
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 1

Solving Uncompromising Problems with Lexicase

Selection
Thomas Helmuth, Lee Spector Member, IEEE, James Matheson

Abstract—We describe a broad class of problems, called
“uncompromising problems,” characterized by the requirement
that solutions must perform optimally on each of many test cases.
Many of the problems that have long motivated genetic program-
ming research, including the automation of many traditional pro-
gramming tasks, are uncompromising. We describe and analyze
the recently proposed “lexicase” parent selection algorition and
show that it can facilitate the solution of uncompromising prob-
lems by genetic programming. Unlike most traditional parent
selection techniques, lexicase selection does not base selection on
a fitness value that is aggregated over all test cases; rather, it con-
siders test cases one at a time in random order. We present results
comparing lexicase selection to more traditional parent selection
methods, including standard tournament selection and implicit
fitness sharing, on four uncompromising problems: finding terms
in finite algebras, designing digital multipliers, counting words in
files, and performing symbolic regression of the factorial function.
We provide evidence that lexicase selection maintains higher
levels of population diversity than other selection methods, which
may partially explain its utility as a parent selection algorithm
in the context of uncompromising problems.

Index Terms—parent selection, lexicase selection, tournament
selection, genetic programming, PushGP.

I. INTRODUCTION

G
ENETIC programming problems generally involve test

cases that are used to determine the performance of

programs during evolution. While some classic genetic pro-

gramming problems, such as the artificial ant problem and the

lawnmower problem [1], involve only single test cases, most

others involve large numbers of tests. There are several ways

in which a genetic programming system can take multiple

test cases into consideration during parent selection—that is,

when determining which individuals to use as source material

when producing offspring for the next generation—and the

best choice may depend on the type of problem being solved.

For some problems it may be be appropriate to use methods

that seek “compromises” among the different test cases. For

Manuscript received November 3, 2013; revised April 15, 2014 and August
5, 2014. This material is based upon work supported by the National Science
Foundation under Grants No. 1017817, 1129139, and 1331283. Any opinions,
findings, and conclusions or recommendations expressed in this publication
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

T. Helmuth is a doctoral student in the Department of Computer Sci-
ence, University of Massachusetts, Amherst, MA, 01003 USA e-mail: thel-
muth@cs.umass.edu.

L. Spector is with Hampshire College, Amherest, MA 01002 USA email:
lspector@hampshire.edu.

J. Matheson is a graduate of Hampshire College.
Copyright (c) 2012 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

example, we can imagine a problem involving control of a

simulated wind turbine in which some test cases focus on

performance in low wind conditions while others focus on

performance in high wind conditions. It may not be possible to

optimize performance on all of these test cases simultaneously,

and some sort of compromise may therefore be necessary.

Many common parent selection approaches, such as tourna-

ment selection, introduce compromises between test cases by

aggregating the performance of an individual on those test

cases into a single fitness value. The method of compromise

may be as simple as summing the test case errors, or their

squares, into a single error value; more complex methods such

as implicit fitness sharing [2] dynamically weight test cases

based on population statistics before aggregating them.

By contrast, we wish to consider what we call “uncompro-

mising” problems: problems for which any acceptable solution

must perform as well on each test case as it is possible to

perform on that test case; that is, an uncompromising problem

is a problem for which it is not acceptable for a solution

to perform sub-optimally on any one test case in exchange

for good performance on others. More formally, consider a

problem defined by the set of test cases T where the set of

programs in the search space is P and pj(ti) is the error

produced by program pj 2 P on test case ti 2 T with

lower error being better. This problem is uncompromising if a

program p 2 P would be considered a solution to the problem

if and only if p(ti)  pj(ti) for all ti 2 T and pj 2 P .

While this might at first appear to be a narrow group of

problems, we believe that many important problems fall into

this class. For example, all of the Boolean function induction

problems commonly used in the genetic programming liter-

ature are uncompromising (e.g. the multiplexer problems in

[1]), as are those symbolic regression problems for which a

program must achieve an error of zero on all test cases in order

to count as a solution. Other examples from mathematics,

which we discuss further below, are problems of finding

functional representations of terms in finite algebras; only

programs that perform optimally on all test cases count as

solutions to these problems.

Of possibly greater significance, the set of uncompromising

problems includes most “traditional programming” or “soft-

ware synthesis” problems, in which one seeks to automatically

produce general software (which may require the use of multi-

ple data types, conditionals, and loops) from specifications or

behavioral tests. The automation of traditional programming

has been presented as one of the primary goals for research

in genetic programming at least since Koza’s seminal 1992

book [1], and recent assessments of the state of the field

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 2

have highlighted both the importance and the difficulty of

these kinds of problems [3]. Most traditional programming

problems involve large numbers of test cases, and programs

count as solutions to these problems only if they pass all

tests1. Several recent projects at the intersection of genetic

programming and software engineering, on automatic program

repair and improvement, involve uncompromising problems

framed in terms of tests that must all pass for the system to

be considered successful [4], [5].

We note that uncompromising problems do not necessarily

require “perfect” (zero error) performance on every test case,

although problems that require perfect performance on every

test case are indeed uncompromising by definition. In this

context it is interesting to consider the perspective that Luke

and Panait put forward in their paper titled “Is the Perfect

the Enemy of the Good?” [6]. Luke and Panait argue that

comparisons of genetic programming techniques based on

solution counts could be misleading for types of problems in

which “ideal solutions” are unlikely to be found, and for which

one seeks a program with minimal—but probably not zero—

error. We have no quarrel with Luke and Panait on this point in

the context of such problems. But for many uncompromising

problems, including the problems that we consider in this

paper and for a great many potentially important applications

of genetic programming, programs that do not pass all tests do

not count as solutions. The value of a genetic programming

technique with respect to such problems can only be mean-

ingfully assessed in terms of the number of successes that it

produces.

In this paper we present a relatively new parent selection

algorithm, lexicase selection, which was originally proposed

for solving “modal problems” in which programs must per-

form qualitatively different actions on different test cases [7].

Here we expand the scope and analysis of lexicase selection

by giving evidence that it greatly improves genetic program-

ming’s ability to find solutions to uncompromising problems

compared to selection techniques that permit compromises

between test cases. We give a detailed description of the

lexicase selection algorithm and demonstrate its effectiveness

on four problems: the problem of finding discriminator terms

in finite algebras, the problem of designing digital multipliers,

the problem of replicating the core functionality of the “wc”

word-count utility program, and symbolic regression of the

factorial function. We give evidence that lexicase selection

also maintains high levels of population diversity, possibly

contributing to its utility as a parent selection algorithm.

The next section discusses the lexicase selection algorithm

and what differentiates it from other selection methods. We

then present a variety of related evolutionary computation

techniques. Section IV describes the design and implemen-

tation of our experiments, including the genetic programming

systems we apply, the problems we attempt to solve, and the

performance measures we use in our comparisons. Section V

1We note that for many large-scale software applications, it is not normal
or reasonable to expect all test cases to be passed. Indeed, most applications
are released with known bugs. Nonetheless, the goal of passing all test cases
is a useful approximation even for these cases, and is strictly required for
mission critical programs and in other programming contexts.

To select a parent for use in a genetic operation:

1) Initialize:

a) Set candidates to be the entire population.

b) Set cases to be a list of all of the test cases

in random order.

2) Loop:

a) Set candidates to be the subset of the

current candidates that have exactly the

best performance of any individual currently

in candidates for the first case in cases.

b) If candidates contains just a single indi-

vidual then return it.

c) If cases contains just a single test case then

return a randomly selected individual from

candidates.

d) Otherwise remove the first case from cases

and go to Loop.

Fig. 1. Pseudocode for the lexicase selection algorithm.

presents the results of our experiments comparing lexicase

selection to both standard tournament selection (at multiple

tournament sizes) and implicit fitness sharing.

II. LEXICASE SELECTION

Lexicase2 selection is a method for selecting individuals

from a population to serve as parents of new individuals. It

can be used any time that potential parents are assessed with

respect to multiple test cases.

The lexicase selection algorithm used here, which is called

“global pool, uniform random sequence, elitist lexicase parent

selection” in [7], is described in pseudocode in Figure 1. In

each parent selection event, the lexicase selection algorithm

first randomly orders the test cases. It then eliminates any indi-

viduals in the population that do not have the best performance

on the first test case.3 Assuming that more than one individual

remains, it then loops, eliminating any individuals from the

remaining candidates that do not have the best performance

on the second test case. This process continues until only

one individual remains and is selected, or until all test cases

have been used, in which case it randomly selects one of the

remaining individuals.

Lexicase selection sometimes selects individuals that per-

form well on a relatively small number of test cases. This

differs from most other selection algorithms, which select

individuals based on aggregations of performance on all test

cases. Lexicase selection may select individuals that perform

very poorly on some test cases if they excel on a combi-

nation of others. As such, lexicase often selects “specialist”

individuals that solve parts of the problem extremely well.

