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Département de Mathématiques et Informatique

Campus de Fouillole

F-97159 Pointe-à-Pitre — France
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ABSTRACT

This paper deals with variational inclusions of the form: 0 ∈ f(x) + F (x) where
f is a single function admitting a second order Fréchet derivative and F is a
set-valued map acting in Banach spaces. We prove the existence of a sequence
(xk) satisfying 0 ∈ f(xk)+

∑M
i=1 ai∇f

(
xk +βi(xk+1−xk)

)
(xk+1−xk)+F (xk+1)

where the single-valued function involved in this relation is an approximation of
the function f based on a multipoint iteration formula and we show that this
method is locally cubically convergent.

Key words: set-valued mapping, generalized equations, pseudo-Lipschitz maps, multi-
point iteration formula.

2000 Mathematics Subject Classification: 49J53, 47H04, 65K10.

Introduction

This paper deals with the problem of approximating a solution of the “abstract”
generalized equation

0 ∈ f(x) + F (x), (1)

where f is a function from X into Y , which admits a second order Fréchet derivative,
F is a set-valued map from X to the subsets of Y with closed graph, and X, Y are
two Banach spaces.

Let us recall that equation (1) is an abstract model for various problems.
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• When F = {0}, (1) is an equation,

• when F is the positive orthant in R
m, (1) is a system of inequalities,

• when F is the normal cone to a convex and closed set in X, (1) may represent
variational inequalities.

When the Fréchet derivative ∇f of f is locally Lipschitz, Dontchev [3, 4] asso-
ciates to (1) a Newton-type method based on a partial linearization which provides a
local quadratic convergence. Following his work, Piétrus [16] obtains a Newton-type
sequence which converges whenever ∇f satisfies a Hölder-type condition and in [15]
he proves the stability.

Using a second-degree Taylor polynomial expansion of f at xk, Geoffroy, Hilout,
and Piétrus [7] introduced a method involving the second order Fréchet derivative
and, when ∇2f is lipschitz, they obtained a cubic convergence. In [8] they proved
the stability of the method and in [10] they showed that the previous method is
superquadratic when ∇2f satisfies an Hölder condition. Lately, Jean-Alexis presented
in [12] a method without second order derivative, which is also cubically convergent
and Geoffroy, Jean-Alexis and Piétrus showed the stability of this method in [9]. Our
method generalizes this idea by taking more iterates.

For solving (1), we fix an integer M > 1 and we consider the sequence

0 ∈ f(xk) +
M∑
i=1

ai∇f
(
xk + βi(xk+1 − xk)

)
(xk+1 − xk) + F (xk+1) (2)

where (ai)1≤i≤M and (βi)1≤i≤M are two sequences of real numbers satisfying

M∑
i=1

ai = 1 and
M∑
i=1

aiβi =
1
2
. (3)

The inspiration for considering such a method comes from a multipoint iteration
formula given in [19] for approximating f .

Let us remark that there is no second order Fréchet derivative of f in this approx-
imation of f but only M values of ∇f computed at

(
xk +βi(xk+1 −xk)

)
, 1 ≤ i ≤ M .

The paper is organized as follows: in section 2, we give some definitions and recall
a few preliminary results as a fixed-point theorem (lemma 1.3) which is the main tool
for proving the existence and the convergence of the sequence defined by (2) to a
solution of the equation (1); we also make some fundamental assumptions on f .

The existence and the convergence of the previous sequence defined by (2) are
developed in section 3. Moreover, we prove that the convergence of this method is of
order 3.

Let us recall some notation:
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• The distance from a point x to a set A in the metric space (Z, ρ) is defined by

dist (x, A) = inf{ ρ(x, y), y ∈ A };

• The excess e from the set A to the set C is given by

e(A, C) = sup{dist (x, A), x ∈ C };

• Let Λ: X ⇒ Y be a set-valued map, we write

graph Λ = { (x, y) ∈ X × Y, y ∈ Λ(x) } and Λ−1(y) = {x ∈ X, y ∈ Λ(x) };

• Br(x) is the closed ball centered at x with radius r;

• The norms in the Banach spaces X and Y are both denoted by ‖·‖.

1. Definitions and preliminary results

In this section, we collect some results that we will need to prove our main theorem.

