Solving Visual Madlibs with Multiple Cues

Tatiana Tommasi ${ }^{1}$
ttommasi@cs.unc.edu
Arun Mallya ${ }^{2}$
amallya2@illinois.edu
Bryan Plummer ${ }^{2}$ bplumme2@illinois.edu
Svetlana Lazebnik ${ }^{2}$ slazebni@illinois.edu
Alexander C. Berg ${ }^{1}$
aberg@cs.unc.edu
Tamara L. Berg ${ }^{1}$
tlberg@cs.unc.edu
${ }^{1}$ University of North Carolina at Chapel Hill, (NC) USA
${ }^{2}$ University of Illinois at Urbana-Champaign, (IL) USA

This paper focuses on answering multiple choice questions from the Visual Madlibs dataset [2] which was created by asking people to write fill-in-the-blank descriptions about persons (action, attribute, location), objects (affordance, attribute, location), and high-level concepts as future and past events.

We posit that in order to truly understand an image and answer questions about it, it is necessary to leverage rich and detailed global and local information. To explore this assertion, we represent the images by using CNN architectures trained on task-specific sources to recognize more than 200 scenes, 900 actions and 300 attributes (see Fig. 1). We extract the features both from the whole image and from regions selected to best match people and objects mentioned in the answers. We project both the visual and textual information in a joint CCAembedding space [1] and at test time, we select the putative answer which obtains the highest cosine similarity with the image features. Finally we integrate multiple cues, through lowlevel visual feature stacking and high-level CCA score combinations. Our results show a significant improvement over the previous state of the art (see Tab. 1), and indicate that answering different question types benefits from examining a variety of image cues and carefully choosing informative image sub-regions.
[1] Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for modeling internet images, tags, and their semantics. IJCV, 2014.
[2] L. Yu, E. Park, A. C. Berg, and T. L. Berg. Visual Madlibs: Fill in the blank Image Generation and Question Answering. In ICCV, 2015.

Figure 1: Our method uses multiple deep networks trained on external knowledge sources to predict action, attribute, scene, and other diverse features from specific regions in the image. A CCA model trained on these features allows to score the putative answers and select the correct one for different different types of questions.

Question Type			Baseline VGG	CCA Ensemble
a)	Interesting	Easy	79.53	83.20
		Hard	55.05	57.70
	Past	Easy	80.24	86.36
		Hard	54.35	60.00
	Future	Easy	80.22	86.88
		Hard	55.49	62.39
b)	Person	Easy	53.56	68.50
	Attribute	Hard	42.58	55.90
	Person	Easy	84.71	88.34
	Action	Hard	68.04	71.65
	Person	Easy	84.95	85.70
	Location	Hard	64.67	63.92
	Person Object	Easy	73.63	78.93
	Relationship	Hard	56.19	58.63
c)	Object	Easy	50.35	58.94
	Attribute	Hard	45.41	54.50
	Object	Easy	82.49	87.29
	Affordance	Hard	64.46	68.37
	Object	Easy	67.91	70.03
	Location	Hard	56.71	58.01

Table 1: Improvement in accuracy by combining CCA scores from multiple cues.

