in a Vi X¥n mesh of processors. Every processor conta_ins one arc
of the form (i ,succ (£)), where node suce (i) is the immediate successor of node [, 1<i<n, in the

——linear chaim defined by the function succ—Ifi—is the-last-node-omthechain, themnoprocessor

contains an arc of the form (i ,succ (£)). The processor containing aa arc (i ,suce (i) also contains
a weight w; associated with node { (if succ (i) is the last node in the chain, then that processor
also contains we,-)). The rank R(i) of a node { is the sum of the weights of its predecessors
(including itself) in the chain defined by the suce function. See Figure 2.1(a) for an example. If
the mesh contains a collection of node-disjoint chains rather than a unique chain, then obviously
the rank of & node is with respect to the chain to which the node belongs. In this section we show
how to compute the rank R (i } of every node { in O ('J;) time,

The obvious divide-and-conquer approach in which the mesh is divided into four sub-
meshes, which are solved independenily and subsequently merged, does not resuit in an efficient
algorithm. The problem is in the merging step: Chains may 'jump’ a large number of times
between two submeshes, making it seemingly impossible to combine the four partial solations in
0 (\’;) time. Our algorithm too uses a divide-and-conquer strategy. It uses the above-mentioned
technique to solve, in time O (¥r), a special case of the problem which has a property that allows

{a) a linear chain; 2 is the last node and 7 i3 the-
First node in the chain,

(b} alter step 4 of algorithm CHAIN__RANK.

Figure 2.1
the merging of subsolutions in time O (\’;). The algorithm for the general case uses the one for
the special case in order to reduce, in O (¥) time, the initial problem of size a to one of size no

more than #/2. The recurrence for the time T {n) taken by the algorithm computing the ranks is

shown to be of the form T(n) < cVn + T(n/2), which implies that T(n) is O (¥n). Before giv-
ing a precise description of the general ranking algorithm, we describe how to efficiently compute

the ranks in chains of a special type.

Assume that k& processors of the mesh contain one arc each, k<n, which together define a
collection H of node-disjoint chains, and that for every arc (¢ ,succ(i)) the property i>succ (i)
holds. Recall that a processor containing an arc (i ,suce (i)) of H also contains the weight associ-
ated with node i. If i is a node on H, then the rank of i with respect to H is denoted by Rp(i},
and it is the sum of the weights of the predecessors of i in the chain of A containing i. Algo-
rithm SIMPLE RANK, which computes the Ry (i}'sin O (\';) time, uses both the row major and
the shuffled row-major indcxing‘ scheme for the processors of the mesh. Recall that in the
shuffled row-major indexing scheme the processors with indices 1, - * - ,n/4 are the ones in sub-
mesh I, where submesh I is as shown in Figure 2.2. Within submesh I, the processors are indexed
using the shuffled row-major indexing scheme. Submeshes II, I1, and IV are filled analogously.

See Figure 1 for an example and [TK] for precise definitions.

I

I

I ;
I [v

(

1

|

Figure 2.2
Algorithm SIMPLE_RANK

Input: Collection H of chains such that every arc (§ succ (i)) in H has the property i>succ (i).
Output: The Ry(i)'s; i.e., at the end of the computation every processor containing an arc

(i ,succ (i) of H also contains Ry (i). -

Step 1: Sort the entries (i ,suce (i),w;) according to i and store them in the mesh according to the

shuffled row-major indexing scheme.

Comment. Let H 5 be that portion of H obtained by considering only the arcs of A that are
stored in submesh o, ae {I I I IV}, Then after Step 1, for every arc (i ,succ(i)) in H,
the arc (succ (i), succ (succ (£))} is stored in H ; where a<c.. This holds because of the pro-
perty i>succ(i).

Step 2: Recursively compute for each one of the four submeshes Hy, - - - Hyy the ranks with
respect to the portion of H stored in it; i.e., submesh & computes the Ry (i)'s. This does
not yet give the final values of the Ry (i)’s, since a chain in H may extend over more than
one submesh. But a chain in A4 cannot cross submesh boundaries more than 3 times,
because of the comment following Step 1. This last property is crucial for Step 3 to run in

O (¥n) ime. Note that for every node i in Hpy, we have Ry, (i =Ry (i).

Step 3: In order to combine the results of Step 2 to obtain the ranks with respect to /, first com-
bine the results in submesh I with those in II to get the Ry, (i)'s, and simultaneously (in
parallel) combine the results in IOT with those in IV to get the Ry i1, (i)’s. Then combine

the two so obtained results in order to get the final ranks Ry (i) of the nodes i in the upper

-6-

half (regions I and II). (For every node / in the lower half the final rank is then already
known, since Ry (i) = Ryun, (£).)

