
Solving Unsymmetric Sparse Systems of Linear

Equations with PARDISO

Olaf Schenk1⋆ and Klaus Gärtner2

1 Department of Computer Science, University of Basel, Klingelbergstrasse 50,
CH-4056 Basel, Switzerland
oschenk@ifi.unibas.ch

http://www.ifi.unibas.ch
2 Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39,

D-10117 Berlin, Germany
gaertner@wias-berlin.de

http://www.wias-berlin.de

Abstract. Supernode pivoting for unsymmetric matrices coupled with
supernode partitioning and asynchronous computation can achieve high
gigaflop rates for parallel sparse LU factorization on shared memory par-
allel computers. The progress in weighted graph matching algorithms
helps to extend these concepts further and prepermutation of rows is used
to place large matrix entries on the diagonal. Supernode pivoting allows
dynamical interchanges of columns and rows during the factorization
process. The BLAS-3 level efficiency is retained. An enhanced left–right
looking scheduling scheme is uneffected and results in good speedup
on SMP machines without increasing the operation count. These algo-
rithms have been integrated into the recent unsymmetric version of the
PARDISO solver. Experiments demonstrate that a wide set of unsymmet-
ric linear systems can be solved and high performance is consistently
achieved for large sparse unsymmetric matrices from real world appli-
cations.

1 Introduction.

The solution of large sparse linear systems is a computational bottleneck in
many scientific computing problems. When partial pivoting is required to main-
tain numerical stability in direct methods for solving nonsymmetric linear sys-
tems, it is challenging to develop high performance parallel software because
partial pivoting causes the computational task-dependency graph to change
during runtime. It has been proposed recently that permuting the rows of the
matrix prior to factorization to maximize the magnitude of its diagonal entries
can be very effective in reducing the amount of pivoting during factorization
[1, 9, 10, 15]. The proposed technique, static pivoting, is an efficient alternative
to partial pivoting for parallel sparse Gaussian elimination.

⋆ This work was supported by the Swiss Commission of Technology and Innovation
KTI under contract number 5648.1.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2330, pp. 355−363, 2002.

 Springer-Verlag Berlin Heidelberg 2002

This paper addresses the issues of improved scalability and robustness of
sparse direct factorization within a supernode pivoting approach used in the
PARDISO solver1. The original aim of the PARDISO project [17, 19, 20] was to
develop a scalable parallel direct solver for sparse matrices arising in semicon-
ductor device and process simulations [4]. These matrices are in general unsym-
metric with a symmetric structure, and partial pivoting was not the primary
issue during the project. The underlying data structure of the solver is highly
optimized and scalability has been achieved with a left-right looking algorithm
on shared memory parallel computers [20]. However, after completing the first
version of the solver, the authors realized the potential of static pivoting [15]
and the use of prepermutations of rows to place large entries on the diagonal.
Therefore, the current version is extended towards the efficient solution of large
unsymmetric sparse matrices in a shared-memory computing environment.

The suite of unsymmetric test matrices that are used in the experiments
througout this paper is shown in Table 1. All matrices are due to real world
applications and are publicly available. The table also contains the dimension,
the number of nonzeros, and the related application area. It is impossible to
solve these linear systems without any pivoting or preordering in many cases.

2 Algorithmic features.

In this section the algorithms and strategies that are used in the analysis and
numerical phase of the computation of the LU factors are described.

Supernode pivoting.

