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Abstract. Recently, Fu and Malik described an unweighted Partial
MaxSAT solver based on successive calls to a SAT solver. At the kth
iteration the SAT solver tries to certify that there exist an assignment
that satisfies all but k clauses. Later Marques-Silva and Planes imple-
mented and extended these ideas. In this paper we present and implement
two Partial MaxSAT solvers and the weighted variant of one of them.
Both are based on Fu and Malik ideas. We prove the correctness of our
algorithm and compare our solver with other (Weighted) MaxSAT and
(Weighted) Partial MaxSAT solvers.

1 Introduction

In real-life, some solutions to a problem are acceptable even when some con-
straints are violated. In fact, in many situations it is impossible to satisfy all
constraints. For instance, in the context of planning, scheduling, packing, etc., a
solution satisfying all the constraints may be impossible to obtain. However we
are still interested on which is the maximum number of constraints that can be
satisfied with a minimal penalty.

We can solve these problems through the use of MaxSAT formalisms, such as
(Weighted) MaxSAT and (Weighted) Partial MaxSAT. Recently, there has been
an increasing interest in the development of solvers for these formalisms. Since
2006, every year takes place the MaxSAT evaluation [2]. Most of the solvers sub-
mitted to the last MaxSAT08 evaluation are implementations of branch&bound
algorithms (MaxSatz [11], IncWMaxSatz, W-MaxSatz, WMaxsatz icss [6], Min-
iMaxSat [10], Lb-Sat and Lb-PSat [12,13], PMS [3], ToolBar3 [9]). There are
other approaches like the solver Clone [17], that makes use of a tractable lan-
guage known as d-DNNF, and those which are based on the use of Satisfiability
testing, SAT4J [4], msu1.2 [14,15] and msu4.0 [16].

None of these solvers is a clear winner, specially for industrial and crafted
instances. In particular, for the industrial category the solvers based on Satisfia-
bility testing seem to perform very well for many benchmarks. Since the ultimate
goal is to solve real world (industrial) instances it makes sense to study in detail
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this approach. Why these solvers work better for industrial instances may be a
phenomena not only related to the hardness of the unsatisfiability cores included
in the formulas (that can be efficiently detected by a SAT solver) but also to
how these cores are connected.

The base of the study of this paper is the work of Fu and Malik [7,8], where two
Partial MaxSAT algorithms based on calls to a SAT solver are proposed, and the
work of Marques-Silva and Planes [15,16] and Marques-Silva and Manquinho [14]
which extend that previous work.

The contributions of our work are (i) a more optimized implementation of the
original Fu and Malik algorithm; (ii) a weighted version of the original Fu and
Malik algorithm together which the proof of its correctness; and (iii) another
Partial MaxSAT solver variant of the Fu and Malik algorithm, and the proof of
its correctness.

For the purpose of the evaluation of these algorithms, there is only one solver,
SAT4J [4], that is adapted to deal with weights. In this paper, we provide a
weighted version of the Fu and Malik algorithm [8]. Our experimental investiga-
tion confirms what we already knew from previous MaxSAT evaluations. There
is no unique best algorithm for solving MaxSAT or the other variants. Never-
theless, our implementation has a better performance than other solvers based
on Satisfiability testing. In the case of the Partial Weighted MaxSAT, our solver
is the first implementation of the original Fu and Malik ideas extended to the
weighted problem. Therefore, we can only compare with SAT4J.

2 Preliminaries

In the Partial MaxSAT context we work with two sets of clauses, hard and soft.
The Partial MaxSAT problem for a multiset of clauses is the problem of finding
an optimal assignment to the variables that satisfies all the hard clauses, and
the maximum number of soft clauses. The number of soft clause falsified by an
assignment is the cost of this assignment. The cost of the optimal assignment of
a formula F is called the cost of the formula, and is denoted by MaxSAT (F ).

In Weighted Partial MaxSAT, we use multisets of weighted clauses. A weighted
clause is a pair (C, w), where C is a clause and w is a natural number meaning
the penalty for falsifying the clause C. The pair (C, w) is clearly equivalent to
having w copies of clause C in our multiset (in case C is soft). If a clause is hard,
the corresponding weight is infinity.

Given a truth assignment I and a multiset of weighted clauses C, the cost of
assignment I on C is the sum of the weights of the clauses falsified by I.

The Weighted Partial MaxSAT problem for a multiset of weighted clauses
C is the problem of finding an optimal assignment to the variables of C that
minimizes the cost of the assignment on C. If the cost is infinity, it means that
we have falsified a hard clause, and we say that the multiset is unsatisfiable.