Implementation of Step 3: We describe the "merging" step only for the case of combining
regions 1 and II to get the Ry, . (i)'s (the other computations of Step 3 are analogous).
First determine in submesh II all ares (7 ,succ(i)} for which suce (i) is the last node of a
chain in Hy. Then, for every such i, do the following: (i) send Ry, (i) to the processor of
submesh I which contains the arc (suce (i), suce (succ (i))), and (ii) add the value of Ry, (i)
10 the current rank of every node in H; that is in the same chain as node suce {¢) (including

succ (f)).

Determining the nodes {/ and performing step (i) can easily be done in O (\’;) time by using
standard data movement techniques [U). Step (ii) is done in O (Vr) time by first determin-
ing the connected components induced by the arcs in H, so that arcs in the same connected
component <¢an be arranged to occupy adjacent processors. This takes OOJ;) time, since
the connected components of any n-node forest can be found in O(‘J;) time by an easy
application ;)f the techniques of [NS1]. (Actually it has recently been shown [RS,K] that this

holds for arbitrary graphs, not just forests.) After this connected components computation,
all Ry, (i)'s can be propagated to the appropriate entries in O (¥n) time.
End of Algorithm SIMPLE_RANK.

If we let F(n) be the time required for determining the ranks of all the nodes in M, then we have
F(n)< F(n/2cVn , which implies that F (n) is O (¥n). It is clear that an analogous algorithm
exists for an M with i<succ (i) for every arc (i ,succ (i)} in H. We now describe the algorithm
that computes the rank of every node with respect to arbitrary chains (i.e., chains in which

i<succ (i), respectively i>succ (i), does not hold for all {).

Algorithm CHAIN_RANK

Input: Every processor contains an arc (i succ (i) and a weight w;. The function succ defines
an n-edge linear chain.

OQutput: Every processor containing (i succ (¢)) also contains R (i), the sum of the weights of the
predecessors of node f in the n-edge linear chain defined by the function succ.

-7-

Step 1: Let ny (resp. n,) be the number of processors containing an entry with suce (i)}<i (resp.
succ (i)>i). Determine which of m; and n, is the larger, and broadcast the outcome to every
processor. Without loss of generality the algorithm assumes throughout that n ;>n,. (Note
that in this case n2n/2>n,.)

Step 2: Let H be the collection of chains obtained by considering only those arcs (i ,suce (i))
with suce (i }<i. From Step 1 it follows that the total number of arcs of the chains ir H js at
least n/2. The Ry(i)'s are computed in O(Vn) time as described in algorithm
SIMPLE _RANK,

Step 3: For every chain in H, determine the node that is the immediate predecessor of the first
node of that chain in the original input chain. For a given chain in H, let I be this node. For
example, in Figure 2.1(a) node 3 is the immediate predecessor of node 8, and node 8 is the
first node of the chain (8,6), (6,4), (4,1). Broadcast / to all the other nodes in the same
chain. This is done, in parallel for all chains of H, in time O (¥n) by using known tech-

niques.

Comment: The purpose of this step is to reduce the problem of computing the ranks of

nodes on A to that of computing the rank of the immediate predecessor of the first node of
every chain in M. If (,succ (1)) is an arc with succ (1) being the first node of a chain in H,
and R (1} is known, then the final rank of every node v in the same chain in & as succ () is
Ry(vHR ().

Step 4: Modify the original input chain by "bypassing" the chains in H as follows: Let
Iy, " g1, iy be a chain in H and suce (I ¥=i ; for some !. Ryi 1), - - - Ry(iy) have already
been computed by the previous call to SIMPLE_RANK. Set succ(l) equal to i, (i.e., the
last node of the chain) and set the weight of node iy to Ry(ip). (Ry(ét) is stored in the pro-
cessor containing the arc (iyy,it).) See Figure 2.1(b) where succ(3) is set to 1 and the
weight of node 1 is set to 4. This new weight now reflects the weight of the "bypassed"
nodes. Note that the surviving chain has length n,5r/2, and that the (yet to be computed)
ranks of nodes on that chain are the same as their ranks in the original full chain.

Comment: Recall that in the chain i, - - - i, every i; knows Ry(i;) as well as node 1.

Therefore when, at a later stage, we know R(/), then R (i ;) is obtained by simply adding

Ry (i) and R (1),

Step 5: Compress the n; arcs of the surviving chain so that they are stored in the Vn,xvVn, top-
left submesh. See Figure 2.3. Use the '\/n—zxwln_z submesh to recursively solve the remaining
problem: that of computing ranks of the nodes in the surviving chain,

Viny
Vi
Figure 2.3

Step 6: Update the ranks of the rodes in A, as explained in the comment following Step 3. Note
that the nodes in the chain used by the recursive call of Step 5 do not need to update their
ranks (since these ranks are computed correctly by the recursive call).

End of Algorithm CHAIN RANK.