Although these individuals may have worse summed error

across all test cases, the hope is they will be able to reproduce

2The term “lexicase” has been used previously in unrelated work [8].
3This retention of only “the best” could be relaxed to retain all individuals

within some distance of the best, but the form of lexicase selection used here
is “elitist” in that it retains only the best.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 3

in ways that pass on their preeminence on certain cases while

improving with respect to others. In order to give every test

case equal selection pressure, each lexicase selection event

uses a randomly shuffled list of test cases to determine which

test cases are treated as most important.

Lexicase selection was originally developed for modal prob-

lems, where by “modal” we mean problems that require the

solution program to take dissimilar actions—that is, to have

different modes of operation—for different input test cases

[7]. For evolution to be successful on these problems, it must

produce programs or sections of programs that can perform

disparate actions; in particular, it must be able to emphasize

the requirements of different cases and combinations of cases

in its selection procedure. Tournament selection and related

methods do not do a good job here; more often, one or two of

the modes receive the majority of the attention of selection,

and others are neglected. Lexicase selection, on the other hand,

emphasizes different test cases with each selection event, and

therefore spreads the selection pressure more evenly between

the modes of operation required by the problem. Previous work

using lexicase selection has shown that it works well on a

simple modal symbolic regression problem [7] and the 2-bit

digital multiplier problem [9].

In the present paper, along with presenting much more

extensive tests and analysis, we further argue that lexicase

selection should be preferred for uncompromising problems,

whether or not they are modal. To see why, consider an

individual that performs extremely well on some of the test

cases, but has very high error on a few others. Selection

methods such as tournament selection that compute a fitness by

reducing the error vector to a single value (e.g. by summation)

will rarely if ever select this individual if other individuals exist

with mediocre error on all test cases. For uncompromising

problems, however, elite performance on any test case may

be important and worth propagating to the next generation

even if the individual in question performs relatively poorly

on many or even all other test cases. That is, we may often be

more interested in selecting an individual with some great and

some bad errors than an individual with all mediocre errors.

Lexicase selection will select an unbalanced individual when

the test cases at which it excels come near the beginning of

the randomly ordered test case list. This may help to drive

evolution toward solutions to uncompromising problems.

The theoretical worst-case time complexity of the lexicase

selection algorithm for selecting parents each generation is

O(P 2T), where P is the population size and T is the number

of test cases. In comparison, traditional tournament selection

must sum the errors from every test case for every individual,

giving a time complexity of O(PT). While lexicase selection

is theoretically slower in the worst case, in practice it often

quickly eliminates many candidates and does not need to loop

over every test case, running much faster than the worst-case

analysis suggests. Additionally, if lexicase selection allows us

to more often solve problems than other selection methods, it

may be preferred even if it runs slower than those methods.

We examine the wall-clock times of our experimental runs in

Section V-B.

III. RELATED WORK

To some extent one can consider multiple test cases to be the

multiple objectives in a multiobjective optimization problem

[10]. The match is not perfect, however, because objectives

are goals that we want to achieve while test cases are tools

for measuring how well we meet our objectives. Nonetheless,

many of the techniques that have been developed to cope

with multiple objectives can also be applied to the problem

of coping with multiple test cases.

As far as we are aware, Langdon’s work on evolving data

structures is the only work that has used any type of Pareto-

aware selection where the test cases are used as the objectives

of the Pareto selection. In [11], Pareto tournaments are used for

selection in evolving queues. This problem uses six objectives,

five of which are based on the performance of the individual,

and the last of which is used to minimize memory use.

Similarly, [12] uses Pareto tournaments in evolving a list data

structure. This problem uses 21 normal test cases, and two

other objectives of memory and time. The Pareto tournaments

in these papers are modeled after those proposed in [13].

To our knowledge, modern multiobjective approaches such

as NSGA-II [14] and SPEA2 [15] have not been applied to

genetic programming problems where the test cases are treated

as objectives. These algorithms make assumptions about the

objectives that don’t usually hold for genetic programming

test cases. Multiobjective algorithms are typically used on

problems with very few objectives; often two objectives are

used, and rarely more than four or five. Genetic programming

problems frequently have many more test cases than this,

sometimes ranging from 50 to 100 or even more. With this

many objectives, Pareto-based algorithms may have trouble,

since most individuals will not dominate each other leading

to little performance information on which to base selection

[15], [16]. This “curse of dimensionality” must be overcome

to apply multiobjective algorithms to genetic programming

problems.

Besides multiobjective methods, other efforts have been

made to create parent selection techniques that give different

weights to different test cases during selection. Fitness sharing

[17] decreases selection pressure for individuals that are sim-

ilar to other individuals in the population. Each individual’s

fitness is penalized based on how many individuals are within a

specified distance, with closer individuals giving more penalty.

This requires the user to specify a distance metric between

individuals; in genetic programming, researchers have used

both a structural distance of programs themselves and a be-

havioral distance based on the outputs of the programs. Fitness

sharing using behavioral distance requires each individual to

be compared with each other individual in the population,

giving a time complexity of O(P 2T) for population size P

and T test cases. Undesirably, fitness sharing requires the user

to set three sensitive parameters that can significantly affect

its performance [18].

Implicit fitness sharing, first described in [19] and adapted

for genetic programming in [2], is a diversity preservation

technique that distributes reward among the individuals that

solve a test case, giving more reward for cases solved by fewer

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 4

individuals. In this way it is similar to fitness sharing, without

requiring the calculation of distances between individuals. It

is typically only applied to problems with binary test cases,

where an individual either solves a test case or does not.

Like fitness sharing, implicit fitness sharing produces scaled

fitnesses, with a tournament then used to select parents. The

implicit fitness sharing fitness function is defined as

fIFS(i) =
X

t2Ti

1

n(t)
(1)

where Ti ✓ T is the set of test cases solved by individual i, and

n(t) is the number of individuals in the population that solve

test case t. Note that fitness is to be maximized in implicit

fitness sharing. Since the number of individuals solving each

test case is computed only once per generation, implicit fitness

sharing has a time complexity of O(PT), similar to traditional

tournament selection.

Implicit fitness sharing has been adapted for non-binary test

cases in [20]. Here, the raw fitness f(i, t) of individual i on

test case t falls in the range [0, 1] with 0 being worst and 1

being best. Implicit fitness sharing is then redefined as

fNBIFS(i) =
X

t2T

f(i, t)
P

i02P f(i0, t)
(2)

This non-binary implicit fitness sharing still scales fitnesses

based on fitnesses of the rest of the population, and even

reduces to traditional implicit fitness sharing when fitnesses

are binary. The time complexity is still O(PT).
The “historically assessed hardness” technique uses a dif-

ferent generalization of implicit fitness sharing for non-binary

test cases, where fitness on each test case is scaled by the

success rate of the population [21].

“Co-solvability” fitness extends implicit fitness sharing to

consider pairs of test cases instead of single test cases [22].

Similarly to lexicase selection, this method emphasizes solving

subsets of the test cases. For each pair of test cases, reward

is given to each individual that solves both test cases, with

the reward being higher for pairs of cases not solved by many

individuals. The co-solvability fitness function is defined as

fCS(i) =
X

tj ,tk2Ti:j<k

1

n(tj , tk)

where Ti ✓ T is the set of test cases solved by individual

i, and n(tj , tk) is the number of individuals that solve both

case tj and case tk. Although this enhancement to implicit

fitness sharing shares some motivations with lexicase selection,

it only considers pairs of test cases, whereas lexicase selection

considers prioritized lists of all test cases. This method has

only been described for binary test cases, and it does not

have an obvious generalization for non-binary test cases.

Calculating co-solvability fitness requires each pair of test

cases to be considered for each member of the population,

giving a time complexity of O(PT 2).

IV. METHODS

In order to test the utility of lexicase selection on uncompro-

mising problems, we used it in experiments with two different

genetic programming systems and on four different problems.

Here we present the GP systems, problems, and methods used

in our experiments.

In our experiments, we compare lexicase selection to stan-

dard tournament parent selection. In tournament selection with

tournament size n, n individuals are randomly selected from

the population, and the individual with the lowest total error

is selected to be the parent. We also present results using

implicit fitness sharing (IFS), which scales fitnesses and then

performs standard tournaments using that scaled fitness4. For

the finite algebras problem, which has binary errors, we use

the standard IFS fitness function given in Eq. (1). For the

factorial problem and the wc problem, which have non-binary

errors, we use the modified non-binary IFS fitness function

given in Eq. (2). For both tournament selection and IFS, we

present data for a variety of tournament sizes that span the

range commonly used in the literature. The specific set of

tournament sizes is not identical for each experiment, although

it always includes low, medium and high values; we sampled

the range of tournament sizes more sparsely for experiments

that required greater computational resources. Note also that

within each experiment—that is, for each problem—the same

set of tournament sizes is used across all conditions.

A. Genetic Programming Systems

We use two different genetic programming systems in this

paper: a tree-based genetic programming system and PushGP.