Our approach is based on successive calls to a SAT solver. The SAT solver
may return a set of clauses that is unsatisfiable. We call this set unsatisfiable
core.
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3 A Weighted Partial MaxSAT Algorithm

Before giving the full version of our algorithm, we will present the original Fu
and Malik [8] algorithm for Partial MaxSAT, and show the correction of the
algorithm. The reason for doing this is that we will need parts of the argument
to show the correctness of our algorithm for solving Weighted Partial MaxSAT.

The algorithm consists in iteratively calling a SAT solver on a working formula
ϕ. This corresponds to the line (st, ϕc) := SAT (ϕw). The SAT solver will say
whether the formula is satisfiable or not (variable st), and in case the formula is
unsatisfiable, it will give an unsatisfiable core (ϕc). At this point the algorithm
will produce new variables, blocking variables (BV in the code), one for each
clause. The new working formula ϕ will consist in adding the new variables to the
formulas of the core, adding a cardinality constraint saying that exactly one of
the new variables should be true (CNF (

∑
b∈BV b = 1) in the code), and adding

one to the counter of falsified clauses. This procedure is applied until the SAT
solver returns satisfiable.

input: ϕ = {C1, . . . , Cm}
cost := 0 Optimal
while true do

(st, ϕc) := SAT (ϕ) Call to the SAT solver
if st = SAT then return cost
BV := ∅ Set of blocking variables
for each C ∈ ϕc do

if C is soft then
b := new blocking variable
ϕ := ϕ \ {C} ∪ {C ∨ b} Add blocking variable
BV := BV ∪ {b}

if BV = ∅ then return UNSAT There are no soft clauses in the core
ϕ := ϕ ∪ CNF (

∑
b∈BV b = 1) Add cardinality constraint as hard clauses

cost := cost+ 1

Fig. 1. The pseudo-code of the Fu&Malik algorithm

The following lemma and definition are part of the correctness of the algorithm
for both the weighted and unweighted versions.

Definition 1. We say that two (Weighted) (Partial) MaxSAT formulas ϕ and
ϕ′ are MaxSAT equivalent if the cost of the optimal assignment of ϕ is equal to
the cost of the optimal assignment of ϕ′.

Lemma 1. Let ϕ be an unsatisfiable CNF formula, and ϕc = {C1, . . . , Cs} be
an unsatisfiable core in ϕ. Define

ϕ′ = (ϕ \ ϕc) ∪ {C1 ∨ b1, . . . , Cs ∨ bs} ∪ CNF (
s∑

i=1

bi = 1) ∪ { }

where b1, . . . , bs are new variables.
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Then, the minimum number of falsified clauses of ϕ is the same as the mini-
mum number of falsified clauses of ϕ′, i.e. ϕ and ϕ′ are MaxSAT equivalent.

Proof: Let I be a truth assignment for the variables of ϕ that satisfies all the
hard clauses of ϕ. Since ϕc is an unsatisfiable core, I falsifies some clause in
ϕc. Let Ci be one such clause. Now define I ′ the following way: for all x ∈ ϕ,
I ′(x) = I(x); I ′(bi) = 1 and I ′(bj) = 0 for all j �= i, 1 ≤ j ≤ s. Now I ′ satisfies
CNF (

∑s
i=1 bi = 1). For every clause C in ϕ \ ϕc, I ′(C) = I(C), and the same is

true for all the clauses Cj ∨ bj for j �= i. Now, I falsifies Ci but I ′ satisfies Ci ∨ bi

and falsifies . As a consequence the number of falsified clauses of ϕ′ by I ′ is
the same as the number of falsified clauses of ϕ by I.

Now consider an optimal assignment I ′ for ϕ′. By the optimality of I ′, we
know that I ′ satisfies CNF (

∑s
i=1 bi = 1) and if I ′(Ci) = 1 then I ′(bi) = 0. Now

we define an assignment I for ϕ the following way: I(x) = I ′(x) for all x ∈ ϕ.
We will see that the number of falsified clauses of I is the same as the number
of falsified clauses in I ′. The number of falsified clauses in ϕ \ ϕc is clearly the
same. Let bi be the variable assigned true by I ′. Then I ′(Cj ∨ bj) = I(Cj) for
j �= i. On the other hand, I(Ci) = 0 and I ′(Ci ∨ bi) = 1 but I ′ falsifies .

Theorem 1. Fu&Malik is a correct algorithm for Partial MaxSAT.