The cormrectness proof of the above algorithm is easy and is omitted, That it runs in time
O(‘J;) follows from the fact that the data movements required in every step can be done in
O (¥n) time and that Step 5 makes a recursive call on a square mesh of size Vg 2Vn,, where
n3sni2. Note that the algorithm can easily be modified to compute the rank of a linear chain
consisting of cn arcs stored in the mesh such that every processor contains no more than ¢ arcs
{c and ¢ being constants). This concludes the description of the weighted ranking algorithm,

which will be used as subroutine by the algorithms in the following sections.

3. Some Applications of Chain-Ranking

This section shows how algorithm CHAIN RANK (given in Section 2) can be used to
optimally compute various tree functions on the mesh. The idea is to create, from the input tree
T, a linear chain chain(T) and to use algorithm CHAIN_RANK on chain(T). The weights
assigned to the nodes of chain (T") depend on which particular tree function is being computed.

-9-

We also show how to root an undirected tree in O(‘/; } time. The results of this section follow
from Section 2 without too much effort, and the idea of creating a linear chain from a tree is a
well known technique [TV]. A more complex tree computation, which makes use of the results
of this section in an interesting way, will be described in Section 4. We start by describing how

to create a linear chain from a given tree.

Let T be an n-node tree rooted at node r. T is represented by the arcs (i ,p (i), where p (i)
is the parent of node i, 1<i<n. Each processor of the mesh contains exactly one arc, with a
“dummy" arc (r,0) present for the root r. Imagine "wrapping" a chain around T in the manner
depicted in Figure 3.1(a), where the dashed line represents the chain. Note that the chain goes
through a node v 8(v)}+1 times, where 8(v) is the number of children of node v. Furthermore,

from node v the chain visits the children of v in increasing order of their index.

Figure 3.1
For the purpose of making the 2n—1 nodes on the chain distinct from each other, we distinguish
between the various occurrences of node v on the chain by referring to them as v, - - - ,v sy If
node w is the i -th child of node v in T, 1<i <8(v), then, in the chain, node v; is the successor of
node w (), and node v;_; is the predecessor of node wq. We refer to the chain obtained in this
way from a tree T as chain(T). For the tree T shown on Figure 3.1(a), ckain(T) is shown in
Figure 3.2(b). Throughout this paper, if w=v; is a node on chain (T'), then we assume that a pro-

cessor containing that node can tell that it is the k** occurrence of node v of T (this can easily be

n a2
’1’0 o\"\
ATan
II A a
_________ 7 I,'f "'-.,‘\ ~
:9 ’4’ ,” \\.‘ \"-‘(513)
ST 1}, - '--\\A \O-....'___‘_-
” : 2.0 '0 S (S,Uj:ﬂ ===
’.r ’ v Pid L ; 1 ’I . S {51) 1 &2
: . RS oy N PO Y
' 1 'I -, 1 " ’o“ v I, Py ¥ I
/] “ ’] . B 4 . 1Y ’ . 1 1
e L - 1 "" - AP ;e 1 £
3 4 6 N P U e Y !
P o) & 8O 9@BY
o (o) *0 (6.0) VA
. ; vox
v K 1”1
-?I o]
G0
H
® ®)

-10-

achieved by storing node w=v, as a pair (v,k), as done in Figure 3.1(b)).

Given atree T, the following algorithm creates chain (T) in O (Vi) time.

Algorithm CREATE_CHAIN

Input: n arcs (i,p (i)) that define an in-tree T rooted at node r, with g dummy arc (r,0) out of the
root. Node p (i) is the parent of i in T'.

Qutput: 2n—2 arcs (w succ (w)) that desctibe chain (T).

Step 1: For every node { in T determine 5(;), the number of children of i; i.e., the number of
arcs (f ,p (j)) with p (=i,

Step 2: For every arc (i ,p (i }) determine s (i), the mumber of children of p (i) that are no greater
than /; .., the number of arcs (f,p (j)) with p (j}=p (i) and j<i.

Step 3: For every arc (i ,j) of T (except (r,0)) generate two directed arcs of chain {T'), namely

Usayf o) and (& 5y iyer)-
End of Algorithm CREATE_CHAIN.

Both the 8(¢)'s of Step 1 and the s{i)'s of Step 2 can easily be computed in O (¥) time,

Step 3 is done in constant ime, and thus ckain (T) can be created in O (V;) time.

We now turn our attention to the problem of computing the depth of every node v in an n-
node rooted tree T. In the first step of the algorithm we creats chain(T) using algorithm
CREATE_CHAIN. In the second step of the algorithm we set a weight for every node in the
chain as follows. If (v;,w;) is an arc in the chain, then node w; has a weight of +1 if and only if
the arc (w,v)isinT (i.e., p(w)=v), and node w; gets a weight of —1 otherwise (i.e., if p (v }=w).
The weight of the first node in chain(T') is set to 0. We then call algorithm CHAIN RANK to
determine the rank of every node in the chain, The depth of every node v in T is then the rank of
vgin chain(T). (Actually, the rank of any v, in chain (T') will do, since it too equals the rank of
vp.) Correctness follows from the definition of depth and the way weights were assigned to the
nodes of chain (T).