Definition 1.1. A set-valued Λ is pseudo-Lipschitz around (x0, y0) ∈ graph Λ with
modulus L if there exist constants a and b such that

sup
y∈Λ(x′)∩Ba(y0)

dist(y, Λ(x′′)) ≤ L‖x′ − x′′‖, for all x′ and x′′ in Bb(x0). (4)

Using the excess, we have an equivalent definition replacing the inequality (4) by

e
(
Λ(x′) ∩ Ba(y0), Λ(x′′)

) ≤ L‖x′ − x′′‖, for all x′ and x′′ in Bb(x0).

The pseudo-Lipschitz property has been introduced J.-P. Aubin and he was the first to
define this concept as a continuity property. Let us note that sometimes this property
is also called “Aubin continuity.” Characterizations of the pseudo-Lipschitz property
are also obtained by Rockafellar in [17, 18] using the Lipschitz continuity of the dis-
tance function dist(y, Λ(x)) around (x0, y0) and by Mordukhovich in [13,14] using the
concept of coderivative of multifunctions. The Aubin-continuity of F is equivalent
to the metric regularity of F−1. Lately, Dontchev, Quincampoix, and Zlateva gave
in [6] a derivative criterion for the metric regularity of set-valued mappings based on
works of Aubin and co-authors. Fore more details and applications of this property,
the reader could also refer to [1, 2, 5].

Definition 1.2. We say that a function f from a metric space (X, ρ) into a metric
space (Y, d) is strictly stationary at x0 ∈ X if, for every ε > 0, there exists δ > 0 such
that

d(f(x1), f(x2)) ≤ ε ρ(x1, x2) whenever ρ(xi, x0) < δ, i = 1, 2.
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C. Cabuzel/A. Piétrus Solving variational inclusions. . .

Lemma 1.3. Let (Z, ρ) be a complete metric space, let φ be a set–valued map from Z
into the closed subsets of Z, let η0 ∈ Z and let r and λ be such that 0 ≤ λ < 1 and

(i) dist
(
η0, φ(η0)

) ≤ r(1 − λ),

(ii) e
(
φ(x1) ∩ Br(η0), φ(x2)

) ≤ λρ(x1, x2), ∀x1, x2 ∈ Br(η0),

then φ has a fixed–point in Br(η0). That is, there exists x ∈ Br(η0) such that
x ∈ φ(x). If φ is single-valued, then x is the unique fixed point of φ in Br(η0).

The proof of lemma 1.3 is given in [5] employing the standard iterative concept
for nonexpansive mappings. This fixed-point lemma is a generalization of the fixed-
point theorem in Ioffe-Tikhomirov [11] where in (ii) the excess e is replaced by the
Haussdorf distance.

We make the following assumptions on a neighborhood Ω of x∗:

(H1) ∇2f is K2-Lipschtiz in Ω

(H2) F is a set-valued map with closed graph.

(H3) (f +F )−1 is pseudo-Lipschitz around (0, x∗) with constants a, b and modulus L.

We also define the following functions:

Λk(x) = f(xk) +
M∑
i=1

ai∇f
(
xk + βi(x − xk)

)
(x − xk)

Λx∗(x) = f(x∗) +
M∑
i=1

ai∇f
(
x∗ + βi(x − x∗)

)
(x − x∗)

Q(x) = Λx∗(x) + F (x)

and

Ψk(x) = Q−1
(
Λx∗(x) − Λk(x)

)
. (5)

2. Description of the method and convergence results

• From a starting point x0 in a neighborhood of a solution x∗ of (1), applying
lemma 1.3, we show that Ψ0 possesses a fixed point x1.

• From a current iterate xk generated by (2) and a function Ψk defined on X
by (5), applying lemma 1.3, we obtain the existence of the next iterate xk+1

which is a fixed point of Ψk.

The main result of this study reads as follows:
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Theorem 2.1. Let x∗ be a solution of (1), and suppose that (H1)–(H3) are satisfied.
Then for all c > LK2

6

(
1 + 3

∑M
i=1|ai|β2

i

)
, one can find δ > 0 such that for every

starting point x0 ∈ Bδ(x∗), there exists a sequence (xk)k≥0 defined by (2) which
satisfies

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖3. (6)

Before proving the theorem, we show that

Proposition 2.2. The following are equivalent:

(i)
[
f(x∗) +

∑M
i=1 ai∇f

(
x∗ + βi(· − x∗)

)
(· − x∗) + F (·)]−1 is pseudo-Lipschitz

around (y∗, x∗),

(ii) (f + F )−1 is pseudo-Lipschitz around (y∗, x∗).