Proof: In each iteration of the while loop, if the SAT solver returns unsatisfiable
and the unsatisfiable core has soft clauses, we substitute a formula ϕ by another
ϕ′ plus the addition of one to the variable cost. Adding 1 to cost is equivalent to
considering that ϕ′ has also the empty clause. Lemma 1 shows that both formulas
are equivalent in terms of the minimum number of unsatisfiable clauses.

The following algorithm is the weighted version of the previous one. Now we
iteratively call the SAT solver with the working formula without the weights.
When the SAT solver returns an unsatisfiable core, we calculate the minimum
weight of the clauses of the core, wmin in the algorithm. Now we transform the
working formula in the following way: we duplicate the core having on one of
the copies, the clauses with weight the original minus the minimum weight, and
on the other copy we put the blocking variables and we give it the minimum
weight. Finally we add the cardinality constraint on the blocking variables, and
we add wmin to the cost.

Lemma 2. Let ϕ be a weighted partial formula. Let exp(ϕ) be the natural
expansion of ϕ into an unweighted formula by substituting every clause (C, w)
of ϕ into w copies of C.

The minimum weight of ϕ is the same as the minimum number of falsified
clauses of exp(ϕ).

Proof: This is straightforward.

The next lemma shows that if we have several identical unsatisfiable cores, we
don’t need to add different blocking variables to each core. Instead all cores can
have the same set of blocking variables.
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input: ϕ = {(C1, w1), . . . , (Cm, wm)}
cost := 0 Optimal
while true do

(st, ϕc) := SAT ({Ci | (Ci, wi) ∈ ϕ}) Call to the SAT solver without weights
if st = SAT then return cost
BV := ∅ Blocking variables of the core
wmin := min{wi | Ci ∈ ϕc and Ci is soft}
for each Ci ∈ ϕc do

if Ci is soft then
bi := new blocking variable
ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin)} ∪ {(Ci ∨ bi, wmin)}

Duplicate soft clauses of the core
BV := BV ∪ {bi}

if BV = ∅ then return UNSAT There are no soft clauses in the core
else ϕ := ϕ ∪ CNF (

∑
b∈BV b = 1) Add cardinality constraint as hard clauses

cost := cost+ wmin

Fig. 2. The pseudo-code of the WPM1 algorithm

Lemma 3. Let ϕ be an unsatisfiable partial formula and let ϕc = {C1, . . . , Cs}
be an unsatisfiable core in ϕ that appears l times. Consider the following
formulas:

ϕ1 = ϕ \ ϕc ∪ {Ci ∨ bi, . . . , Ci ∨ bi︸ ︷︷ ︸
l times

| Ci ∈ ϕc} ∪ CNF (
s∑

i=1

bi = 1)

and
ϕ2 =ϕ \ ϕc ∪ {Ci ∨ b1

i , . . . , Ci ∨ bl
i | Ci ∈ ϕc}

∪ CNF (
∑s

i=1 b1
i = 1) ∪ . . . ∪ CNF (

∑s
i=1 bl

i = 1)

Then, the minimum number of unsatisfiable clauses of ϕ1 and ϕ2 are the
same, i.e. ϕ1 and ϕ2 are MaxSAT equivalent.

Proof: Let I be an optimal interpretation for ϕ1. Then, if I(Ci) = 1, for some
i = 1, . . . , s, then I(bi) = 0. This is true because ϕc is unsatisfiable and I is
optimal. Now we will modify I into an assignment I ′ the following way:

I ′(x) = I(x) for all x ∈ ϕ

I ′(bj
i ) = I(bi) for i = 1, . . . , s and j = 1, . . . , l

It is clear that for all C ∈ ϕ − ϕc, I ′(C) = I(C). Also, I ′(Ci ∨ bj
i ) = I(Ci ∨ bi).

Let now I ′ be an optimal assignment for ϕ2. Then as before, if I(Ci) = 1, for
some i = 1, . . . , s, then I(bj

i ) = 0 for every j = 1, . . . , l. Now we will modify I ′

into an assignment I the following way:
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I(x) = I ′(x) for all x ∈ ϕ
I(bi) = I(b1

i ) for all i = 1, . . . , s

It is clear that for all C ∈ ϕ−ϕc, I ′(C) = I(C). We will show that the number of
unsatisfied clauses of {C1∨bj

1, . . . , Cs∨bj
s} by I ′ for every j = 1, . . . , l is the same

as the number of unsatisfied clauses of {Ci ∨ b1, . . . , Cs ∨ bs} by I. Now suppose
that the only b variable that I assigns true is bj

i and the only b variable that I

assigns true is bk. By assumption, I(Ci) = I(Ck) = 0. Then I ′(Ci ∨ bj
i ) = 1 and

I ′(Ck ∨ bj
k) = 0, but I(Ci ∨ bi) = 0 and I(Ck ∨ bk) = 1.