For the finite algebras problem we use the tree-based system,

which provides a natural representation for the problem, since

it searches for a function composed of nested calls to a

single algebraic operator. For the other three problems we

use PushGP since it allows more expressive programs to be

evolved than can easily be represented in most tree-based

genetic programming systems. The digital multiplier and wc

problems require evolved programs to return multiple outputs,

which is not easy to do in the functional representations of

most tree-based systems. Additionally, the factorial and wc

problems require a large range of expressive instructions not

easily implemented in tree-based systems, such as those that

allow for iteration and multiple data types. We believe the use

of different genetic programming systems depending on the

requirements of the problem is not only reasonable, but shows

that our conclusions are not limited to a single representation.

The standard tree-based genetic programming system used

here is designed in the style of Koza’s 1992 system [1]. Pro-

grams are Lisp-style symbolic expressions in prefix notation,

represented internally as trees. Random trees are generated

using the ramped half-and-half algorithm [1]. We use standard

tree-replacement mutation and crossover, without any biases

in the selection of nodes to be mutated or used in crossover.

The second genetic programming system, PushGP, evolves

programs expressed in the Push programming language. Push

is a stack-based language that was designed specifically for

use in genetic programming systems as the language in which

evolving programs are expressed [23], [24], [25]. It is a

4Time and resource constraints did not permit the inclusion of IFS results
for the digital multiplier problem, which is computationally expensive.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 5

postfix language in which literals, when encountered by the

interpreter, are pushed onto data stacks, and instructions, when

encountered by the interpreter, act on data taken from stacks

and return results on stacks.

The Push interpreter uses a separate stack for each data

type. Instructions take their arguments (if any) from stacks of

the appropriate types and they leave their results (if any) on

stacks of the appropriate types. This allows instructions and

literals to be freely intermixed regardless of type while still

ensuring execution safety. The convention in Push regarding

instructions that are executed in contexts that provide insuffi-

cient arguments on the relevant stacks is that these instructions

act as “no-ops”; that is, they do nothing.

In the PushGP runs in this paper we only use the genetic

operator ULTRA, which stands for “Uniform Linear Trans-

formation with Repair and Alternation” [26], [9]5. ULTRA

creates a child from two parent programs by treating them

as linear sequences and traversing them in parallel while

copying program elements from one parent or the other to the

child. The ULTRA “alternation rate” parameter specifies the

probability of alternating between source parents during the

traversal, while the “alignment deviation” parameter specifies

the standard deviation of random index offsets that may occur

during alternation. The ULTRA “mutation rate” parameter

specifies the probability of each element being mutated (re-

placed with another random element) during a subsequent

traversal of the child program.

Push and PushGP implementations exist in C++, Java,

JavaScript, Python, Common Lisp, Clojure, and Scheme,

among other languages. Many of these are available for free

download from the Push project page.6 The results presented

below were obtained using Clojush, the Clojure implementa-

tion of PushGP.7

B. Problems

We used the tree genetic programming and PushGP systems

to test lexicase selection on four problems: a problem in

pure mathematics related to finite algebras, a boolean digital

multiplier problem, a factorial symbolic regression problem,

and a traditional programming problem called wc (for “word

count”). The genetic programming parameters that we used

in our experiments are presented in Table I.8 We varied some

parameters, such as population size, maximum generations,

and maximum program sizes, for different problems based par-

tially on exploratory runs for the problems and partially on our

5The ULTRA operator used here is essentially that described in [9].
The version described in [26] and also used here was intended to pad
the shorter program with no-op instructions that would later be re-
moved, but in fact the padding rarely occurred. See erratum notice:
http://hampshire.edu/lspector/pubs/spector-gptp-2013-preprint-erratum.pdf

6http://pushlanguage.org
7https://github.com/lspector/Clojush
8We conducted our runs over a period of time during which we made

minor changes to our implementation of ULTRA. For all wc problem runs
and for the lexicase and size 7 tournament digital multiplier problem runs,
empty pairs of parentheses were removed at the end of ULTRA. In addition,
for the wc problem runs parentheses could be added or removed only by
ULTRA’s crossover and repair steps, but not by its mutation step. We have
found no evidence that either of these changes has any meaningful impact on
the PushGP algorithm for the problems studied here.

TABLE I
PARAMETERS FOR OUR EXPERIMENTS. FA IS FOR THE FINITE ALGEBRAS

PROBLEM, DM IS FOR THE DIGITAL MULTIPLIER PROBLEM, FACT IS FOR

THE FACTORIAL SYMBOLIC REGRESSION PROBLEM, AND WC IS FOR THE

TRADITIONAL PROGRAMMING WORD COUNT PROBLEM. IN THE SYSTEM

ROW, TREE IS THE TREE-BASED GENETIC PROGRAMMING SYSTEM

DESCRIBED IN SECTION IV-A, AND PUSH IS THE PUSHGP SYSTEM.

Problem FA DM Fact wc

System Tree Push Push Push

Runs Per Condition 100 100 100 200

Number of Test Cases 27 64 10 242

Population Size 1000 5000 1000 1000

Max Generations 1000 4000 500 300

Max Program Size 1000 1000 500 1000

Max Initial Program Size - 400 100 400

Expected Initial Program Size 50 - - -

Max Initial Program Depth 20 - - -

Expected Mutation Code Size 10 - - -

Max Mutation Code Depth 10 - - -

Max Instructions Executed - 1000 1000 2000

Crossover Probability 50% 0% 0% 0%

Mutation Probability 50% 0% 0% 0%

ULTRA Probability 0% 100% 100% 100%

ULTRA Mutation Rate - 0.01 0.05 0.01

ULTRA Alternation Rate - 0.01 0.05 0.01

ULTRA Alignment Deviation - 10 10 10

TABLE II
ALGEBRAIC OPERATORS DEFINING THE FINITE ALGEBRAS IN THIS PAPER.

A1 ∗ 0 1 2

0 2 1 2

1 1 0 0

2 0 0 1

A2 ∗ 0 1 2

0 2 0 2

1 1 0 2

2 1 2 1

prior experiments with the problems; none were particularly

optimized.

Previous work in genetic programming for finite algebras

has created human-competitive results (and won a “Humies”

Gold Prize) [27]. Here, we borrow a problem from that work to

use as a benchmark. This problem, which we will simply call

the finite algebras problem, is to find a discriminator term in

a three-element, single-operator algebra. A discriminator term

[28] is a ternary function t(x, y, z) satisfying

t(x, y, z) =

(

x if x 6= y

z if x = y

The algebras presented here only have one operator ⇤, which

is therefore the only function in our function set. Since we

are evolving ternary terms, we use the three terminals x, y,

and z. Each test case for this problem uses values for x, y,

and z chosen from the set {0, 1, 2}, giving 27 test cases. If an

evolved program correctly solves a particular case it gets an

error of 0 for that case, and otherwise gets an error of 1.

To test the differences between lexicase, tournament, and

implicit fitness sharing (IFS) parent selection methods on

this problem, we used the tree genetic programming system

described in Section IV-A to search for discriminator terms for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 6

TABLE III
A LIST OF THE PUSH INSTRUCTIONS USED IN OUR DIGITAL MULTIPLIER

EXPERIMENTS. FOR THE n-BIT DIGITAL MULTIPLIER PROBLEM, THERE

ARE 2n INPUT INSTRUCTIONS AND 2n OUTPUT INSTRUCTIONS.

Boolean Stack and, or, xor, invertF irstThenAnd,
dup, swap, rot

Input/Output in1, ..., in2n, out1, ..., out2n

the finite algebras A1 and A2 given in Table II. We explore the

parameter space of tournament sizes by using sizes between

2 and 10. The finite algebras problem is uncompromising, in

that we are only interested in solutions with zero error. Runs

that do not find perfect solutions do not tell us anything about

the finite algebras themselves.

The digital multiplier problem requires the system to

create a program representing a digital circuit that multiplies

two binary numbers. An n-bit digital multiplier circuit takes

two n-bit numbers represented in binary by booleans as input

and multiplies them together to create a 2n-bit number as

output. This problem was recommended by the authors of

recent articles on genetic programming benchmarks as an

alternative to other boolean problems such as multiplexer and

parity, since it offers difficulties not seen in those problems

[29], [3]. In particular, it forces the evolving programs to

output multiple values and allows for trials of problems of

varying sizes without constraining fitness values to powers

of two. Previous work has shown PushGP’s ability to evolve

2-bit digital multipliers [9]. Here, we use PushGP to evolve

solutions to the more difficult 3-bit digital multiplier problem.

The boolean n-bit digital multiplier problem uses each

possible assignment of 0 and 1 to each of the 2n input bits

to produce 22n test cases, each with 2n output bits. The

fitness (error) of each test case is the number of bits that

the program gets wrong compared to the desired output bits.