Proof. According to [5, corollary 2], it suffices to prove, under the assumptions of
theorem 2.1, that the function h defined by

h(x) = f(x) − Λx∗(x)

is strictly stationary at x∗. Without lose of generality, we can suppose that the
neighborhood Ω is bounded. This implies, thanks to (H1), that ∇2f is bounded on Ω
by K1 which implies that ∇f is K1-Lipschitz on Ω.

Let ε > 0 and let us set

α1 =
ε

2K1

[∑M
i=1|ai|(1 + |βi|)

] .

Fix δ > 0 such that δ ≤ min{a; α1} where a is given by the assumption (H3) and let
x1, x2 ∈ Bδ(x∗).

‖h(x1) − h(x2)‖ = ‖f(x1) − Λx∗(x1) − f(x2) + Λx∗(x2)‖

≤
∥∥∥f(x1) − f(x2) −

M∑
i=1

ai∇f
(
x∗ + βi(x1 − x∗)

)
(x1 − x2)

∥∥∥

+
∥∥∥( M∑

i=1

ai

(∇f(x∗ + βi(x2 − x∗)
)

−∇f
(
x∗ + βi(x1 − x∗)

))
(x2 − x∗)

∥∥∥. (7)

Let us set

A =
∥∥∥f(x1) − f(x2) −

M∑
i=1

ai∇f
(
x∗ + βi(x1 − x∗)

)
(x1 − x2)

∥∥∥,

B =
∥∥∥( M∑

i=1

ai∇f
(
x∗ + βi(x2 − x∗)

) −
M∑
i=1

ai∇f
(
x∗ + βi(x1 − x∗)

))
(x2 − x∗)

∥∥∥.
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Using (3), we obtain

A =
∥∥∥

M∑
i=1

ai(f(x1) − f(x2) −∇f
(
x∗ + βi(x1 − x∗)

)
(x1 − x2))

∥∥∥,

then,

A ≤
M∑
i=1

|ai|‖x1 − x2‖
∫ 1

0

∥∥∇f
(
x2 + t(x1 − x2)

) −∇f
(
x∗ + βi(x1 − x∗)

)∥∥ dt,

which implies

A ≤ K1

M∑
i=1

|ai|‖x1 − x2‖
∫ 1

0

‖x2 + t(x1 − x2) − x∗ − βi(x1 − x∗)‖ dt.

Since x1, x2 ∈ Bδ(x∗), we find

A ≤ K1δ
[ M∑

i=1

|ai|(1 + |βi|)
]
‖x1 − x2‖. (8)

In a similar way, one also obtains

B ≤ 2K1δ
[ M∑

i=1

|ai||βi|
]
‖x1 − x2‖. (9)

By (7), (8), and (9), we deduce that

∀x1, x2 ∈ Bδ(x∗), ‖h(x1) − h(x2)‖ ≤ 2K1δ
[ M∑

i=1

|ai|(1 + |βi|)
]
‖x1 − x2‖. (10)

According to (10), and the fact that δ ≤ α1, we have

∀x1, x2 ∈ Bδ(x∗), ‖h(x1) − h(x2)‖ ≤ ε‖x1 − x2‖,

which achieves the proof of the proposition.

Proposition 2.3. Under the assumptions of theorem 2.1, there exists δ > 0 such
that, for all x0 ∈ Bδ(x∗) and x0 �= x∗, the map Ψ0 admits a fixed point x1 ∈ Bδ(x∗).

Proof. For the proof of this proposition, we show both assertions (i) and (ii) of
lemma 1.3.
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The assumption (H3) gives the constants a and b; moreover we set

α2 =

√√√√ 2b

3K1

[∑M
i=1|ai|(1 + 2|βi|)

]

α3 =

√
1
c

α4 = 3

√√√√ 6b

K2

[
1 + 3

∑M
i=1|ai|β2

i

]

Let us consider δ > 0 such that

δ < min{ a, α2, α3, α4 }. (11)

From the definition of the excess e, we have

dist(x∗, Ψ0(x∗)) ≤ e
(
Q−1(0) ∩ Bδ(x∗), Q−1(Λx∗(x∗) − Λ0(x∗))

)
.