The next lemma shows the correctness of one iteration of our Weighted Partial
MaxSAT algorithm WPM1.

Lemma 4. Let ϕ be an unsatisfiable weighted partial formula, let ϕc =
{C1, . . . , Cs} be an unsatisfiable core in the set of clauses from ϕ, and let
ϕw

c = {(C1, w1), . . . , (Cs, ws)} the subset of weighted clauses of ϕ that corre-
sponds to the core. Let wmin = min(w1, . . . , ws), and let

ϕ′ =(ϕ \ ϕw
c ) ∪ {(Ci, wi − wmin) | Ci ∈ ϕc}

∪ {(Ci ∨ bi, wmin) | Ci ∈ ϕc}
∪ CNF (

∑s
i=1 bi = 1) ∪ {( , wmin)}

where {b1, . . . , bs} is a set of new variables.
Then, ϕ and ϕ′ are MaxSAT equivalent.

Proof: Let exp(ϕ) be the unweighted expansion of ϕ. Lemma 2 shows that
the minimum weight of ϕ is the same as the number of falsified clauses of
exp(ϕ). Now ϕc = {C1, . . . , Cs} is an unsatisfiable core of exp(ϕ), and since
wmin = min(w1, . . . , ws), ϕc appears wmin times in exp(ϕ). Now we can apply
the transformation of lemma 1 wmin times to obtain a formula

ϕ2 =ϕ \ ϕc ∪ {Ci ∨ b1
i . . . Ci ∨ bwmin

i | Ci ∈ ϕc}
∪ CNF (

∑s
i=1 b1

i = 1) ∪ . . . ∪ CNF (
∑s

i=1 bl
i = 1)

{ Ci, . . . , Ci︸ ︷︷ ︸
wi − wmin copies

| Ci ∈ ϕc} ∪ { , . . . ,
︸ ︷︷ ︸

wmin

}

MaxSAT equivalent to ϕexp. By Lemma 3, ϕ′ is MaxSAT equivalent to the
formula

ϕ1 =ϕ \ ϕc ∪ {Ci ∨ bi, . . . , Ci ∨ bi︸ ︷︷ ︸
wmin copies

| Ci ∈ ϕc}

∪{ Ci, . . . , Ci︸ ︷︷ ︸
wi − wmin copies

| Ci ∈ ϕc}

∪ CNF (
∑s

i=1 bi = 1) ∪ { , . . . ,
︸ ︷︷ ︸

wmin

}
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Now using again Lemma 2, ϕ1 is MaxSAT equivalent to ϕ′ as in the statement
of the lemma.

Theorem 2. WPM1 is a correct algorithm for Weighted Partial MaxSAT.

Proof: The theorem is proved iterating Lemma 4 for every execution of the
loop of the algorithm.

4 Another Partial MaxSAT Algorithm

The next algorithm, that we call PM2, is also a variant of the Fu and Malik
algorithm that avoids the use of more than one blocking variable in a clause.
A single blocking variable is added to each soft clause, like in other solvers like
SAT4J [4], msu3 [15] and msu4.0 [16].

PM2 works as follows: every clause gets an additional variable and the car-
dinality constraint says that all these additional variables have to be false. Also
before the first iteration of the algorithm the counter of falsified clauses, cost, is
set to zero. At every iteration of the algorithm a SAT solver is called. As before,
if the solver returns unsatisfiable, it also gives an unsatisfiable core. If the core
only contains hard clauses, then the algorithm returns unsatisfiable. Otherwise,
we put the blocking variables of the soft clauses of the core in a set B. Since we
have found a new unsatisfiable core, variable cost gets increased by one. Also we
look for other cores such that the soft clauses are included in the new core. If no
such core exists, we add an at least cardinality constraint saying that the sum
of the blocking variables of B is larger than or equal to one. If some cores are
included, we add the cardinality constraint saying that the number of variables
in B that need to be one is at least the number of cores included in the last core
found (counting the last). In every call to the SAT solver we also add an at most
cardinality constraint saying that the sum of all blocking variables is at most
cost. If the solver says that the formula is satisfiable, the algorithm returns cost
as the minimal number of falsified clauses.