Computing the number of descendents of every node in time O (¥) is similar to the depth

computation, and we only describe the differences. We assign to every node v; in ckain(T) a

weight of +1 if i=B(v), and a weight of 0 if 0<i<8(v). In other words, the last occurrence of

-11-

node v of T on chain(T) is given a weight of unity, while other occurrences of v are given a
weight of zero. The number of descendents of v in T is equal to R (v 3R (v), the rank of the

last occurrence of v minus the rank of its first occurrence on chain (T').

We now describe how to compute the height of every node in a tree T. The algorithm
begins by computing the depth of every node in T, as explained above. A byproduct of this depth
computation is chain (T'). Observe that the height of v equals the depth of the deepest node in the
subtree of v minus the depth of v. If we let z(v) denote this deepest leaf under node v , then
depth (z(v})) is simply the maximum rank of any node which occurs between vg and vgg) in
chain(T). We briefly outline how to compute depth (z(v)) in O (¥n) time, in parallel for every
node v.

Assume that the arcs of chain (T') are stored in the mesh in row-major order according to
the depth of the nodes in chain (T'). First determine for every row i the maximum rank associ-
ated with an arc stored in row i, and broadcast this value to all the processors in column § .
1<i<Vn . The computation of these max-row values can easily be done in O('J;) time. The
maximum rank of any node which occurs between v o and v 5y (and which is the depth of leaf

—#(v))ycould beoneof these max-row values, or it could be the maximum of two partial rows, Let
i1 (resp. jy) be the row (resp. column) of the processor containing the arc (v g,succ (v o)), and let
i (resp. j2) be the row (resp. column) of the processor containing the arc (w,v &(+))- In parallel,
determine for every node v o the maximum rank in row i (resp. i,) beginning at column J1 (resp,
ending at column jf,). The depth of node z(v) i the maximum of these two values and the max-
row values of rows i+1, - -,iz-1. By taking the later values from row i, we avoid any

‘congestion’ problems. This concludes the description of the algorithm for computing the height.
The following thecrem summarizes the above results:

Theorem 3.1 Given that an n-node directed tree is stored in the mesh, the depth, the height, and
the number of descendents of every node can be computed in time O (\(;)

Other consequences of the result of Section 2 are stated below without proof, since the
proofs are very similar to the ones of Theorem 3.1.
Theorem 3.2 Given that an n-node ordered and directed wee is stored in the mesh, the preorder,
postorder, and inorder numbers of every node can be computed in time O (Vn).

-12 -

In many graph algorithms there is a need to create a directed version of an undirected tree.
We next describe an algorithm that generates, in oCn) time, a rooted (directed) tree T from an
undirected tree . The undirected tree O is initially stored in the mesh in the obvious way:
Each processor contains an (undirected) edge {x,y}, 1<x,y<n. Let r be the node to be made the
root of 7. The main idea of algorithm MAKE ROOTED is to first use Q to create a chain of T
(this is what the first four steps of the algorithm do), and then to use algorithm CHAIN RANK

on this chain to obtain T,

Algorithm MAKE ROOTED

Input: n-1edges {xy} that form an undirected tree @, and a designated node r.

Qutput: (n—1) arcs forming an in-tree T rooted at r and which is a directed version of the input
tree (.

Step 1: In parallel for every node x determine d(x), the degree of node x in Q.

Step 2: In parallel for every node x, create d(x) copies of that node, and call them
Xp,* ", Xgey1- Then create a directed cycle C; of length 2d (x) that alternates between the

d(x) copies of x and the d (x) neighbours of x in 0 ; i.e,,

Cx =Xguxqv ~-- xd(,)_lwxg.
where u,v, - - - ,w are the neighbours of x in Q (the original neighbours, not the copies of

these neighbours).

A
Comment: The union of the C,’'s consists of 3 2d(x)=0(n) arcs, each of which is
x=1

between a "real” node and a "copy” of another node.
Implemeniation Note: The arcs which make up the C,’s are created as follows. Create two
arcs (x,y) and (y,x) for every edge {x.y} of Q; for every so created arc (x,y) determine
s(x,y), the number of arcs (x,z) with z<y. Then ﬁzplace every arc (x,y) by the arcs
(s e gy) 2N (Y X s z,y)+1) ot dx))-

Step 3: Replace every pair of arcs of the form (x,y) and (x,y;) by the single arc (x;,y;). This is
done by sorting the arcs of the C,'s so that every arc (x;,y) is in the same processor as the

arc (x,y;), and then having that processor remove both of these two arcs and create the new

arc (xg,y;)-

-13-

Comment: The effect of this step is to "stitch” the C,’s together into one giant cycle that
goes through every copy of every node exactly once. The next step "opens” this cycle at
node rg, thus creating chain (T). '

Step 4: Create node (), which is an additional copy of the root node r, and change the arc
(z&.r 0) tO (2£.ra¢r)). Note that at this time the ares we created form a chain of 7. The fol-

lowing step extracts T from this chain,

Comment: The reader may have noticed that the copies of a node x do not necessarily

appear in the order xp,x, - - * on the chain This is of no consequence.