Thus the error for a test case will be an integer between 0

and 2n. In our implementation of the problem in PushGP,

we provide one input instruction for each input bit, and one

output instruction for each output bit. Each time an output

instruction is called, the output for that bit is overwritten by

the top item on the boolean stack so that only the last such

instruction executed affects the behavior of the program. If a

specific output instruction is never called within the program,

that bit is considered wrong in each test case, but no further

penalty is given.

Beyond the input and output instructions, we use the

boolean stack instructions found in the top row of Table III.

The first four of these are the instructions recommended by

Walker and Miller [30], each popping the top two items on the

boolean stack and pushing the result onto the boolean stack.

The other three are typical stack manipulation instructions

that are often used in Push. The booleanDup instruction

duplicates the top item on the boolean stack, the booleanSwap

instruction swaps the top two items on the boolean stack,

and booleanRot moves the third item on the boolean stack

to the top of the stack. Our random code generator chooses

to either use a boolean stack instruction or an input/output

instruction randomly, and then selects from the chosen cate-

gory uniformly. This ensures that for random code, the ratio of

boolean stack instructions to input/output instructions remains

50% for different sizes of the problem, even though there are

more input and output instructions in larger versions of the

problem. The digital multiplier problem is uncompromising,

since programs that do not achieve zero error on every test

case are not of interest.

The factorial symbolic regression problem is an integer

symbolic regression problem with one input and one output,

in which the output should be the factorial of the input. Our

version uses 10 input test cases, ranging from 1 to 10 (with

outputs ranging from 1! = 1 to 10! = 3628800).

When using normal summed tournament selection some

test cases will have a much larger impact on an individual’s

fitness than others, since the larger test cases will likely have

much larger error magnitude than the smaller test cases. To

try to make the influence of test cases more even, we also

tested tournament selection using normalized error values in

the range [0, 1]. Additionally, we used normalization when

using implicit fitness sharing, since it requires an error in [0, 1].
We tested three different methods of normalization, each

of which returns 0 if the program returns the target output.

The first takes the raw error value et = |ct � yt| on each test

t, where ct is the correct output and yt is the output of the

program, and normalizes it to

et1 = 1�
1

et + 1
=

et

et + 1
(3)

This method is very similar to Koza’s adjusted fitness [1],

although adjusted fitness was used to scale the total error of an

individual for the use with fitness proportionate selection. The

second method, suggested for use with the factorial problem

in [31], normalizes the error as et2 = et
|ct|+|yt|

. Although this

method creates a flatter normalization function with respect to

yt, it behaves oddly in that it is not symmetrical around yt =
ct. In fact, if ct is positive and yt is negative, the maximum

normalized error of 1.0 will be given even if yt and ct have a

relatively small absolute distance, where a smaller normalized

error will be given for an output of yt that is positive but with

a much larger absolute distance from ct. In order to obtain the

gentler normalization provided by et2, but without the odd

behavior near zero, we created a third method that behaves

exactly like et2 when ct  yt, but is symmetrical when ct >

yt. This uses the normalization function et3 = et
et+2|ct|+1

,

where the addition of 1 in the denominator avoids issues when

et and ct are zero.

Note that the relative magnitude of error values between

test cases does not affect lexicase selection; it only takes into

account differences within a test case. Therefore we did not

need to test lexicase selection using normalization of error

values. This nice side-effect of using lexicase selection means

a researcher need not consider differences in magnitudes of

error values or options for normalization across test cases.

For this problem we used a Push instruction set that allowed

for the manipulation of integers, boolean values, and the exe-

cution stack (to permit conditional branches and recursion), but

we did not include Push’s high-level iteration instructions that

allow for trivial solutions. Specifically we used the constants

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 7

0 and 1; an input instruction in; the boolean instructions

and, dup, eq, fromInteger, not, or, pop, rot, and swap;

the integer instructions add, div, dup, eq, fromBoolean,

greaterThan (which pushes a boolean), lessThan, mod,

mult, pop, rot, sub, and swap; and the exec instructions

dup, eq, if , noop, pop, rot, swap, when, and the combinators

k, s, and y (see [25]).

The wc problem is a recently proposed traditional program-

ming benchmark problem for genetic programming [32]. The

objective of the wc problem is to find a program that takes as

input a file and outputs the number of characters, words, and

newlines in the file. Such a program mirrors the functionality

of the Unix word count utility program wc. This problem

requires programming concepts used frequently by human

programmers but rarely by genetic programming, including

the use of multiple data types, multiple outputs, and control

flow manipulation. We use the PushGP implementation of the

wc problem found in [32], and supplement the runs presented

there with runs using additional tournament sizes and IFS.

With the wc problem, we wish to find programs that

perfectly count the numbers of characters, words, and newlines

in a file. This problem is uncompromising in that a program

that mostly passes the test cases does not constitute a useful

word count program. To keep the problem tractable, we only

require that the program work on files that contain at most 100

characters. Since we cannot use every single file containing at

most 100 characters as a test case input, we follow [32] and

use a combination of random and prescribed inputs for each

run. In each run, 200 of the inputs are random strings of length

at most 100; 20 of the inputs are random strings of length at

most 100 that are guaranteed to end in a newline, and 22 of

the inputs are prescribed strings that cover edge cases, such

as very short and very long files. For a program to count as

a success, it must also achieve zero error on a withheld set

of test data to show that it generalizes to unseen inputs. This

withheld test set contains 500 random strings and 50 random

strings ending in newlines, all at most 100 characters long.

Each test case has three expected outputs, for the counts

of the characters, words, and newlines in the input file. We

therefore assign three error values per test case, with each error

being the absolute difference between the expected output and

the program’s output. If a program does not return a particular

output, it receives a penalty error of 100, 000.

Like many traditional programming problems, the wc prob-

lem requires a wide and varied set of instructions. We use

an instruction set with 71 instructions and ERCs; the specific

instructions are exactly the same as the ones recommended

in [32]. These instructions include many standard Push stack

manipulation instructions for the string, integer, boolean, and

exec stacks. As with the factorial problem, the exec stack

instructions here allow for a variety of control flow constructs,

including looping, conditionals, and recursion. Additionally,

two instructions allow for character and line input, and three

output instructions store integers to use as outputs for number

of characters, words, or newlines. The instruction set also

supports tagging of code, integers, and strings, allowing pro-

grams to store values and modules that can be retrieved later

[33]. Finally, three ERCs allow random code to create integer

literals, single-character whitespace string literals, and single-

character non-whitespace string literals.

For this problem we compare lexicase selection to tourna-

ments with sizes 3, 5, and 7, as well as IFS with the same

tournament sizes. Since the wc problem returns non-binary

errors, we use the non-binary IFS formula from Eq. (2). Since

this formula requires fitnesses in the range [0, 1], we normalize

errors by dividing them by 100, 000, which is the penalty error

given when no output is produced by a program, and for IFS

is also the largest error a program can receive if it does return

an output.

C. Performance Measures

Since we are primarily interested in the extent to which

selection algorithms help to evolve programs with zero error

on every test case, we focus our results on measures of these

successes, in particular the success rate (i.e. the percent of

runs that find programs with zero error). We test the statistical

significance and reliability of the difference in success rates

found using different selection methods by using Fisher’s exact

test (with significance level of 0.05) and confidence intervals

of the difference in success rates.

We use the same population size and maximum number

of generations for each parent selection algorithm, result-

ing in the same maximum number of program evaluations.

While this does not fully ensure that every run will consume

the same computational resources, it is a commonly used

approximation. We additionally present the wall-clock time

consumed by each set of runs, which can provide information

about differences in computational resources that stem from

processes other than program evaluation, including parent

selection.

In order to measure the time each algorithm used in our

experiments, we recorded the wall-clock times used by each

run as well as the number of generations executed, to calculate

the time used per generation. Most of our runs were performed

on a cluster of machines with varying computational resources,

although the finite algebras runs were performed on a 2012

MacBook Pro. Since we cannot prescribe which runs are

performed on which machines in the cluster, some sets of

runs may have randomly run on faster machines than others.

Additionally, since we share the cluster with other users,

we cannot guarantee a consistent load; some runs may have

shared a machine with other processes where others did

not. Finally, while we did our best to implement efficient

algorithms, none of them were specifically optimized, and

faster implementations may be possible. Taking all of this

into consideration, small differences in observed wall-clock

times do not necessarily indicate significant differences in run

times; we are only really interested in orders of magnitude

distinctions.