PM2 simplifies Fu&Malik in the sense that it only adds one blocking variable
per clause. Intuitively, this would have to result into a more efficient algorithm
because there are less blocking variables, so the SAT solver will have to check
less possible assignments. This idea is already used in other MaxSAT solvers,
like SAT4J [4], msu3 [15] and msu4.0 [16]. In SAT4J only one at most cardinality
constraint (saying that the sum of blocking variables is smaller than k) is used.
This bound k is reduced until the SAT solvers says unsatisfiable. In msu3 [15], in
a first phase they compute a maximal set of disjoint cores, and in a second phase
they do as in SAT4J but increasing the bound k (starting with the number of
disjoint cores) until the SAT solver returns sat, and only summing the blocking
variables that have appeared in some core. Finally, in the msu4.0 algorithm [16],
apart from the at most constraint, they also use some at least constraints saying
that blocking variables occurring in a core, and not occurring in previous cores,
have to sum at least one. The algorithm alternates phases where the SAT solver
returns sat or unsat, refining a lower or upper bound, and only terminates when
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the upper and lower bound coincide, or when the new core does not contain new
blocking variables. Our approach is different from previous ones in two senses.
First, our at most constraint has a bound cost that is successively increased like
in msu3, instead of decreased like in SAT4J. Second, our at least constraints
may impose a bound strictly greater than one, in contrast with the msu4.0
algorithm. This would have to result in a more restrictive constraint, thus in
fewer assignments to check by the SAT solver.

input: ϕ = {C1, . . . , Cm}
BV := {b1, . . . , bm} Set of all blocking variables
ϕw := {C1 ∨ b1, . . . , Cm ∨ bm} Protect all clauses
cost := 0 Optimal
L := ∅ Set of Cores
while true do

(st, ϕc) := SAT (ϕw ∪ CNF (
∑

b∈BV b ≤ cost)) Call to the SAT solver with
at most cardinality constraint

if st = SAT then return cost
remove the hard clauses from ϕc

if ϕc = ∅ then return UNSAT
B := ∅ Blocking variables of the core
for each C = Ci ∨ bi ∈ ϕc do

B := B ∪ {bi}
L := L ∪ {ϕc}
k := |{ψ ∈ L | ψ ⊆ ϕc}| Num. of cores contained in ϕc including ϕc

ϕw := ϕw ∪ CNF (
∑

b∈B b ≥ k) Add at least cardinality constraint
cost := cost+ 1

Fig. 3. The pseudo-code of the PM2 algorithm

To prove that the PM2 algorithm is correct, we will prove that the
Fu&Malik algorithm can simulate it. We have to be aware they are non-
deterministic, since we assume that the SAT solver returns an unsatisfiable core
non-deterministically. However, recall that we have proved that Fu&Malik al-
gorithm is correct for every possible run. The proof is by induction on the num-
ber of execution steps. From now on, when we say that a set of soft clauses is
a core, we mean that this set, together with the hard clauses, is a core. A core
B = {i1, . . . , im} will be a set of indexes of soft clauses. Suppose that Fu&Malik
has simulated PM2 for s steps. We will prove that 1) if PM2 finds a core B,
then this set B of (soft) clauses is also a core for the Fu&Malik algorithm, in
particular if the set B = ∅ is a core for PM2, and it returns UNSAT, then the
same set B = ∅ is a core for Fu&Malik, that also returns UNSAT; and 2) if
PM2 does not find any cores, and stops, then Fu&Malik does not find any
cores either, and also stops returning the same MaxSAT value, since both have
run the same number of steps.
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Since Theorem 3 will be proved by induction, assume by induction hypothesis
that

ϕ = {C1 ∨ a1, . . . , Cm ∨ am} ∪ CNF (
m∑

i=1

ai ≤ s) ∪
s⋃

r=1

CNF (
∑

i∈Br

ai ≥ kr)

is the formula computed by PM2 after s execution steps, where B1, . . . , Bs is
the sequence of cores, and kj is the number of cores from B1, . . . , Bj included in
Bj . Assume also that Fu&Malik, after s steps simulating PM2, with the same
sequence of cores B1, . . . , Bs, obtains the formula

ϕ̂ = {C1 ∨
∨

1∈Bj

bj
1, . . . , Cn ∨

∨

n∈Bj

bj
n} ∪

s⋃

j=1

CNF (
∑

i∈Bj

bj
i = 1)

Lemma 5. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik al-
gorithms, respectively, after s steps of simulation. For any optimal interpretation
Î of the variables of ϕ̂, let I be the interpretation of the variables of ϕ given by

I(x) = Î(x) for any variable x ∈ {C1, . . . , Cn}
I(ai) = max{Î(bj

i ) | i ∈ Bj} for the blocking variables

Then, (1) if Î satisfies the hard clause C ∈ ϕ̂, then I satisfies the hard clause
C ∈ ϕ;
(2) if Î satisfies the cardinality constraints of ϕ̂, then I satisfies the cardinality
constraints of ϕ; and
(3) if Î satisfies the soft clause Ci ∨

∨
i∈Bj

bj
i ∈ ϕ̂, then I satisfies the soft clause

Ci ∨ ai ∈ ϕ.

