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How proteins participate in tumorigenesis can be ob-

scured by their multifunctional nature. For example, de-

pending on the cellular context, the cdk inhibitors can

affect cell proliferation, cell motility, apoptosis, receptor

tyrosine kinase signaling, and transcription. Thus, to

determine how a protein contributes to tumorigenesis,

we need to evaluate which functions are required in the

developing tumor. Here we demonstrate that the RCAS/

TvA system, originally developed to introduce oncogenes

into somatic cells of mice, can be adapted to allow us to

define the contribution that different functional domains

make to tumor development. Studying the development of

growth-factor-induced oligodendroglioma, we identified a

critical role for the Cy elements in p21, and we showed

that cyclin D1T286A, which accumulates in the nucleus of

p21-deficient cells and binds to cdk4, could bypass the

requirement for p21 during tumor development. These

genetic results suggest that p21 acts through the cyclin

D1–cdk4 complex to support tumor growth, and establish

the utility of using a somatic cell modeling system for

defining the contribution proteins make to tumor devel-

opment.
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Introduction

Several mouse models recapitulate the cardinal features of

human oligodendrogliomas (ODGs) (Holland, 2001a, b, c;

Betsholtz, 2004; Shih et al, 2004; Salpietro and Holland,

2005). Chronic signaling and overexpression of the ligands

and receptors of platelet-derived growth factor (PDGF) sig-

naling pathways are particularly common in human ODG

(Guha et al, 1995a, b; Louis et al, 2001, 2002; Collins, 2004).

We have demonstrated that expression of PDGF alone in

nestin-positive progenitors is sufficient to induce ODG devel-

opment (Dai et al, 2001).

Alterations that disrupt stem/progenitor cell dynamics and

cell cycle arrest may affect the progression of ODG. Cells

become committed to undertake a cell cycle when sufficient

cyclin-dependent kinase (cdk) activity accumulates during

the G1 phase. When cdk activity remains below the threshold

level needed to initiate progression through the cell cycle,

cells exit the cell cycle, and in some cases differentiate. Thus,

interactions between the cyclins and their catalytic partners

the cdks are critical in driving the cell cycle forward. Cyclin–

cdk complexes are regulated by a group of proteins known as

cdk inhibitors (cki). Cki are classified into two subfamilies:

the Ink4 subfamily (p15, p16, p18, and p19), which specifi-

cally target cdk4 and cdk6 and disrupt the cyclin D–cdk

complex; and the Cip/Kip subfamily (p21, p27 and p57),

which inhibit cyclin–cdk2 complexes.

Cki are considered tumor suppressors because their bind-

ing to cdks generally inhibits cell proliferation; however, cki

can also increase cell motility, reduce apoptosis, modulate

receptor tyrosine kinase signaling, and alter the activity of

a host of transcription factors and chromatin remodeling

enzymes (Dotto, 2000; Blagosklonny, 2002; Gartel and Tyner,

2002; Perkins, 2002; Coqueret, 2003; Weiss, 2003; Denicourt

and Dowdy, 2004; Gartel, 2005, 2006b). Subcellular location

might affect these interactions and roles (Sherr and Roberts,

1999; Coqueret, 2003; Denicourt and Dowdy, 2004; Child and

Mann, 2006). For example, cytosolic p27 can modulate rho

activity and affect cell migration (McAllister et al, 2003;

Besson et al, 2004; Nguyen et al, 2006). p21 and p27 can

also bind nuclear cyclin D–cdk4 complexes, preventing their

crm1-dependent export into the cytoplasm, where cyclin D1

would be degraded in a ubiquitin-dependent process (Alt

et al, 2002; Lin et al, 2006). Any of these interactions might

provide an oncogenic advantage to a proliferating cell; how-

ever, because of the lack of suitable genetic systems that

allow in situ manipulation of the incipient cells that give rise

to solid tumors, none of these have been demonstrated to be

responsible for the tumor-promoting effects associated with

cki expression.