Step 5: Use algorithm CHAIN_RANK on the chain obtained in the previous steps, with every
weight set to unity (i.e. every w;=1). Then for every edge {x,y} of @, determine which of
the two arcs, (x,y) or (y,x), is in T. This i3 done as follows. Let x; (resp. y,) be the
smallest-ranked occumrence of x (resp. y) on the chain: If the rank of x; is smaller than that
of y; then x is the parent of y in T and therefore arc (y,x) is in T, otherwise it i3 the arc
(x,y)whichisin T (recall that T 15 an in-tree).

End of Algorithm MAKE ROOTED.

Correctness of the above algorithm follows from the comments included in its description.
That it runs in O (Vn) time is also easy to see, once we know that CHAIN RANK runs in time
oMn). We therefore have the following:

Theorem 3.3 Given that an undirected n -node tree is stored in the mesh, rooting that tree can be
done in ime O (J;)

The next section gives an 0 (J;) time algorithm for a more difficult tree computation: The

Minimax value problem for an # -node game tree.

4. Computing the Minimax Value.

This section contains a complex, but rather elegant result: An 00’;) time algorithm for
computing the Minimax value of an arbitrary n-node game tree, In this problem we are given an
n-node directed tree T rooted at node r in which every leaf has a real pumber, called the value of
of the leaf, attached to it, and every internal node is of type Min or Max. If the value of every

-14-

leaf is either O or 1, then the tree is called a 0/] game tree. The problem is to compute VAL (T),
the value of the root r of T. If j is an internal node of type Min (resp. Max), then the value of §
is the minimum (resp. maximum) of the values of the children of j. The main ingredients of our
Minimax algorithm are & relationship between game trees with real values at the leaves and (/1
game trees, an algorithm for efficiently computing the value of a 0/1 game tree, and the results of

Section 3.

We start by establishing the relatdonship between arbitrary game trees and 0/1 game trees.
We show.;.r how to reduce the problem of computing the value of an n-node game tree with real
values associated with the leaves to that of computing the values of logn successive instances of
0/1 game trees, where the i-th instance is of size at most ¢‘n and ¢<1 is a constant. Let T be an
n-node game tree with l leaves, and let a4, - - - ,a3 be the numbers attached to its leaves (not in
any particular order). Without loss of generality assume a<---Sa;. Let T; be the /1 game
tree obtained from T by replacing every a; by 0 if a;<a;, and by 1 if a;24;. Let VAL(T;) be the
value of the root of T;. Observe that VAL (T;)=1 implies VAL(T;)=1 for every j<i, while
VAL (T;)=0 implies VAL(T;)=0 for every j>i. If we let & = max {i | VAL (T;)=1}, thea we
have VAL(T)=a, To see this, simply note that VAL(T;)=1 iff VAL(T)2a;, and that

VAL (T;) =0 iff VAL (T }<a;. (The notation just introduced will be used throughout this section.)
The above observations imply that, if VAL(7;) can be computed in 0(‘\’; } time, then
VAL (T can be determined in O (Y logn) time by using binary search to compute the largest
such that VAL (7;)=1. In this section we not only show how to compute VAL (T;) in O (‘I;) time,
but we also remove the logn fa-clor. and thus obtain an O (¥n) time algorithm for computing
VAL (T). We continue the discussion assuming that VAL (7;) can indeed be computed in time

o).

We henceforth assume that every internal node of a game tree T has at least two children.
If this is not so, then we can replace 7 by an equivalent tree T in which nodes with one child
have been eliminated by "bypassing” them (see Figure 4.1). This "bypassing” operation can be
done in O (¥n) time by using essentially the same techniques as in Section 2, and therefore we
omit the details of how this is done. The fact that every internal node of T has at least two chil-
dren implies that A>n /2 (recall that A is the number of leaves and a is the total number of nodes

-15-

of T).

tree T e 7
Figure 4,1
We achieve O ('J; } time performance for VAL (T') by using binary search where after each
"probe” of the binary search, we reduce the problem size to 3/4 of the original size. That is, if
before a probe of the binary search the problem size was m, then
(i} the probe takes O (‘J;) time, and

(ii) the problem can be reduced to an equivalent problem of size no more than 3m /4, also in time

o@m).