V. EXPERIMENTAL RESULTS

Here we report the results of our experiments, including

differences in performance, execution times, and population

diversity.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 8

TABLE IV
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A1

WITH 100 RUNS IN EACH CONDITION. IFS GIVES RESULTS USING

IMPLICIT FITNESS SHARING PARENT SELECTION. THE SUCCESS RATE OF

EACH SET OF RUNS USING TOURNAMENT SELECTION OR IMPLICIT

FITNESS SHARING IS COMPARED WITH THE SUCCESS RATE USING

LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%
CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent

Selection

Method

Tourna-

ment

Size

Success

Rate

Difference in

Success Rate

with Lexicase

95% Confidence

Interval of Dif-

ference in Suc-

cess Rate

Lexicase - 0.99 - -

Tournament 2 0.01 0.98 [0.923, 0.999]

Tournament 3 0.01 0.98 [0.923, 0.999]

Tournament 4 0.05 0.94 [0.869, 0.975]

Tournament 5 0.02 0.97 [0.909, 0.993]

Tournament 6 0.04 0.95 [0.882, 0.981]

Tournament 7 0.03 0.96 [0.895, 0.987]

Tournament 8 0.06 0.93 [0.856, 0.968]

Tournament 9 0.07 0.92 [0.843, 0.961]

Tournament 10 0.04 0.95 [0.882, 0.981]

IFS 2 0.13 0.86 [0.771, 0.915]

IFS 3 0.43 0.56 [0.449, 0.649]

IFS 4 0.58 0.41 [0.302, 0.501]

IFS 5 0.55 0.44 [0.331, 0.532]

IFS 6 0.64 0.35 [0.246, 0.440]

IFS 7 0.57 0.42 [0.312, 0.512]

IFS 8 0.64 0.35 [0.246, 0.440]

IFS 9 0.71 0.28 [0.182, 0.367]

IFS 10 0.73 0.26 [0.164, 0.346]

A. Performance

Table IV presents the results of our runs on the finite alge-

bras problem using algebra A1. The runs using lexicase se-

lection found solutions in almost every run, and outperformed

tournament selection and IFS. The best non-lexicase run used

IFS with tournament size of 10. Comparing lexicase selection

with any non-lexicase method, Fisher’s exact test gives a p-

value less than 0.0001, so we can reject the null hypothesis

at the 0.05 significance level that there is no association

between selection method and the number of successes. Most

of the tournament and IFS runs show substantial differences in

success rate when compared with the lexicase selection runs,

and even the best IFS conditions are significantly worse than

lexicase selection.

The results of our runs on the finite algebras problem using

algebra A2 are presented in Table V. The runs using lexicase

selection found solutions in every run, with the success rates

for tournament selection and IFS also being higher than for

algebra A1. For this algebra, IFS with tournament size 8 had

the highest success rate; Fisher’s exact test for lexicase and

size 8 IFS gives a p-value of 0.0003, so we can reject the

null hypothesis at the 0.05 significance level. Since size 8

IFS performed best out of the tournament and IFS runs, this

rejection of the null hypothesis holds when comparing any

of these runs to lexicase selection. The differences in success

rate and their 95% confidence intervals indicate that lexicase

selection performed vastly better than tournament selection

TABLE V
RESULTS ON THE FINITE ALGEBRAS PROBLEM USING THE ALGEBRA A2

WITH 100 RUNS IN EACH CONDITION. IFS GIVES RESULTS USING

IMPLICIT FITNESS SHARING PARENT SELECTION. THE SUCCESS RATE OF

EACH SET OF RUNS USING TOURNAMENT SELECTION OR IMPLICIT

FITNESS SHARING IS COMPARED WITH THE SUCCESS RATE USING

LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%
CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent

Selection

Method

Tourna-

ment

Size

Success

Rate

Difference in

Success Rate

with Lexicase

95% Confidence

Interval of Dif-

ference in Suc-

cess Rate

Lexicase - 1.0 - -

Tournament 2 0 1.0 [0.953, 1.0]

Tournament 3 0.06 0.94 [0.869, 0.974]

Tournament 4 0.12 0.88 [0.795, 0.930]

Tournament 5 0.14 0.86 [0.772, 0.914]

Tournament 6 0.16 0.84 [0.749, 0.898]

Tournament 7 0.17 0.83 [0.737, 0.890]

Tournament 8 0.10 0.90 [0.819, 0.946]

Tournament 9 0.26 0.74 [0.638, 0.813]

Tournament 10 0.18 0.82 [0.726, 0.882]

IFS 2 0.28 0.72 [0.616, 0.795]

IFS 3 0.61 0.39 [0.286, 0.479]

IFS 4 0.74 0.26 [0.167, 0.343]

IFS 5 0.83 0.17 [0.090, 0.243]

IFS 6 0.84 0.16 [0.082, 0.232]

IFS 7 0.83 0.17 [0.090, 0.243]

IFS 8 0.88 0.12 [0.050, 0.185]

IFS 9 0.79 0.21 [0.124, 0.288]

IFS 10 0.72 0.28 [0.185, 0.364]

TABLE VI
RESULTS ON THE 3-BIT DIGITAL MULTIPLIER PROBLEM WITH 100 RUNS

IN EACH CONDITION. THE SUCCESS RATE OF EACH SET OF RUNS USING

TOURNAMENT SELECTION IS COMPARED WITH THE SUCCESS RATE USING

LEXICASE SELECTION; WE PRESENT THAT DIFFERENCE AND A 95%
CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent

Selection

Method

Tourna-

ment

Size

Success

Rate

Difference in

Success Rate

with Lexicase

95% Confidence

Interval of Dif-

ference in Suc-

cess Rate

Lexicase - 1.0 - -

Tournament 2 0 1.0 [0.953, 1.0]

Tournament 4 0 1.0 [0.953, 1.0]

Tournament 6 0 1.0 [0.953, 1.0]

Tournament 7 0 1.0 [0.953, 1.0]

Tournament 8 0 1.0 [0.953, 1.0]

and moderately better than even the best of IFS setting.

Table VI presents our results on the 3-bit digital multiplier

problem. We compare lexicase selection with tournament

selection using various tournament sizes. On this problem,

PushGP with lexicase selection found successful programs

in every run, whereas tournament selection never found a

solution. A comparison of lexicase selection with each of

the tournament selection conditions using Fisher’s exact test

gives a p-value less than 0.0001, meaning we can reject the

null hypothesis of no association between selection method

and number of successes at the 0.05 significance level. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 9

TABLE VII
RESULTS ON THE FACTORIAL SYMBOLIC REGRESSION PROBLEM WITH

100 RUNS IN EACH CONDITION. NORMALIZED USES NORMALIZED

ERRORS WITH NORMAL TOURNAMENT SELECTION; IFS GIVES RESULTS

USING IMPLICIT FITNESS SHARING PARENT SELECTION. BOTH

NORMALIZED AND IFS USE THE NORMALIZATION FUNCTION et1 GIVEN IN

EQ. (3). THE SUCCESS RATE OF EACH SET OF RUNS USING TOURNAMENT

SELECTION OR IMPLICIT FITNESS SHARING IS COMPARED WITH THE

SUCCESS RATE USING LEXICASE SELECTION; WE PRESENT THAT

DIFFERENCE AND A 95% CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent

Selection

Method

Tourna-

ment

Size

Success

Rate

Difference in

Success Rate

with Lexicase

95% Confidence

Interval of Dif-

ference in Suc-

cess Rate

Lexicase - 0.51 - -

Tournament 2 0 0.51 [0.401, 0.599]

Tournament 4 0 0.51 [0.401, 0.599]

Tournament 6 0 0.51 [0.401, 0.599]

Tournament 8 0 0.51 [0.401, 0.599]

Normalized 2 0 0.51 [0.401, 0.599]

Normalized 4 0 0.51 [0.401, 0.599]

Normalized 6 0 0.51 [0.401, 0.599]

Normalized 8 0.01 0.50 [0.390, 0.591]

IFS 2 0 0.51 [0.401, 0.599]

IFS 4 0 0.51 [0.401, 0.599]

IFS 6 0 0.51 [0.401, 0.599]

IFS 8 0 0.51 [0.401, 0.599]

differences in success rate between lexicase selection and each

of the tournament sizes is obviously large. The results using

lexicase selection are much better than in [9], in which no

perfect solutions were found for the 3-bit digital multiplier

problem. This difference is likely because of the larger popu-

lation size and maximum generations used in this paper.

Table VII presents the results of our runs on the factorial

problem. We tested each of the three normalization methods,

both with and without IFS, using tournament sizes of 2, 4,

6, and 8. We only present normalized tournaments and IFS

using the normalization function et1 given in Eq. (3), since

neither of the other normalization methods resulted in more

than one successful program across all sets of runs using

them. Lexicase selection found successful programs in just

over half its runs, whereas none of the other selection methods

found more than one successful program. Comparing lexicase

selection with any of the tournament, normalized, and IFS sets

of runs, Fisher’s exact test gives a p-value less than 0.0001, so

we can reject the null hypothesis at the 0.05 significance level

that there is no association between selection method and the

number of successes. The differences in success rate between

the lexicase selection runs and all other runs are large, near

0.5.