We have used an ODG model where disease is induced by

infecting nestin-TvA mice with RCAS vectors expressing

PDGF to probe the role that cki play in tumor development

(Dai et al, 2001). This system takes advantage of the fact that

avian retroviruses (RCAS) cannot infect mammalian cells,

unless they express the avian retroviral receptor (TvA)

(Fisher et al, 1999). Transgenic mice expressing TvA under
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the control of the nestin promoter (Ntv-a) allow the infection

of oligodendrocyte progenitor cells (OPC) and some earlier

neural/glial lineage cell types (Doetsch et al, 1997, 2002). Our

studies of introducing PDGF into nestin-positive progenitors

and driving the development of growth-factor-induced ODG

highlighted a critical role for the cyclin-binding domains of

p21, and we showed that a mutant of cyclin D1 which

accumulates in the nucleus and binds cdk4 in p21-deficient

cells could bypass the requirement for p21 during tumor

development. Mutants that did not bind cdk4 or did not

accumulate in the nucleus did not bypass the requirement.

Together, these results establish genetic proof that p21 can act

through the cyclin D1–cdk4 complexes to support tumor

growth, and establish the utility of using the RCAS/TvA

system for delineating the types of contributions that a

protein makes to tumor development.

Results

The progression of ODG induced by growth-factor

overexpression is affected by the dose of cdk inhibitors

Both a low p27 staining index and a high p21 staining index

are associated with poor prognosis in human ODG (Cavalla

et al, 1999; Miettinen et al, 2001). Furthermore, both of these

proteins play a role during the development of the oligoden-

droglial lineage (Casaccia-Bonnefil et al, 1997, 1999; Zezula

et al, 2001; Doetsch et al, 2002). Consequently to understand

if these cki contributed in a causal manner to the pathogen-

esis of ODG, we crossed mice with targeted deletion of p21 or

a mutation of p27, p27D51/D51, which removes the N-terminal

51 amino acids of the protein preventing cyclin–cdk interac-

tion, onto an Ntv-a background and infected newborn

wild-type, heterozygous, and deficient mice with a single

intracranial injection of 104 DF-1 cells producing RCAS-

PDGF-HA (Shih et al, 2004). Ntv-a-negative littermate controls

did not develop tumors regardless of their genotype. Whereas

p27 loss was associated with enhanced progression of tumors,

as expected of a tumor suppressor (Wendy See, EH, Marilyn

Resh, and AK, manuscript in preparation), the loss of p21

unexpectedly reduced the development of tumors (Table I).

There was no evidence of morbidity in p21�/� mice infected

with RCAS-PDGF-HA during the 12-week period. All mice

were killed at the end of the 12 weeks, and two p21�/� had a

tumor visible by gross histology. Because the tumor suppres-

sive properties of p27 are well established, the rest of this

report focuses on the role of p21. Our results delineating the

tumor suppressor function of p27 will be reported elsewhere.

Similar to gliomas in wild-type animals, tumors in the

p21þ /� and p21�/� animals were composed of small cells

with round nuclei and scant cytoplasm. As shown in the

Supplementary Figure 6, we observed intrafascicular queuing

in white matter tracts of the corpus callosum, subpial infiltra-

tion, and perivascular and perineuronal satellitosis in areas of

cortical invasion as described previously. The tumors were

positive for oligodendrocyte markers, sox10 and olig2 (Liu

et al, 2002; Bannykh et al, 2006), and negative for a neuronal

marker, NeuN (Jin et al, 2003). The tumor size did not

correlate with genotype; large and small tumors were ob-

served in all genotypes. These tumor characteristics were

consistent with a diagnosis of ODG.

p21 deficiency affects the PDGF-dependent growth

of progenitor and incipient tumor cells

We noted that the Ki67 index, a marker for proliferating cells,

was approximately two-fold lower in the two tumors arising

in the p21�/� mice (per � 400 field: tumor A, 36725,

Po0.001; tumor B, 59735, Po0.05) compared to the average

level seen in five randomly chosen wild-type mice (per � 400

field: 86753). High standard deviations are typical because

of the diffuse nature of ODGs. Furthermore, apoptotic indices,

measured by the percentage of cells staining positively for

cleaved caspase 3, were approximately 3–4-fold higher in the

two tumors that arose in the p21�/� mice (per � 400 field:

tumor A, 672; tumor B, 874) compared to wild-type mice

(per � 400 field: 171). Thus p21 might support proliferation

or reduce apoptosis (or both) during the development of

growth-factor-induced ODG.