Figure 1 outlines the approach to solve an unsymmetric sparse linear system
of equations. According to [15] it is very beneficial to precede the ordering by
performing an unsymmetric permutation to place large entries on the diago-
nal and then to scale the matrix so that the diagonals entries are equal to one.
Therefore, in step (1) the diagonal matrices Dr and Dc are chosen in such a way
that each row and each column of DrADc have a largest entry equal to 1 in
magnitude. The row permutation matrix Pr is chosen to maximize the product
of the diagonal entries in PrDrADc with the MC64 code [10]. In step (2) any
symmetric fill-reducing ordering can be computed based on the structure of
A + AT , e.g. minimum degree or nested dissection. All experiments reported
in this paper with PARDISO were conducted with a nested dissection algo-
rithm [14]. Like other modern sparse factorization packages [2, 5, 7, 8, 13, 16],
PARDISO takes advantage of the supernode technology — adjacent groups of
rows and columns with the same structure in the factors L and U are treated
as one supernode. An interchange among these rows of a supernode has no ef-
fect on the overall fill-in and this is the mechanism for finding a suitable pivot

1 A prebuilt library of the unsymmetric solver PARDISO will be available for several
architectures for research purposes at www.ifi.unibas.ch/∼PARDISO in spring 2002.

356 O. Schenk and K. Gärtner

Table 1. Unsymmetric test matrices with their order (N), number of nonzeros (NNZ),
and the application area of origin.

in PARDISO. However, there is no guarantee that the numerical factorization
algorithm would always succeed in finding a suitable pivot within the super-
node blocks. When the algorithm reaches a point where it can not factor the
supernode based on the predescribed inner supernode pivoting, it uses a static
pivoting strategy. The strategy suggests to keep the pivotal sequence chosen in
the analysis phase and the magnitude of the potential pivot is tested against a
threshold of

√
ǫ · ||A||, where ǫ is the machine precision and ||A|| is the norm

of A. Therefore, in step (3), any tiny pivots encountered during elimination is
set to

√
ǫ · ||A|| — this trades off some numerical stability for the ability to keep

pivots from getting to small. The result is that the factorization is in general not
exact and iterative refinement may be needed in step (4). If iterative refinement
does not converge, an iterative CGS algorithm [21] with the perturbed factors
L and U as a preconditioner is used.

The numerical behavior of this approach is illustrated in Table 2, where
the number of steps of iterative refinement required to reduce the component-

wise relative backward error Berr = maxi

|Ax−b|i
(|A|·|x|+|b|)i

[3] to machine precision is

357Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO

Fig. 1. Pseudo-code of the supernode pivoting algorithm for general unsymmetric sparse
matrices.

shown and the true error is reported as Err = ||xtrue−x||
||xtrue||

(computed from a con-

stant solution xtrue = 1.) It can be seen from the table that it is possible to solve
nearly all unsymmetric matrices with the predescribed algorithm. A ’*’ behind
the matrix name indicates that supernode pivoting is necessary to obtain con-
vergence. For matrix pre2 three iteration of the CGS algorithm are necessary to
reduce the error by a factor of 104, hence the missed subspace is really small.

Parallel LU algorithm with a two-level scheduling

The details of the dynamic scheduling algorithm are described in [18]. The left–
right looking approach is writing synchronization data to supernodes that will
be factored in the future (right-looking phase) but is reading all numerical data
from supernodes processed in the past. To reduce the number of synchroniza-
tion events and to introduce a smooth transition from tree level to pipelining
parallelism the often used central queue of tasks is split into two: the first queue
is used to schedule complete subtrees which have a local root node sufficiently
far from the root node of the elimination tree. The supernodes inside the sub-
trees need not any synchronization and hence update the synchronization data
of the supernodes of the second kind only (those close to the root node — which
are in general large). These supernodes are scheduled by a second queue —
contrary to the first task queue the second one keeps track of individual outer
supernode updates. Whenever a process can not continue with processing outer
updates due missing factorization results it puts the partially processed super-
node back into the second queue of tasks and fetches any other supernode la-

358 O. Schenk and K. Gärtner

Table 2. The numerical behavior of the PARDISO supernode pivoting approach. Err in-
dicates the error, Berr the backward error, Res the norm of the residual, and Nb the
number of steps of iterative refinement. A ’*’ after the matrix name indicates that super-
node pivoting is necessary to obtain convergence. ’CGS’ indicates that a CGS iterations
is used to improve the solution.

beled as executable. This scheme exploits the larger granularity of outer up-
dates (down to single dense matrix-matrix multiply operations), does not force
small outer updates to be handled as individual tasks and is open to priority
control strategies.