The wc problem proved more difficult for lexicase selection

than any of the other problems presented here; results are in

Table VIII. Lexicase selection found 11 successful programs

that achieved zero error on both the training and withheld test

sets, whereas the other methods found none. When comparing

the lexicase runs to the tournament and IFS runs, Fisher’s

exact test gives a p-value of 0.001, indicating we can reject

the null hypothesis at the 0.05 significance level that there is no

TABLE VIII
RESULTS ON THE WC PROBLEM WITH 200 RUNS IN EACH CONDITION. IFS

GIVES RESULTS USING IMPLICIT FITNESS SHARING PARENT SELECTION.
THE SUCCESS RATE OF EACH SET OF RUNS USING TOURNAMENT

SELECTION OR IMPLICIT FITNESS SHARING IS COMPARED WITH THE

SUCCESS RATE USING LEXICASE SELECTION; WE PRESENT THAT

DIFFERENCE AND A 95% CONFIDENCE INTERVAL OF THAT DIFFERENCE.

Parent

Selection

Method

Tourna-

ment

Size

Success

Rate

Difference in

Success Rate

with Lexicase

95% Confidence

Interval of Dif-

ference in Suc-

cess Rate

Lexicase - 0.055 - -

Tournament 3 0 0.055 [0.020, 0.088]

Tournament 5 0 0.055 [0.020, 0.088]

Tournament 7 0 0.055 [0.020, 0.088]

IFS 3 0 0.055 [0.020, 0.088]

IFS 5 0 0.055 [0.020, 0.088]

IFS 7 0 0.055 [0.020, 0.088]

association between parent selection method and the success

rate. The differences in success rate and the 95% confidence

intervals of those differences show that the effect of lexicase

selection on success rate is likely small but nonetheless mean-

ingful, particularly since it appears to be difference between

“no successes” and “occasional successes.”

B. Execution Times

We have shown that lexicase selection allows genetic

programming to find many more solutions than traditional

tournament selection or IFS on a variety of uncompromising

problems. Since the time complexity of lexicase selection is

worse than tournament selection and IFS, we expect it to be

slower, but not prohibitively so. Here we present the time used

by our runs to produce our results.

For each parent selection method, the mean time per genera-

tion did not vary much between different tournament sizes. For

each problem, Table IX presents the mean wall-clock time per

generation of the sets of runs that took the least and most time

for each selection method. Since we only performed one set

of runs for lexicase selection on each problem, only one time

is presented for both minimum and maximum. For example,

our one set of runs using lexicase selection on the A1 finite

algebras problem took 2.6 seconds per generation on average,

whereas the set of tournament selection runs using least time

took 1.2 seconds (using tournament size 2), and the most time

took 1.4 seconds (using tournament size 5).

For the finite algebras problem, runs using lexicase selection

took about twice as long per generation as those using tourna-

ment selection or IFS. For the 3-bit digital multiplier problem,

runs using lexicase selection were significantly slower than

those using tournament selection, about 7 times slower than

the longest tournament selection runs. This large increase in

time can be attributed to the large population size of 5000

we used for this problem, whereas we used a population

size of 1000 for all other problems. Since lexicase selection’s

time complexity is quadratic in the population size, we would

expect it to be comparatively slower for the larger population

size we used.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 10

TABLE IX
WALL-CLOCK TIMES FOR THE SHORTEST AND LONGEST MEAN TIME PER

GENERATION ACROSS SETS OF RUNS USING THE SAME PARENT SELECTION

METHOD AND DIFFERENT TOURNAMENT SIZES. DATA COMES FROM THE

SAME RUNS AS THOSE PRESENTED IN PREVIOUS RESULTS TABLES: A1

AND A2 ARE FOR THE FINITE ALGEBRAS PROBLEM USING ALGEBRAS A1

AND A2 RESPECTIVELY, DM IS FOR THE DIGITAL MULTIPLIER PROBLEM,
FACT IS FOR THE FACTORIAL PROBLEM, AND WC IS FOR THE WC

PROBLEM.

Problem Parent

Selection

Method

Minimum mean

time per genera-

tion (seconds)

Maximum mean

time per genera-

tion (seconds)

A1 Lexicase 2.6 2.6

Tournament 1.2 1.4

IFS 1.2 1.3

A2 Lexicase 2.5 2.5

Tournament 1.2 1.4

IFS 1.0 1.2

DM Lexicase 464 464

Tournament 25 71

Fact Lexicase 11.9 11.9

Tournament 5.4 6.7

Normalized 0.4 0.6

IFS 3.0 4.7

wc Lexicase 394 394

Tournament 142 295

IFS 136 229

For the factorial problem, lexicase selection is again the

slowest, taking about twice as long as tournament selection

and three times as long as IFS. The runs using tournament

selection on normalized errors ran surprisingly quickly; we

discovered that this is likely because many of the runs resulted

in populations of programs that contained a single instruction

that had no effect. This strange result can be explained by

the fact that with this normalization scheme, most random

programs do not achieve better error than a program that does

nothing and simply returns the input. Some, but not all, of

our runs using other normalization techniques both with and

without IFS had this problem, though even the ones with

longer execution times did not find more than 1 successful

program.

The mean generation lengths on the wc problem are at most

about 3 times longer when using lexicase selection than when

using tournament or IFS selections. For all methods times are

longer than for the other problems; this can be explained by a

combination of many more test cases and a larger maximum

number of instructions executed per execution.

All of our sets of runs using lexicase selection had longer

wall-clock times per generation than tournament selection or

IFS. But, for many of these problems the difference between

using lexicase selection and using tournament selection or IFS

is the difference between finding successful programs and not.

Additionally, many of the lexicase runs actually finished faster

than the other runs, since they found successful programs

earlier in the runs. Since the difference in wall-clock time

is not many orders of magnitude slower for any problem, we

think the benefits of using lexicase selection far outweigh the

extra cost in time.

C. Population Diversity

The results presented here raise the question of why lexicase

selection performs significantly better on uncompromising

problems than tournament selection or IFS. One hypothesis

is that the way lexicase selection emphasizes the selection

of individuals that are extremely good on at least a few

test cases but possibly not great on others allows runs using

lexicase selection to maintain higher levels of population

diversity than techniques that reduce fitnesses to a single

value. Although maintaining higher levels of diversity may

be helpful, it is also necessary to provide sufficient selection

pressure to exploit good programs in order to find better

ones; simply maintaining a diverse set of individuals does not

single-handedly help find a solution without pressure toward

the goal. This tension between exploration and exploitation

is well known in evolutionary algorithms. The fact that our

experiments using lexicase selection found many more solu-

tions than other methods suggests that it at least contributes

sufficient exploitative pressure toward the goal; we now wish

to investigate whether or not it also maintains higher levels of

diversity than the other methods.

Various measures of diversity have been proposed in the

genetic programming literature. Because we are primarily

interested in how a genetic programming population explores

the space of output vectors, we will focus on behavioral

diversity [34]. Here Jackson defines the behavior of a program

to be the vector of outputs it produces for the test case inputs.

The behavioral diversity of a population of programs is the

percent of distinct behavior vectors in the population. Jackson

shows that there is correlation, if not causation, between higher

levels of behavioral diversity and higher solution rates on a

variety of small benchmark problems [34].

We will explore whether the use of lexicase selection leads

to higher levels of behavioral diversity than tournament selec-

tion or IFS. IFS was designed to increase population diversity

by reducing the influence of a test case on an individual’s

fitness proportionately with the number of individuals in the

current population that solve it (or do well on it in the case

of non-binary IFS). We will present behavioral diversity data

from our finite algebras, factorial, and wc runs9. Since the

behavioral diversity plots for tournament selection or IFS runs

with different tournament sizes follow very similar trends, we

will only present a few tournament size settings from each

selection method to increase clarity.

Figures 2 and 3 plot the mean behavioral diversity at

each generation for the finite algebras problem on the A1

and A2 algebras respectively. We plot runs that use lexicase

selection, IFS with a range of tournament sizes, and size

9 tournament selection (which performed best out of the

tournament sizes on these problems). After the first 10 or so

generations, we see some separation between the plots. IFS

with tournament size of 3 shows the highest diversity for the

first 15 to 25 generations, after which point lexicase selection

maintains the highest diversity until almost all of its runs

9We finished our digital multiplier runs before deciding to measure
behavioral diversity, and could not redo those runs because they are too
computationally expensive.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 11

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 9

IFS 3

IFS 6

IFS 10

Fig. 2. Behavioral diversity for the A1 finite algebras problem. The numbers
beside runs indicate the tournament size used. The plot of lexicase selection
ends after every run has found a successful program; it becomes jagged before
it ends because there it averages only the few runs that have not yet succeeded.

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 9

IFS 3

IFS 6

IFS 10

Fig. 3. Behavioral diversity for the A2 finite algebras problem. The numbers
beside runs indicate the tournament size used. The plot of lexicase selection
ends after every run has found a successful program; it becomes jagged before
it ends because there it averages only the few runs that have not yet succeeded.

have found solutions. Interestingly, IFS with tournament size

3 performed worse than the IFS runs with larger tournament

sizes presented in these figures. We believe this shows that

IFS with tournament size 3 maintained a low level of selection

pressure leading to higher diversity, but did not have enough

pressure to guide evolution toward successful programs as

readily. In each of these figures, size 9 tournament selection

had the lowest behavioral diversity during all but the first few

generations.