To ask if these effects of p21 deficiency were seen in the

‘progenitor’ cells that give rise to the tumors, we isolated

OPC, made them quiescent in culture, and subsequently

induced them to enter the cell cycle by exposing them to

PDGF. p21 status affected the growth, proliferation, and

apoptosis of quiescent progenitor cells exposed to PDGF in

culture. PDGF induced cell growth when added to purified

wild-type cells at a concentration between 10 and 50 ng/ml

(Casaccia-Bonnefil et al, 1997; Zezula et al, 2001), but not

when added to p21�/� OPC (Figure 1A). At 18 h after the

addition of PDGF, the percent of BrdU-positive cells did not

increase in the p21�/� culture, although it did in the wild-type

culture (Figure 1B). Additionally, apoptotic indices measured

immunohistochemically by cleaved caspase 3 (Figure 1B), by

nuclei morphology (Figure 1C), or by immunoblotting ex-

tracts for cleaved caspase 3 or cleaved PARP (Figure 1D) were

all elevated in the p21-deficient culture. Consequently, p21

levels could affect the growth of progenitors responding to

unbalanced PDGF signaling by acting through either the

proliferative or apoptotic pathways or both. As shown in

the accompanying Supplementary Figure 7, we confirmed

that p21 deficiency did not affect the appearance of nestin-

positive cells in the brains of neonatal mice or the expression

of PDGF from the retroviral vector.

Tumor progression can be restored by re-introducing

p21 into somatic cells

Both tumor cell-autonomous and tumor cell-nonautonomous

functions of p21 might contribute to tumor development. To

determine whether restoring p21 function in glial progenitors

was sufficient to support tumor formation, we coinfected

animals with an equal number of DF-1 cells expressing

RCAS-PDGF-HA and RCAS-3xFp21 and scored for gliomagen-

esis. RCAS-3xFp21 was constructed by cloning the mouse p21

cDNA with an N-terminal 3xFLAG epitope into an RCAS

vector. Employing this methodology results in some cells

Table I Effect of p21 gene dosage on PDGF-induced gliomagenesis

Genotype Oligodendrogliomaa

p21+/+ 21/35
p21+/� 5/14
p21�/� 2/45

aThe value is the number of animals that developed a tumor within
12 weeks over the total number of animals infected with RCAS-
PDGF-HA.
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being infected with only RCAS-PDGF-HA, others with only

RCAS-3xFp21, and others with both.

Infection with RCAS-3xFp21 alone did not result in tumor

formation (0/15). p21�/� animals coinfected with both RCAS-

PDGF-HA and RCAS-3xFp21 developed tumors (Figure 2).

The majority of dually infected mice (80%) were killed before

4 weeks of age because of symptoms of intracranial pathol-

ogy such as hydrocephalus and dehydration. All dually

infected mice had moderate to high grade anaplastic ODGs,

as determined by gross histological examination (Figure 2C).

The grading system we used is described in the accompany-

ing Supplementary Figure 6. The three tumors that were

selected for additional immunohistochemical analysis were

all positive for the oligodendroglial lineage markers, olig2

and sox10, and negative for the neuronal lineage marker,

neuN.

Viral infection was also confirmed using interphase fluor-

escent in situ hybridization (FISH) to detect RCAS-DNA. In

one animal, 73 of 178 cells from a tumor region were positive,

and in the other 67 of 144 cells were positive. Greater than

95% of the cells from the tumor region were positive for a

reference marker that specifically reacts with the X-chromo-

some. In addition, as shown in the Supplementary Figure 8,

FLAG-p21 protein accumulated in the nucleus, consistent

with its localization in human ODG.

The ability of p21 to promote progression of

growth-factor-induced ODG is dependent on

the Cy element

Using the RCAS/TvA system allows us the opportunity to

introduce multiple gene products into tumor cell progenitors.