We have

‖Λx∗(x∗) − Λ0(x∗)‖ =
∥∥∥f(x∗) − f(x0) −

M∑
i=1

ai∇f
(
x0 + βi(x∗ − x0)

)
(x∗ − x0)

∥∥∥,

which can be rewritten

‖Λx∗(x∗) − Λ0(x∗)‖ =
∥∥∥f(x∗) − f(x0) −∇f(x0)(x∗ − x0) − 1

2
∇2f(x0)(x∗ − x0)2

+ ∇f(x0)(x∗ − x0) +
1
2
∇2f(x0)(x∗ − x0)2

−
M∑
i=1

ai∇f
(
x0 + βi(x∗ − x0)

)
(x∗ − x0)

∥∥∥. (12)

Let us also set

D =
∥∥∥f(x∗) − f(x0) −∇f(x0)(x∗ − x0) − 1

2
∇2f(x0)(x∗ − x0)2

∥∥∥
and

E =
∥∥∥∇f(x0)(x∗ − x0) +

1
2
∇2f(x0)(x∗ − x0)2

−
M∑
i=1

ai∇f
(
x0 + βi(x∗ − x0)

)
(x∗ − x0)

∥∥∥.
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Using (H1), we obtain

D ≤ K2

6
‖x∗ − x0‖3. (13)

Since

∇f
(
x0 + βi(x∗ − x0)

) −∇f(x0) = βi

∫ 1

0

∇2f
(
x0 + βit(x∗ − x0)

)
(x∗ − x0) dt

we have

E ≤
M∑
i=1

|aiβi|‖x∗ − x0‖2

∫ 1

0

∥∥∇2f
(
x0 + βit(x∗ − x0)

) −∇2f(x0)
∥∥ dt.

The use of (H1) gives also

E ≤ K2

2

[ M∑
i=1

|ai|β2
i

]
‖x∗ − x0‖3. (14)

According to (11), (12), (13), (14), and using the pseudo-Lipschitzness of Q−1, we
obtain

‖Λx∗(x∗) − Λ0(x∗)‖ ≤ b

and
dist

(
x∗, Ψ0(x∗)

) ≤ L‖Λx∗(x∗) − Λ0(x∗)‖.
Using (12), (13), and (14) one has

dist
(
x∗, Ψ0(x∗)

) ≤ LK2

6

(
1 + 3

M∑
i=1

|ai|β2
i

)
‖x∗ − x0‖3.

By setting

r = r0 = c‖x∗ − x0‖3, λ = LK1δ
[ M∑

i=1

|ai|
(
1 + 4|βi|

)]
,

since

c >
LK2

6

(
1 + 3

M∑
i=1

|ai|β2
i

)
,

one can decrease δ if it is necessary so that λ ∈]0, 1[ and

c(1 − λ) >
LK2

6

(
1 + 3

M∑
i=1

|ai|β2
i

)
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and assertion (i) in lemma 1.3 is satisfied.
Let us remark that the decreasing of δ implies that the number r0 = r0(δ) also

decreases and the above choice of r0 and (11) imply r0 ≤ δ < a.
Now, let us show that condition (ii) is also satisfied. Let x ∈ Bδ(x∗) and let us

set y = Λx∗(x) − Λ0(x). We have

‖y‖ ≤
∥∥∥f(x∗) − f(x0) −

M∑
i=1

ai∇f
(
x0 + βi(x − x0)

)
(x∗ − x0)

∥∥∥

+
∥∥∥( M∑

i=1

ai∇f
(
x∗ + βi(x − x∗)

)

−
M∑
i=1

ai∇f
(
x0 + βi(x − x0)

))
(x − x∗)

∥∥∥. (15)

Let us also set

F =
∥∥∥f(x∗) − f(x0) −

M∑
i=1

ai∇f
(
x0 + βi(x − x0)

)
(x∗ − x0)

∥∥∥
and

G =
∥∥∥( M∑

i=1

ai∇f
(
x∗ + βi(x − x∗)

) −
M∑
i=1

ai∇f
(
x0 + βi(x − x0)

))
(x − x∗)

∥∥∥.

Using (3), we have

F =
∥∥∥

M∑
i=1

ai

(
f(x∗) − f(x0) −∇f(x0 + βi(x − x0))(x∗ − x0)

)∥∥∥

=
∥∥∥

M∑
i=1

ai

∫ 1

0

(∇f(x0 + t(x∗ − x0)) −∇f(x0 + βi(x − x0))
)
(x∗ − x0) dt

∥∥∥.