Figure 4 plots the mean behavioral diversity at each gen-

eration of our runs on the factorial problem. Unlike the plots

for the finite algebras problem, behavioral diversity remains

0.0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 4

Tourney 8

Normalized 8

IFS 4

IFS 8

Fig. 4. Behavioral diversity for the factorial problem. The numbers beside
runs indicate the tournament size used.

0.00

0.25

0.50

0.75

1.00

0 100 200 300

Generation

M
e

a
n

 B
e

h
a
v
io

ra
l
D

iv
e

rs
it
y

Lexicase

Tourney 3

Tourney 7

IFS 3

IFS 7

Fig. 5. Behavioral diversity for the wc problem. The numbers beside runs
indicate the tournament size used.

relatively low throughout these runs, never reaching higher

than 40%. Whereas the finite algebras runs were capped at

100 generations, these runs were allowed 500 generations; it

appears that behavioral diversity did not change much in any

set of runs after the first 100 generations. Lexicase selection

maintained the highest diversity. Surprisingly, tournament se-

lection maintained higher diversity than IFS. For both, runs

with higher tournament sizes had higher diversity, which goes

against our intuition that larger tournament sizes lead to higher

selection pressure and less diversity. The runs using nor-

malization had extremely low diversity, likely because many

runs resulted in populations of essentially empty programs as

discussed in Section V-B.

Figure 5 plots the mean behavioral diversity at each gener-

ation of our runs on the wc problem. All of the runs on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 12

wc problem maintained a relatively high behavioral diversity,

with none falling below 0.65 after the first few generations.

This may partially be attributed to the large length of the

behavior vectors for this problem: the wc problem uses 242

test inputs, each of which produces 3 behaviors (one each

for character, word, and newline outputs) for a total of 726

behaviors. Lexicase selection again maintained the highest

behavioral diversity, not falling below 0.93 after the first 10

generations. Both tournament selection and IFS maintained

moderate diversity with some swings up and down; for both,

runs with higher tournament sizes had higher mean diversity

throughout most of the generations.

The figures presented here show that runs using lexicase

selection maintained higher levels of behavioral diversity than

most runs using tournament selection or IFS. Only for some

generations of the finite algebras problem did IFS with tour-

nament size 3 have higher behavioral diversity; yet these runs

found fewer successful programs than IFS with most other

tournament sizes. We found it remarkable that while IFS was

designed to maintain population diversity, in our experiments

it almost never achieved higher levels of behavioral diversity

than lexicase selection, and even had lower diversity than

standard tournament selection on some problems. Even though

lexicase selection was not designed for diversity maintenance,

it consistently produced high behavioral diversity while also

finding the most successful programs. This correlation sug-

gests that lexicase selection’s ability to maintain high levels

of diversity while also applying strong selection pressure on

random subsets of the test cases may be partially responsible

for its success on the uncompromising problems presented

here.

VI. CONCLUSION

The results presented above clearly demonstrate, using two

different genetic programming systems and four different

problems, that lexicase selection can perform well on at least

some uncompromising problems—that is, on problems where

solutions must perform optimally on each of many test cases,

without compromising performance on any one test case for

improved performance on others. As we have argued above,

this is a broad class of problems that includes many problems

to which genetic programming has traditionally been applied.

In tests of standard tree-based genetic programming on a

finite algebras problem we saw that sets of runs using lexicase

selection succeeded nearly 100% of the time whereas runs

using tournament selection, with tournament sizes ranging

from 2 to 10, succeeded between 0% and 26% of the time,

depending on the specific finite algebra and the tournament

size used. Runs using implicit fitness sharing did better than

runs using ordinary tournaments, but nonetheless significantly

worse than runs using lexicase selection.

In tests of PushGP on the 3-bit digital multiplier problem,

the factorial regression problem, and the wc utility problem

we also observed significant advantages from the use of

lexicase selection. Indeed, the results of these experiments

were even more dramatic, with lexicase selection producing

many solutions (including a solution rate of 100% for the

digital multiplier problem) even though these problems were

almost completely unsolvable using other methods. Runs using

lexicase selection were somewhat slower per generation than

other methods, but this difference in execution times was

minor compared to the benefits to problem solving perfor-

mance. Experimental evidence suggests that lexicase selection

allows genetic programming runs to maintain higher levels of

population diversity, which we hypothesize contributes to the

observed increases in performance.

One drawback of the form of lexicase selection used here is

that it may perform poorly in contexts in which the “elite sets”

for most test cases include only a single individual. In these

contexts lexicase selection will base selection on single test

cases rather than on combinations of cases. We have seen this

problem arise when applying lexicase selection to problems

that give continuous errors, such as floating-point symbolic

regression problems. In preliminary tests on problems of this

nature we have seen lexicase selection perform poorly in

comparison to tournament selection. One option for addressing

this issue is to consider non-elitist forms of lexicase selection,

in which we modify the specification for which candidates

are eliminated at each step of the lexicase selection algorithm.

For example, we could eliminate the worst 1

n
of the remaining

candidates at each step until one individual remains, where n

is a small number such as 2 or 3. Another option would be to

retain all candidates with errors within some predefined ✏ of

the elite value for the case under consideration.

Our own primary motivation for developing lexicase selec-

tion derives from our interest in using genetic programming

for general program synthesis problems, in which we aim to

evolve general software from high-level behavioral tests. We

have applied lexicase selection to a handful of hard problems

of this type, such as the problem of finding a program

to control a simple calculator, where inputs are given as

button presses and outputs are floating-point numbers. Another

problem to which we have applied lexicase selection involves

finding a program that can take ten-pin bowling scores as

string inputs and return the correct total score as an integer.

Both of these problems are both uncompromising and difficult.

While our work on these problems is still ongoing and we

have not yet solved them to our satisfaction, the runs we

have performed with lexicase selection do produce results

that are better than than we have been able to produce using

tournament selection.

In work not presented here, we have attempted to improve

lexicase selection by biasing the order of test cases based on

population statistics, so that cases that one might expect to

require greater attention would be more likely to appear early

in case sequences and hence have a greater influence on parent

selection. While we have experimented with many variations

on this theme we have yet to find a biasing scheme that

outperforms the standard form of lexicase selection described

above. Nonetheless, we suspect that lexicase selection might

be improved by a principled method for biasing the ordering

of the test cases, and we suggest that further research be

conducted on this issue.

Another possible avenue of future research is to improve

the run time of lexicase selection, which may be possible

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 13

through algorithmic improvements. Additionally, in this work

we have used the most run time intensive version of lexicase

selection; it may be possible to consider fewer test cases or a

smaller random subset of the population (i.e. lexicase selection

within a tournament set) without decreasing its performance

significantly, leading to better run time. Even though selecting

a single generation using lexicase selection is slower, in the

genetic programming runs presented here the lexicase selection

runs often used similar amounts of total wall-clock time as

tournament runs. This is because the lexicase selection runs

often used fewer generations total, since they found solutions

earlier in runs. Even in cases where lexicase selection is slower

overall, if it enables genetic programming to find solutions to

problems that tournament selection cannot, its use is obviously

worthwhile.

The work presented here applies lexicase selection only to

genetic programming, but there is no obvious reason that it

would not also be useful in other population-based evolution-

ary computation systems. It is applicable in any context in

which parents are selected based on performance, and in which

performance is assessed relative to more than one “case.” Our

hypothesis is that it will be most useful in uncompromising

problems, but determining its full range of applicability is a

topic for future research.

Of course, we do not expect lexicase selection to provide a

“free lunch” [35] over all problems (even all uncompromising

problems) or all evolutionary computation systems. It would

not surprise us if it were possible to specify a problem and

an evolutionary computation system for which solutions could

only be reached via parents that are mediocre across all test

cases. But considering the dramatic benefits observed for

lexicase selection on the problems and systems examined here,

we are optimistic about the prospects for lexicase selection

when used on other problems and with other systems as well.

ACKNOWLEDGMENT

Thanks to D. Homer, W. La Cava, and the other members

of the Hampshire College Computational Intelligence Lab for

helpful discussions, to J. Erikson for systems support, and

to Hampshire College for support for the Hampshire College

Institute for Computational Intelligence.

REFERENCES

[1] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[2] R. I. McKay, “Fitness sharing in genetic programming,” in Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-

2000). Las Vegas, Nevada, USA: Morgan Kaufmann, 10-12 Jul. 2000,
pp. 435–442.

[3] D. R. White, J. Mcdermott, M. Castelli, L. Manzoni, B. W. Goldman,
G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, and S. Luke, “Better
GP benchmarks: community survey results and proposals,” Genetic

Programming and Evolvable Machines, vol. 14, no. 1, pp. 3–29, Mar.
2013.

[4] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on

Software Engineering, vol. 38, no. 1, pp. 54–72, Jan.-Feb. 2012.

[5] W. B. Langdon and M. Harman, “Optimising existing software with ge-
netic programming,” IEEE Transactions on Evolutionary Computation.