This implies that the i probe of the binary search will take ime O(V(3/4Y~'n), and therefore
the entire algorithm for computing VAL (T') takes O (\’;)} ime. We leave the description of step
(i) (i.e., how an m -node 0/1 game tree is evaluated in O(\’;) time) for later, and contime with
the discussion of the size reduction step. We give the details only for the reduction which follows
the first probe of the binary search; i.e., after computing VAL (T'55). Without loss of generality,
assume that the result of this first probe is VAL (Ta)=0; i.c., the next probe will compute
VAL (T4). The idea is not 1o use Ty, itself in the next probe, but rather a ssnaller tree which has
the same value as Tyy4. This is made possible by the following observation: Since al] the subse-
quent probes will be on T;'s with i <A/2, the values of the leaves in T which were ayp, -~ - a2
will remain 1 in every such T;. Therefore, we can "remove” the leaves containing the values
ayp, " - a3 from T, and, as far as subsequent probes are concerned, replace T by a new version
of T as follows:

(i) Ifi is a leaf of T which contains an a; with j >\/2, then remove i from T,

(ii) Let k be an interior node of T that has at least one child removed in step (i) and that is of

—ne,w_me_T_within_thuop-le&—{Snl4x—\[3nJ44;ubmeah;and—it—isﬁdﬁn—thiwmaﬂersubmesh‘ﬂ:zt

-16 -

type Max. Make k a leaf of T (by deleting its remaining children and their subtrees), and
give k the value a3, The justification for this is obvious: In all subsequent 0/1 probes a
removed leaf (or leaves) will have value 1, forcing the value of £ to be ! (because k is of
type Max). Making & a leaf with a value of g achieves the same effect.

(iii) Let k£ be an interior node of T that has all its children removed in step (i) and that is of type
Min. In this case make k a leaf of T and give it the value @;. The justification for doing so
is similar to the one for (ii).

(iv) If the new version of T resulting from steps (i)-(iii) has any internal nodes with only one
child, then modify T so that these nodes are eliminated (this is done by "bypassing" those
nodes, as previously explained). The tree T resulting from this step will then have all its

internal nodes with at least two children each.

Note that the new tree created in steps (i)-(iv) has the same value as the original tree T, and
has no more than 3n/4 nodes (this Jast observation follows from the fact that A>n/2 and that the
new tree has at least A/2 fewer nodes than the original one, since step (i) removes A/2 leaves).

Before proceeding with the next probe of the binary search, we compress the arcs describing the

the rest of the computation will take place. The above discussion was for the case when the first

probe resulted in VAL (T3,2)=0. The case when VAL (T35)=1 can be handled analogously.

In general, the number of steps needed for the size reduction of the i -th probe of the binary
search is O (V(3/4Y~') and therefore the total time taken by the algorithm is O (Vn), if & given
n-node 0/1 game tree @ can be evaluated in @ (‘J;). Now we give an 0(‘-';) time algorithm for
computing VAL (). This algorithm makes use of the fo]lbwing lemma, which generalizes the

results of sections 2 and 3 to rectangular meshes.

Lemma 4.1 Suppose that an 5 -node directed tree H is stored in an Ixw rectangular mesh, where
n=lw. Then the depth, the height, the number of descendents, and the preorder (resp. postorder,
inorder) number of every node can be computed in time O (! +w).

Proof: The results of {Al, KA] imply that any problem that can be solved in time O(‘JF Jona
Vr x¥n mesh can also be solved in time O(l+w) on an !xw mesh where L.w=n. This, together

with theorems 3.1 and 3.2, implies the lemma. [J

-17-

We neeﬁ to state the algorithm for computing the value of a 0/1 game tree in terms of a rec-
tangular mesh rather than a square mesh, because even though we may start with a square mesh,
the recursive calls (which are made on subtrees obtained from a centroid computation} will be for
rectangular meshes rather than square ones. (Insisting that recursive calls be on square sub-
meshes runs into trouble, since there may not be enough room in the original mesh for the

squares.)
Algorithm 0/1-VALUE

Input: An n-node 0/1 game tree @, rooted at r. Every arc (i W2 (1)) of O is stored in cne of the

proceésors of an /Xw rectangular mesh, where n=[.w .

Qutput: VAL (Q) stored in the top-left processor.

Step 0: If /<10 and w< 10, then solve the problem in constant time {e.g. using any brute force
algorithm). Otherwise proceed to Step 1.

Step 1: Find a centroid ¢ of the tree . Recall that a centroid of an n-node tree is a node whose
removal from the tree disconnects it into connected components none of which has more

than n/2 nodes. (See [Kn] for a proof of the existence of a centroid.)

Implementation Nose: Since the number of descendents of every node can be found in time

O (I+w), a centroid can be found in time O (I +w).

Step 2: Mark every node on the path from the the centroid ¢ to the root r (including ¢ and r) as
being "special”.

Implementation Note: Step 2 is done in time O (!+w) as follows. First, compute the preorder
numnber and the number of descendents of every node. Next, let every processor know the
preorder number of ¢ and the number of descendents of ¢. Finally, the special nodes can be
marked in constant time by comparing, for every node i, its preorder number and number of
descendents with those of ¢ (such 2 comparison will reveal whether that node is ancestor of
¢, i.e. whether it is special).