Thus,

F ≤
M∑
i=1

|ai|‖x∗ − x0‖
∫ 1

0

‖∇f(x0 + t(x∗ − x0)) −∇f(x0 + βi(x − x0))‖ dt.

Since x and x0 belong to Bδ(x∗), we obtain

F ≤ K1δ
2

2

M∑
i=1

|ai|(1 + 4|βi|). (16)
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In a similar way we obtain

G ≤ δ2K1

M∑
i=1

|ai|(1 + |βi|). (17)

Thanks to (15), (16), and (17) one has

‖y‖ ≤ 3K1δ
2

2

M∑
i=1

|ai|(1 + 2|βi|),

and the inequality (11) implies ‖y‖ ≤ b.
Let us set H = e

(
Ψ0(x)∩Br0(x

∗), Ψ0(x′)
)
. It follows that , for all x, x′ ∈ Br0(x

∗),
we have

H ≤ e
(
Ψ0(x) ∩ Bδ(x∗), Ψ0(x′)

)

≤ L
∥∥∥

M∑
i=1

ai∇f
(
x∗ + βi(x − x∗)

)
(x − x∗) −

M∑
i=1

ai∇f
(
x0 + βi(x − x0)

)
(x − x0)

−
M∑
i=1

ai∇f
(
x∗ + βi(x′ − x∗)

)
(x′ − x∗) +

M∑
i=1

ai∇f
(
x0 + βi(x′ − x0)

)
(x′ − x0)

∥∥∥.

Thus,

H ≤
∥∥∥

M∑
i=1

ai∇f
(
x∗ + βi(x − x∗)

)
(x − x′) +

M∑
i=1

ai∇f
(
x∗ + βi(x − x∗)

)
(x′ − x∗)

−
M∑
i=1

ai∇f
(
x∗ + βi(x′ − x∗)

)
(x′ − x∗) −

M∑
i=1

ai∇f
(
x0 + βi(x − x0)

)
(x − x′)

−
M∑
i=1

ai∇f
(
x0 + βi(x − x0)

)
(x′ − x0) +

M∑
i=1

ai∇f
(
x0 + βi(x′ − x0)

)
(x′ − x0)

∥∥∥,

which yields

H ≤ L
∥∥∥( M∑

i=1

ai∇f
(
x∗ + βi(x − x∗)

) −
M∑
i=1

ai∇f
(
x0 + βi(x − x0)

))
(x − x′)

∥∥∥

+ L
∥∥∥( M∑

i=1

ai∇f
(
x∗ + βi(x − x∗)

) −
M∑
i=1

ai∇f
(
x∗ + βi(x′ − x∗)

))
(x′ − x∗)

∥∥∥

+
∥∥∥( M∑

i=1

ai∇f
(
x0 + βi(x′ − x0)

) −
M∑
i=1

ai∇f
(
x0 + βi(x − x0)

))
(x′ − x0)

∥∥∥.
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The last inequality implies

H ≤ LK1δ
[ M∑

i=1

|ai|(1 + 4|βi|)
]
‖x − x′‖,

then

e
(
Ψ0(x) ∩ Br0(x

∗), Ψ0(x′)
) ≤ LK1δ

[ M∑
i=1

|ai|(1 + 4|βi|)
]
‖x − x′‖,

and using (11), the condition (ii) in lemma 1.3 is satisfied.
Applying this lemma we get the existence of a fixed point x1 ∈ Br0(x

∗) of Ψ0.

Moreover, x1 in the preceding proposition satisfies the inequality (6). Proceed-
ing by induction, assuming that xk ∈ Brk−1(x

∗), keeping ηk = x∗, and setting
rk = c‖xk − x∗‖3, we obtain the existence of a fixed point xk+1 ∈ Brk

(x∗) for Ψk.
This implies

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖3.

In other words, (xk)k≥0 is cubically convergent to x∗, which completes the proof of
theorem 2.1.

Concluding remarks.

• If M = 1, a1 = 1, and β1 = 0, (2) is the Newton-type sequence for solving (1).

• If M = 2, a1 = a2 = 1
2 , β1 = 0, and β2 = 1, (2) is the sequence studied in [12].

Acknowledgement. The authors thank the anonymous referee for his valuable
remarks and comments, which improved the presentation of this manuscript.
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