Proof: Statement (1) is trivial, since I and Î assign the same values to the
original variables. For (2), if Î satisfies the cardinality constraints of ϕ̂, then∑

i∈Br
Î(br

i ) = 1, for any core Br. Hence,

∑

i∈Br

∑

i∈Bj
j=1,...s

Î(bj
i ) ≥

∑

Bj⊂Br

j≤r

∑

i∈Bj

Î(bj
i ) = |{Bj | Bj ⊆ Br ∧ j ≤ r}|

for any of the cores Br obtained in the execution. If the interpretation Î is
optimal, it means that it assigns true to at most one of the blocking variables
of a clause. In other words,

∑

i∈Bj
j=1,...,s

Î(bj
i ) ≤ 1 hence I(ai)=max{Î(bj

i ) | i ∈ Bj∧j = 1, . . . , s}=
∑

i∈Bj
j=1,...,s

Î(bj
i )

for any i = 1, . . . , n. From all this, we conclude
∑

i∈Br
I(ai) ≥ |{Bj | Bj ⊆

Br∧j ≤ r}| = kr, i.e. I satisfies the cardinality constraints CNF (
∑

i∈Br
ai ≥ kr).
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Similarly, we can prove that if Î is optimal

n∑

i=1

I(ai) =
n∑

i=1

max{Î(bj
i ) | i ∈ Bj ∧ j = 1, . . . , s}

=
n∑

i=1

∑

i∈Bj
j=1,...,s

Î(bj
i ) =

s∑

j=1

∑

i∈Bj

Î(bj
i ) =

s∑

j=1

1 = s

Hence, the other cardinality constraint CNF (
∑m

i=1 ai ≤ s) is also satisfied.
For (3), if Î satisfies Ci∨

∨
i∈Bj

bj
i , then either it satisfies Ci, and so I because

the assign the same values to original variables, or it satisfies some of the variables
bj
i . In this second case, the way we define the value of ai ensures that I satisfies

this value, hence the clause Ci ∨ ai ∈ ϕ.

Lemma 6. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik
algorithms, respectively, after s steps of simulation. If B is a core of ϕ, then B
is also a core of ϕ̂.

Proof: If B is not a core of ϕ̂, then there exists an interpretation I of ϕ̂ that
satisfies all hard clauses, all cardinality constraints of ϕ̂, and all soft clauses
Ci ∨

∨
i∈Bj

bj
i where i ∈ B. By Lemma 5, Ǐ will satisfy all hard clauses, all

cardinality constraints of ϕ, and all soft clauses Ci ∨ai where i ∈ B. This would
contradict that B is a core of ϕ.

The previous lemma ensures that if PM2 finds a core, then Fu&Malik also
finds a core. Hence, if PM2 does not stop, then Fu&Malik does not stop, either.
Therefore, the values computed by PM2 are smaller than the values calculated
by Fu&Malik. However, it is still possible that PM2 computes underestimated
values of MaxSAT of a formula. The following lemma shows that this is not
the case. Notice that the proof of this lemma relies on the correctness of the
Fu&Malik algorithm.

Lemma 7. Let ϕ and ϕ̂ be the formulas obtained by PM2 and Fu&Malik
algorithms, respectively, after s steps of simulation. If ϕ is satisfiable, then ϕ̂ is
satisfiable.

Proof: Let I be an interpretation satisfying ϕ. In particular, I satisfies
CNF (

∑m
i=1 ai ≤ s), and all hard and soft clauses. Therefore, I satisfies all the

original soft clauses Ci where I(ai) = false, and there are at least n − s of such
clauses. We have MaxSAT (C1, . . . , Cn) ≤ s. Since, Fu&Malik is a correct algo-
rithm for MaxSAT, it has to stop before s or less execution steps. And, since it has
not finished before, it has to finish after these s steps, hence ϕ̂ is satisfiable.

Theorem 3. PM2 is a correct algorithm for Partial MaxSAT.