Unfortunately the complexity is already large. The introduction of factor-
ization time dependence is possible, but the additional updates due to out of
supernode pivoting have to be handled without a serious degradation of the
parallel performance reached by the scheme up to now.

3 Experimental results.

Table 3 list the performance numbers of some state-of-the art packages for solv-
ing large sparse systems of linear equations on a single IBM Power 3 processor.

359Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO

Table 3. LU factorization times (in seconds) on a single 375 Mhz IBM power 3 proces-
sor for UMFPACK 3, MUMPS, WSMP, and PARDISO (with prereordering MC64 and
METIS) respectively. The best time is shown in boldface, the second best time is under-
lined, and the best operation count is indicated by . The last row shows the approx-
imate smallest relative pivot threshold that yielded a residual norm close to machine
precision after iterative refinement for each package ([12, 13]).

This table is shown to locate the performance of PARDISO against other well-
kown software packages. A detailed comparison can be found in [12, 13]. A
”fail” indicates that the solver ran out of memory, e.g. MUMPS [2], UMFPACK
[6], or the iterative refinement did not converge, e.g PARDISO. The default op-
tion of the PARDISO was a nested dissection ordering and a prepermutation
with MC64 for all matrices.

360 O. Schenk and K. Gärtner

Table 4. Operation count (Ops), LU factorization time in seconds, and speedup (S) of
WSMP and PARDISO on one (T1) and four (T4) 375 MHz IBM Power 3 processors with
default options. The best time with four processors is shown in boldface, the best time
with one processor is underlined.

For the parallel performance and scalability, the LU factorization of PAR-
DISO is compared with that of WSMP in Table 4. The experiments were con-
ducted with one and four IBM 375 Mhz Power 3 processors. The four proces-
sors all have a 64 KB level-1 cache and a four MB level-2 cache. WSMP uses the
Pthread libray and PARDISO uses the OpenMP parallel directives. Both solver
always permute the original matrix to maximize the product of diagonal el-
ements and nested-dissection based fill-orderings has been used [11, 14]. Two
important observation can be drawn from the table. The first is that WSMP
needs in most of the examples less operations than PARDISO. It seems that
the algorithm based on [11] produces orderings with a smaller fill-in compared
with [14], which is used in PARDISO. The second observation is that the fac-
torization times are affected by the preprocessing and WSMP is in most cases
faster on a single Power 3 processor. However, the two-lewel scheduling in
PARDISO provides better scalability and hence better performance with four
Power 3 processors.

361Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO

4 Concluding remarks.

The focus of the comparison is mainly on the WSMP and the PARDISO pack-
ages2 and their different approaches:
— stability with a general pivoting method and the dynamic directed acyclic
task dependency graphs in WSMP and
— supernode pivoting with a preordering, and undirected graph partioning in
PARDISO, where the efficient dynamic scheduling on precomputed communi-
cation graphs results in better speedup.
For different application areas the PARDISO approach results in the needed sta-
bility. It has reached a development status that can be improved mainly in the
following directions:

1. Better reordering schemes to reduce the operation count.
2. Adding dynamic pivoting on the basis of introducing exceptions (what

seems to be a justified assumption for the test matrices used – this set pro-
duces only a few necessary pivots outside the supernodes at the very be-
ginning of the factorization process), and

3. Excluding some of the systematic operations with zeros in a postprocessing
step without loosing the advantages of the left–right looking supernodal
approach.

The different techniques used in both approaches may stimulate further im-
provements but it may be hard to reach the robustness and the operation counts
of WSMP for unsymmetric matricces and the better scalability of PARDISO on
SMPs.

Acknowledgments.

The authors wish to thank Anshul Gupta, IBM T.J. Watson Research Center, for
providing his large benchmark set of unsymmetric matrices, Iain Duff for the
possibility to use the MC64 graph matching code, and the Computing Center
at the University of Karlsruhe for supporting access to the IBM NightHawk-II
parallel computers.