[6] S. Luke and L. Panait, “Is the perfect the enemy of the good?” in
GECCO 2002: Proceedings of the Genetic and Evolutionary Compu-

tation Conference. New York: Morgan Kaufmann Publishers, 9-13 Jul.
2002, pp. 820–828.

[7] L. Spector, “Assessment of problem modality by differential perfor-
mance of lexicase selection in genetic programming: a preliminary
report,” in Proceedings of the fourteenth international conference on Ge-

netic and evolutionary computation conference companion, ser. GECCO
Companion ’12. New York, NY, USA: ACM, 2012, pp. 401–408.

[8] S. Starosta and H. Nomura, “Lexicase parsing: A lexicon-driven ap-
proach to syntactic analysis,” in Proceedings of the 11th Coference on

Computational Linguistics, ser. COLING ’86. Stroudsburg, PA, USA:
Association for Computational Linguistics, 1986, pp. 127–132.

[9] T. Helmuth and L. Spector, “Evolving a digital multiplier with the
pushgp genetic programming system,” in GECCO ’13 Companion:

Proceeding of the fifteenth annual conference companion on Genetic

and evolutionary computation conference companion. Amsterdam, The
Netherlands: ACM, 6-10 Jul. 2013, pp. 1627–1634.

[10] J. Noble and R. A. Watson, “Pareto coevolution: Using performance
against coevolved opponents in a game as dimensions for pareto se-
lection,” in Proceedings of the Genetic and Evolutionary Computation

Conference, GECCO-2001. Morgan Kaufmann, 2001, pp. 493–500.

[11] W. B. Langdon, “Evolving data structures with genetic programming,” in
Proceedings of the 6th International Conference on Genetic Algorithms.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, pp.
295–302.

[12] ——, “Advances in genetic programming.” Cambridge, MA, USA: MIT
Press, 1996, ch. Data structures and genetic programming, pp. 395–414.

[13] J. Horn, N. Nafpliotis, and D. E. Goldberg, “Multiobjective optimization
using the niched pareto genetic algorithm,” University of Illinois at
Urbana-Champaign, 104 South Mathews Avenue, Urbana, IL 61801,
Tech. Rep. IlliGAL 93005, 1993.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” Evolutionary Computation,

IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[15] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” Swiss Federal Institute of Technology
(ETH) Zurich, Tech. Rep. 103, 2001.

[16] G. Smits and M. Kotanchek, “Pareto-front exploitation in symbolic
regression,” in Genetic Programming Theory and Practice II, ser.
Genetic Programming. Springer US, 2005, vol. 8, pp. 283–299.

[17] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing
for multimodal function optimization,” in Proceedings of the Second

International Conference on Genetic Algorithms on Genetic Algorithms

and Their Application. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 1987, pp. 41–49.

[18] S. Luke, Essentials of Metaheuristics, 1st ed. lulu.com, 2009.

[19] R. Smith, S. Forrest, and A. S. Perelson, “Population diversity in an
immune system model: Implications for genetic search,” in Foundations

of Genetic Algorithms 2. Morgan Kaufmann, 1992, pp. 153–166.

[20] K. Krawiec and M. Nawrocki, “Implicit fitness sharing for evolutionary
synthesis of license plate detectors,” in Applications of Evolutionary

Computing, EvoApplications 2012, ser. Lecture Notes in Computer
Science, vol. 7835. Vienna, Austria: Springer, 3-5 Apr. 2013, pp. 376–
386.

[21] J. Klein and L. Spector, “Genetic programming with historically assessed
hardness,” in Genetic Programming Theory and Practice VI, ser. Genetic
and Evolutionary Computation. Ann Arbor: Springer, 15-17 May 2008,
ch. 5, pp. 61–75.

[22] K. Krawiec and P. Lichocki, “Using co-solvability to model and exploit
synergetic effects in evolution,” in PPSN 2010 11th International

Conference on Parallel Problem Solving From Nature, ser. Lecture Notes
in Computer Science, vol. 6239. Krakow, Poland: Springer, 11-15 Sep.
2010, pp. 492–501.

[23] L. Spector, “Autoconstructive evolution: Push, pushGP, and Pushpop,” in
Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-2001). San Francisco, California, USA: Morgan Kaufmann,
7-11 Jul. 2001, pp. 137–146.

[24] L. Spector and A. Robinson, “Genetic programming and autoconstruc-
tive evolution with the push programming language,” Genetic Program-

ming and Evolvable Machines, vol. 3, no. 1, pp. 7–40, Mar. 2002.

[25] L. Spector, J. Klein, and M. Keijzer, “The Push3 execution stack
and the evolution of control,” in GECCO 2005: Proceedings of the

2005 conference on Genetic and evolutionary computation, vol. 2.
Washington DC, USA: ACM Press, 25-29 Jun. 2005, pp. 1689–1696.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. XX, XXXX 2014 14

[26] L. Spector and T. Helmuth, “Uniform linear transformation with repair
and alternation in genetic programming,” in Genetic Programming

Theory and Practice XI. Springer, 2013, p. In preparation.
[27] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and J. Klein, “Genetic

programming for finite algebras,” in GECCO ’08: Proceedings of

the 10th annual conference on Genetic and evolutionary computation.
Atlanta, GA, USA: ACM, 12-16 Jul. 2008, pp. 1291–1298.

[28] R. McKenzie, G. McNulty, and W. Taylor, Algebras, Lattices and

Varieties. Belmont, CA: Wadsworth and Brooks/Cole, 1987, vol. 1.
[29] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Van-

neschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U.-M.
O’Reilly, “Genetic programming needs better benchmarks,” in GECCO

’12: Proceedings of the fourteenth international conference on Genetic

and evolutionary computation conference. Philadelphia, Pennsylvania,
USA: ACM, 7-11 Jul. 2012, pp. 791–798.

[30] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and
reuse of modules in cartesian genetic programming,” IEEE Transactions

on Evolutionary Computation, vol. 12, no. 4, pp. 397–417, Aug. 2008.
[31] A. Agapitos and S. M. Lucas, “Learning recursive functions with object

oriented genetic programming,” in Proceedings of the 9th European

Conference on Genetic Programming, ser. Lecture Notes in Computer
Science, vol. 3905. Budapest, Hungary: Springer, 10 - 12 Apr. 2006,
pp. 166–177.

[32] T. Helmuth and L. Spector, “Word count as a traditional programming
benchmark problem for genetic programming,” in GECCO ’14: Proceed-

ings of the 2014 conference on Genetic and evolutionary computation.
Vancouver, BC, Canada: ACM, 12-16 Jul. 2014, pp. 919–926.

[33] L. Spector, B. Martin, K. Harrington, and T. Helmuth, “Tag-based
modules in genetic programming,” in GECCO ’11: Proceedings of

the 13th annual conference on Genetic and evolutionary computation.
Dublin, Ireland: ACM, 12-16 Jul. 2011, pp. 1419–1426.

[34] D. Jackson, “Promoting phenotypic diversity in genetic programming,”
in PPSN 2010 11th International Conference on Parallel Problem

Solving From Nature, ser. Lecture Notes in Computer Science, vol. 6239.
Krakow, Poland: Springer, 11-15 Sep. 2010, pp. 472–481.

[35] D. Wolpert and W. Macready, “No free lunch theorems for optimization,”
Evolutionary Computation, IEEE Transactions on, vol. 1, no. 1, pp. 67–
82, 1997.

Thomas Helmuth received the B.A. degree in
computer science and mathematics from Hamilton
College, Clinton, NY, USA in 2009, and the M.S.
degree in computer science from the University of
Massachusetts, Amherst, MA, USA in 2012.

He is currently working towards the Ph.D. degree
at University of Massachusetts, Amherst, MA, USA.
His research interests focus on automatic program
synthesis for the creation of general software by
genetic programming.

Lee Spector received the B.A. degree in philosophy
from Oberlin College, Oberlin, OH, USA in 1984,
and the Ph.D. degree in computer science from the
University of Maryland, College Park, MD, USA in
1992.

He is currently a Professor of Computer Science
in the School of Cognitive Science at Hampshire
College in Amherst, MA, USA, and an Adjunct
Professor in the Department of Computer Science
at the University of Massachusetts, Amherst, MA,
USA. He conducts research in artificial intelligence,

artificial life, and a variety of areas at the intersections of computer science
with cognitive science, physics, evolutionary biology, and the arts.

Dr. Spector is the Editor-in-Chief of the journal Genetic Programming

and Evolvable Machines, a member of the editorial board of the journal
Evolutionary Computation, and a member of the Executive Committee of the
ACM Special Interest Group on Evolutionary Computation (ACM SIGEVO).

James Matheson received the B.A. degree in ge-
netic programming and behavioral economics from
Hampshire College, Amherst, MA, USA in 2014.

He is a Co-Founder of a communications software
start-up called Trext. His research interests include
neuroscience, economics, and modeling human be-
havior with evolutionary algorithms.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2362729

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