Solving (Weighted) Partial MaxSAT through Satisfiability Testing 437

Table 1. Time in seconds (solved). Timeout of 1200 seconds. # stands for number of
instances of the benchmark.

set # best08 WPM1 PM2 msu1.2 msu4.0 SAT4J

Unweighted MaxSAT Category

Crafted

Maxcut/dimacs mod/ 62 IncMaxSatz - 81.8(52) 0.03(4) 175(7) 0.28(4) 1.71(3) 0.93(2)

Maxcut/random/ 58 MaxSatz - 4.5(40) -(0) -(0) - (0) - (0) - (0)

Maxcut/Spinglass/ 5 MiniMaxSatz - 1.62(3) 0.85(2) 102.5(2) 0.68 (2) -(0) -(0)

Industrial

SeanSafarpour 112 msu1.2 - 57.5(72) 66.6(81) 90.2(75) 57.5(72) 64.4(50) 14.5(10)

Partial MaxSAT Category

Crafted

Maxclique/Random/ 96 MiniMaxSAT - 2.4(96) 50.4(1) -(0) -(0) 106(61) 114(52)

Maxclique/Structured/ 62 MiniMaxSAT - 73(36) 41.2(11) 32.6(6) 4.9(7) 105.2(13) 50.5(13)

Maxone/3SAT/ 80 IncMaxSatz - 0.46(80) 15.82(46) 105.7(79) 52.7(40) 118.2(35) 96.6(31)

Maxone/Structured/ 60 SAT4J - 10.1(60) 0.69(2) 547.5(13) 122.7(2) 3.34(1) 10.1(60)

Industrial

Bcp-fir/ 59 msu1.2 - 49.2(46) 31.7 (57) 67.4(56) 49.2(46) -(0) 13.3(10)

Bcp-hipp-yRa1/ 1183 SAT4J - 19.2(1111) 2.9(1122) 13.5(1162) 7.2(1105) 0.29(348) 12.20(1109)

Bcp-msp/ 148 MiniMaxSAT - 48.9(104) 15.5(26) 384.2(36) 4.9(25) 22.9(79) 8.8(93)

Bcp-mtg/ 215 MiniMaxSAT - 25.7(206) 5.8(170) 10.5(214) 17.5(164) 0.43(22) 57(196)

Bcp-syn/ 74 lb-psat - 63.4(34) 14.1(32) 71.2(34) 51.1(31) 105.2(11) 67.4(21)

Pbo-mqc-nencdr/ 128 msu4.0 - 167.5(115) 80.4(50) 142(78) 50.3(54) 167.5(115) 180.6(102)

Pbo-mqc-nlogencdr/ 128 msu4.0 - 111(128) 67.1(75) 140.3(97) 53(65) 111(128) 117.5(126)

Pbo-routing/ 15 msu1.2 - 2.9(15) 0.94(15) 24.7(15) 2.9(15) 54.9(15) 26.4(9)

5 Experimental Results

In order to conduct our experimental investigation we have selected the bench-
marks submitted to the MaxSAT08 evaluation [2]. We have focus on the crafted
and industrial instances for all the four categories: unweighted MaxSAT, partial
MaxSAT, weighted MaxSAT and weighted partial MaxSAT. The appropriate
testing instances for our algorithms would be the industrial instances, where
we can expect these approaches to be competitive. However, since there is a
lack of industrial instances, in particular for the weighted and partial weighted
categories, we decided also to incorporate the crafted instances.

Our experiments have been run on the same machine specs as the MaxSAT
evaluation; Operating System: Rocks Cluster 4.0.0 Linux 2.6.9, Processor: AMD
Opteron 248 Processor, 2 GHz and compilers, Memory: 1 GB and Compilers
GCC 3.4.3, javac JDK 1.5.0. The solvers we compare are the best solvers for
each category and benchmark at the MaxSAT08 evaluation [2], the solvers based
on satisfiability testing (msu1.2, msu4.0 [16], and SAT4J [4]) and our implemen-
tations of the weighted version of Fu&Malik (WPM1) and Partial MaxSAT 2
(PM2) presented in this paper.