References

1. P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and X. S. Li. Analysis and comparison
of two general sparse solvers for distributed memory computers. Technical Report
TR/PA/00/90, CERFACS, Toulouse, France, December 2000. Submitted to ACM
Trans. Math. Softw.

2. Patrick R. Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully
asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J.
Matrix Analysis and Applications, 23(1):15–41, 2001.

2 The data presented go directly back to the authors at sufficiently close points in time.

362 O. Schenk and K. Gärtner

3. Mario Arioli, James W. Demmel, and Iain S. Duff. Solving sparse linear systems with
sparse backward error. SIAM J. Matrix Analysis and Applications, 10:165–190, 1989.

4. R.E. Bank, D.J. Rose, and W. Fichtner. Numerical methods for semiconductor device
simulation. SIAM Journal on Scientific and Statistical Computing, 4(3):416–435, 1983.

5. T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for sparse
LU factorization. SIAM J. Matrix Analysis and Applications, 18(1):140–158, 1997.

6. Timothy A. Davis. UMFPACK. Software for unsymmetric
multifrontal method. In NA Digest, 01(11), March 18, 2001.,
http://www.cise.ufl.edu/research/sparse/umfpack.

7. J. Demmel, J. Gilbert, and X. Li. An asynchronous parallel supernodal algorithm to
sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications, 20(4):915–
952, 1999.

8. J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W.-H. Liu. A supern-
odal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,
20(3):720–755, 1999.

9. I. S. Duff and J. Koster. The design and use of algorithms for permuting large en-
tries to the diagonal of sparse matrices. Technical Report TR/PA/97/45, CERFACS,
Toulouse, France, 1997. Also appeared as Report RAL-TR-97-059, Rutherford Ap-
pleton Laboratories, Oxfordshire.

10. I. S. Duff and J. Koster. The design and use of algorithms for permuting large en-
tries to the diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications,
20(4):889–901, 1999.

11. A. Gupta. Fast and effective algorithms for solving graph partitioning and sparse
matrix ordering. IBM Journal of Research and Development, 41(1/2):171–183, Jan-
uary/March 1997.

12. A. Gupta. Improved symbolic and numerical factorization algorithms for unsym-
metric sparse matrices. Technical Report RC 22137 (99131), IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, August 1, 2001.

13. A. Gupta. Recent advances in direct methods for solving unsymmetric sparse sys-
tems of linear equations. Technical Report RC 22039 (98933), IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, April 20, 2001.

14. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

15. X.S. Li and J.W. Demmel. A scalable sparse direct solver using static pivoting. In
Proceeding of the 9th SIAM conference on Parallel Processing for Scientic Computing, San
Antonio, Texas, March 22-34,1999.

16. E.G. Ng and B.W. Peyton. Block sparse Cholesky algorithms on advanced unipro-
cessor computers. SIAM Journal on Scientific Computing, 14:1034–1056, 1993.

17. O. Schenk. Scalable Parallel Sparse LU Factorization Methods on Shared Memory Multi-
processors. PhD thesis, ETH Zürich, 2000.

18. O. Schenk and K. Gärtner. Two-level scheduling in PARDISO: Improved scalability
on shared memory multiprocessing systems. Accepted for publication in Parallel
Computing.

19. O. Schenk and K. Gärtner. PARDISO: a high performance serial and parallel sparse
linear solver in semiconductor device simulation. Future Generation Computer Sys-
tems, 789(1):1–9, 2001.

20. O. Schenk, K. Gärtner, and W. Fichtner. Efficient sparse LU factorization with left-
right looking strategy on shared memory multiprocessors. BIT, 40(1):158–176, 2000.

21. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM Journal on Scientific and Statistical Computing, 10:36–52, 1989.

363Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO

	Introduction
	Algorithmic features
	Experimental results
	Concluding remarks