Step 3: Let @, - - - .Q ¢ be the collection of rooted trees resulting from the removal of the special
nodes from (. Let r; denote the root of (; (see Figure 4.2). Note that, in tree T, the parent
of every r; is a special node. Assuming (without loss of generality) that [2w, store the

descriptions of @y, * - * ,Q¢ in § rectangular submeshes, as shown in Figure 4.3. If n; is the

-18-

number of nodes in (; then the submesh containing the arcs of Q; is of size I;xw, where
l=n;iw. Of course, no #; is larger than #/2 (since ¢ is & centroid) and therefore I;<1/2 for
every i. Store the arcs of 7" that are not in any Q; (i.e., the arcs that are incident to a special

node) in that part of the mesh not containing the description of any Q;, as shown in Figure

43.

]

@,

remaining ares

/- |
/ _

Figure 4.2 Figure 4.3

Implementation Note: Finding the various Q;’s is essentially a connected components computa-
tion which, as already stated, takes O ({+w) time. Compressing the Q;’s into the appropri-
ate submeshes is straightforward and we omit its details,

Step 4: Recursively compute VAL (Q;) in parallel for every Q;. If T(I,w) is the total time taken
by algorithm 0/1-VALUE, then the cost of this step is no more than T (I/2,w), since every [;
is no larger than I/2. (Of course, if we had { <w ther the cost of this step would be no more
than T (I w/2).)

Comment: Afier this step we have the value of every r;, and therefore we now are left with the

-19.-

problem of computing the values of the special nodes; i.e., the nodes on the path from ¢ to r
inT (every r; is a child of one of these nodes), Actually, we are only interested in the value
of one of those special nodes: The root r. The next step computes the value of , and hence
thatof Q.

Step 5: Let H be the subtree of { which consists of the special nodes and the r;’s. Note that the
r;’s are the leaves of H, with a value of 0 or ! attached to each of them. For every r; whose
value is 0 do the following. Let p; be its parent node. Remove r; from H. If p; is of type
Min, then make p; a leaf with value 0. If p; is of type Max and all of p;’s children have
value 0, then make p; a leaf with value 0. The case when r; has value 1 is symmetric.
Implementing this in O (+w) time is tivial. After this step, H is a collection of (one or
more) chains. The first node in every chain in H has a value of O or 1 attached to it. One
such chain has r as the last node, and the final result we seek is the value of the first node in
the chain containing r. Computing that value can be be done in O ({+w) time by using the
techniques of Secton 2.

End of Algorithm 0/1-VALUE.

Cormrectness-of the-above-algorithm-is-easily-proven-by-induction—That-it-runs-in-0-(4+w)

time is a consequence of the fact that its running time T (! ,w) satisfies the following recurrence:
TUAw)ST(2,w)+ O +w) if Max (I ,w 2210, and I2w
TUw)ST{wi2)+O({+w) if Max(l ,w)210, and I<w,
Tdw)=0(1) if Max(l,w)} 10.

This implies that T ({,w =0 ({+w). We can therefore state the main result of this section.

Theorem 4.2 Given that an n-node game tree is stored in a Y >xcln mesh, with a real number
associated with every leaf and every interior node being of type Min or Meax, the Minimax value
of the tree can be computed in time 0(\’;).

5. Concluding Remarks

‘We have presented techniques that lead to 0(n) time algorithms for computing many tree
functions on a ¥n x¥n mesh of processors. We now describe how to modify our algorithms to
handle the case when the input is a forest, rather than a tree. If the initial input in the Y xin

-20-

mesh is a forest, then we first find its connected components in O (Va) time. Let these com-
ponents be the trees @0, -+ ,0¢. Store @y, - »Q¢ in rectangular meshes as shown in Figure 4.3
(of course, in this case there are no remaining arcs). Since we have already shown that for a tree
stored in an !xw rectangular mesh our algorithms run in time O (/4w), the results for the forest

follow.

The techniques presented in this paper are not limited to the problems mentioned. They
can, for example, be used to obtain an 0(\’;) time algorithm for the problem of computing the
value of an arithmetic expression of length n. The algorithm for this problem is based on the
ideas developed in references [B] and [MR], and the techniques of this paper merely make an
0(n) time implementation possible on the mesh. S.R. Kosaraju has pointed out that an
approach similar to the one used in the algorithm for evaluating arithmetic expressions is an alter-

native way of establishing Theorem 4.2 without using binary search,

Another problem for which our techniques result in an O (Va) time solution is the problem
of optimally placing the minimum number of centers on the nodes or edges of a tree so that every -

node of the tree is at most distance d away from a center, where d is given. The recursive algo-

—rithm for doing so-uses-a-centroid-decomposition-to-generate-the-subproblems-to—be-solved
independently, and it uses a height computation to determine the bottom of the recursion. We

omit the details since they are of a similar flavour as the ones for the Minimax algorithm.