Our solvers are implemented on top of the SAT solver picosat846 [5], al-
though they can be easily adapted to work with any other solver that provides an
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Table 2. Time in seconds (solved). Timeout of 1200 seconds. # stands for number of
instances of the benchmark.

set # best08 WPM1 SAT4J

Weighted MaxSAT Category

Crafted

KeXu/ 15 IncWMaxsatz - 126.5(15) 478(1) 7.7(4)

Ramsey/ 48 lb-psat - 1.63(37) 0.05(34) 16(35)

WMaxcut/dimacs mod/ 62 ToolBar3 - 59(56) 0.12(3) 0.84(2)

WMaxcut/Random/ 40 MiniMaxSAT - 5.43(40) -(0) -(0)

WMaxcut/Spinglass/ 5 MiniMaxSAT - 27.6(4) -(0) -(0)

Weighted Partial MaxSAT Category

Crafted

Auctions/Auc paths/ 88 IncWMaxsatz - 8.4(88) -(0) 497(15)

Auctions/Auc regions/ 88 MiniMaxSAT - 1.7(84) -(0) 166(76)

Auctions/Auc Sched/ 84 MiniMaxSAT - 46(84) -(0) 317(49)

Random-net/ 350 Clone - 72(236) 194(91) 331(13)

Pseudo-factor/ 186 IncWMaxsatz - 0.07(186) 16(124) 3.3(186)

Pseudo- miplib/ 16 SAT4J - 13(6) 0.29(3) 13(6)

QCP/ 25 SAT4J - 6.14(25) 0.27(25) 6.14(25)

WCSP/Planning/ 71 SAT4J - 6.55(71) 0.9(46) 6.55(71)

WCSP/Spot5/Dir/ 21 Clone - 87.6(6) 2.31(4) 76(3)

WCSP/Spot5/Log/ 21 Clone - 15(6) 0.52(5) 63.8(3)

Industrial

Protein ins 12 MiniMaxSAT - 482(8) 42(1) 6.05(1)

interface to access to the unsatisfiable core when the formula is UNSAT. In order
to encode the cardinality constraints, for WPM1, we use the regular encoding
presented in [1], and for PM2 we use the encoding based on sequential counters
presented in [18].

In SAT4J [4], for each clause ci in the original problem, a new blocking variable
bi is added. Then a SAT solver is called to solve the new formula, and each time
a model is found, a cardinality constraint is added to the formula that states that
the sum of blocking variables has to be less than the number of blocking variables
satisfied in the previous iteration. Once the SAT solver gives an UNSAT answer,
the latest model is an optimal solution.

Msu1.2 [14,15] is another implementation of the Fu&Malik algorithm.
Msu4.0 [16] is a more sophisticated approach, which alternates iterations to
discover new cores with iterations to reduce the number of blocking variables
that need to be set to true in each core.

Table 1 and Table 2 show the results of our experimental investigation. We
set as timeout 1200 seconds. We report the number of solved instances (within
parenthesis), and the mean time of the solved instances for each solver. The
rules at the MaxSAT08 evaluation [2] establish that the winner is the solver
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which solves more instances and ties are broken by selecting the solver with the
minimum mean time. In bold we present the results of the winners.

We are interested in answering two questions: how our solvers would have
performed at the MaxSAT08 evaluation [2], and how they compare to the current
solvers based on satisfiability testing.

As we can see for the unweighted category, the solvers based on satisfiability
testing perform well at the industrial category being our solver WPM1 the best
performing one. For the crafted instances, the solvers based on satisfiability
testing are not competitive, however our solver PM2 is the best among them.

For the partial category and the crafted instances, the solvers based on satisfi-
ability testing are again not competitive, except for SAT4J [4] at one benchmark.
However, for the industrial instances, they win 7 out of 9 benchmarks, in par-
ticular, WPM1 wins at 2, PM2 at 3 and msu4.0 [16] at 2.

For the weighted category, WPM1 and SAT4J [4] just show a good behavior
on one set of instances, the Ramsey set. However, looking more closely to the
set, many of the instances are actually satisfiable. Unfortunately, there are not
available industrial instances for this category.

For the weighted partial category and crafted instances, WPM1 and SAT4J [4]
are just able to win at 2 out 9 benchmarks. Again, unfortunately, there is only
one set of industrial instances, and MinimaxSAT is the only solver able to solve
8 instances while the rest of the solvers submitted to the MaxSAT08 evalua-
tion [2] and the one presented in this paper are not able to solve more than
2 instances.

As a whole, we can say that there is not a clear winner in all the categories,
and so far, all the approaches can have some potential. Respect to the solvers
we have presented in this paper, we have shown that our implementations show
a good performance on the industrial instances for the unweighted and partial
categories. That should be a promising base point for the weighted versions.
Although we can not make such a claim yet, since there are not enough industrial
instances at these categories in order to test our solvers, we think this research
avenue is worth further investigation.
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