Since trees play a fundamental role in so many graph algorithms, it should come as no
surprise that the techniques of this paper also enable O(‘J;) solutions to many graph problems,
where 2 now denotes the number of edges of the input graph. For example, the parallel algo-
rithm for finding Euler Tours described in [AV] can be implemented in O (V2) time on the mesh
(when the computation terminates, the processor containing edge e also contains its predecessor
and successor on the resulting Euler Tour). The parallel biconnectivity algorithm of [TV] can
also be implemented in time O (¥r), and 5o can the known parallel strong orientation algorithm
[A2, V]. Implementing these known algorithms in O (\’;) time on the mesh makes crucial use of

our techniques, as the reader can easily verify.

All the algorithms presented for the 2-dimensional mesh generalize to higher dimensional

meshes; i.e., they can easily be modified to run in time O {(r ¥¥) on an d-dimensional mesh of n

-721-

PrOCE&SSOrs.

References

[Al]

M. J. Atallah, 'Simulations Between Mesh-Connected Processor Arrays,” Proc. 23nd
Annual Allerion Conference on Communication, Control, and Computing, Monticello,
Illinois, October 1985,

[A2] M.). Atallah, 'Parallel Strong Orientation of an Undirected Graph,’ Info. Proc. Letters,
Vol. 18, No. 1, January 1984, pp. 37-39.

[AHU] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algo-
rithms, Addison-Wesley, 1974,

[AK] M.J. Atallah, S.R. Kosaraju, 'Graph Problems on a Mesh-Connected Processor Array’,
JACM, Vol. 31, No. 3, pp. 649-667, July 1984,

[AV] M.J. Ataliah and U. Vishkin, 'Finding Euler Tours in Paralle),’ CSS Vol. 29, No. 3,
December 1984, pp. 330-337.

[B] R.P. Brent, "The Parallel Evaluation of General Arithmetic Expressions,” JACM, Vol.
21, No. 2, April 1974, pp. 201-208.

[GRK] P.S. Gopalakrishnan, 1.V. Ramakrishnan, L.N, Kanal, *Computing Tree Functions on
SIMD Computers’, Proceedings of 1985 Internatiuonal Conf. on Parallel Processing,
pp. 703-710, 1985.

[H] S.E. Hambrusch, 'Parallel Algorithms for Bridge- and Bi-Connectivity on Minimum
Area Meshes’, Techn. Report, Purdue University, 1984,

[HCS] D.S. Hirschberg, A.K. Chandra, D.V. Sarwate, "Computing Comnected Components on
Parallel Computers’, CACM, pp. 461-464, Aug. 1979.

[Kn] D.E. Knuth, The Art of Computer Programming, Addison Wesley, Reading, MA.

K] S.R. Kosaraju, personal communication,

[KA] S.R. Kosaraju and M.J. Atallah, 'Optimal Simulations Between Arrays of Processors,’
Purdue Univ. Comp. Sci. Tech, Rept, 561, 1985.

(MR] G.L. Miller, I.H. Reif, 'Parzllel Tree Contraction and its Application’, Proceedings of
26-th FOCS, pp 478-489, 1985.

{NS1] D. Nassimi, S. Sahni, 'Finding Connected Components and Connected ones on a
Mesh-connected Parallel Computes’, SIAM J. on Comp., pp. 744-757, 1980,

[NS2] D. Nassimi, S. Sahni, 'Data Broadcasl:iﬁg in SIMD Computers’, IEEE Transactions on
Computers, pp. 101-106, 1981,

[RS] J. Reif, Q. Stout, personal communication,

[S] Q.E. Stout, "Tree-Based Graph Algorithms for Some Parallel Computers,” Proc. of
1985 Int. Conf. on Parallel Processing, pp 727-730, 1985,

{TC] Y.H. Tsin, F.Y. Chin, 'Efficient Paralle]l Algorithms for a Class of Graph Theoretic
Problems’, SIAM J. on Computing, pp. 580-599, 1984,

[TK] C. Thompson, H, Kung, 'Sorting on a Mesh-Connected Parallel Computer’, CACM, pp.
263-271, 1977. :

[TV] R.E. Tarjan, U. Vishkin, 'Finding Biconnected Components and Computing Tree Func-
tons in Logarithmic Parallel Time’, Proc. of 25-th FOCS, pp. 12-20, 1984,

1)} 1.D. Ullman, Computational Aspects of VLSI, CSP, 1984,

-22.

vl U. Vishkin, 'An Efficient Parallel Strong Orientation,” CS Dept. Tech. Rept., Courant
Inst., NYU.

	Solving Tree Problems on a Mesh-Connected Processor Array
	Report Number:
	

	tmp.1307986960.pdf.hu6hg