Thus, we thought it might be suitable for analyzing, at a

genetic level, the importance of various protein–protein

interaction domains. Specifically, we assessed the need for

the carboxyl portion of p21, the amino-terminal domain, and

the Cy motifs. All constructs were tagged with a 3xFLAG

epitope at the amino terminus. RCAS-Np21 contained the first

32 amino acids (aa) of mouse p21 and was predicted to

interact with procaspase 3 (Suzuki et al, 1999). RCAS-Cp21

contained aa 33–160 and was predicted to interact with a

variety of transcription factors and chromatin remodeling

proteins (Dotto, 2000), as well as the apoptotic regulator

ask1 (Zhan et al, 2007). Both fragments contained a Cy motif

(Chen et al, 1996). The relative expression of each mutant

was assessed by immunoblotting extracts from the viral

producer lines (Figure 2A).

Both the RCAS-Cp21 and RCAS-Np21 constructs supported

gliomagenesis when introduced with RCAS-PDGF-HA into

p21�/�Ntv-a mice. Tumor latency, incidence and grade were

similar to those seen in p21-deficient mice infected with

RCAS-3xFp21 and RCAS-PDGF-HA (Figure 2B and C). Mice

Figure 1 p21 deficiency affects proliferation and apoptosis in primary cells. (A) Cell growth. Quiescent OPC were prepared and treated with
10 ng/ml PDGF and cell number counted at the indicated times (x axis). This experiment was repeated twice with similar results.
(B) Proliferation and apoptotic indices were determined at 8 and 18 h by counting positive staining cells in at least five � 400 fields. Note
that proliferation did not increase in p21�/� cultures 18 h after PDGF stimulation and that the basal amount of apoptosis was higher in these
cultures at both times. This experiment was repeated twice with similar results. The mean and standard deviation are shown. (C) At 18 h
following PDGF addition, the number of cells with fragmented nuclei is increased. On the left is a representative field of Hoechst-stained cells.
On the right, the graph compiles this information from two independent experiments, looking at greater than 300 cells in each.
(D) Immunoblot: 50 mg of extract was resolved by SDS–PAGE and the amount of caspase 3, PARP, bcl2, and p21 determined in p21þ /þ and
p21�/� OPC treated with PDGF as indicated. Tubulin was a loading control. This experiment was repeated twice with comparable results.
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lacking the Ntv-a transgene, regardless of p21 status, did not

develop disease regardless of which virus or combination of

viruses they were infected with. We confirmed expression of

nuclear FLAG-tagged Np21 and Cp21 proteins in the tumors

by FLAG immunohistochemistry.

Mutation of the cyclin binding or Cy element, in either

fragment, reduced complementation activity (Figure 2B).

Tumors that arose in animals infected with constructs

containing mutated Cy elements were of lower grade

(Figure 2C). Thus, p21 expression facilitates the progression

of the disease.

To further test the requirement for the Cy element, we

generated eight single amino acid substitution mutants in and

around (aa 12–25) in Np21, and introduced these as RCAS

vectors into p21-deficient animals with RCAS-PDGF-HA

(Figure 3A). Our analysis of these single base alanine sub-

Figure 2 The Cy elements of p21 are required for robust progression of PDGF-induced ODG in mice. (A) The expression level of FLAG-tagged
Np21, Np21Cy1, Cp21, and Cp21Cy2 mutants were comparable in the DF-1 producer cells injected into the recipient mice. Tubulin served as a
loading control. (B) Symptom-free survival curve. Mutation of p21 Cy elements (Np21Cy1, Cp21Cy2) slowed disease progression (Np21 versus
Np21Cy1, P¼ 0.0001; Cp21 versus Cp21Cy2, Po0.0001). Animals infected with Np21, Cp21, or 3xFp21 showed a 450% mortality rate by the
fifth week and approached 100% mortality by 11 weeks. Meanwhile, animals infected with Np21Cy1 or Cp21Cy2 showed an B10% mortality
rate by the fifth week and only 20–30% mortality by 11 weeks. The number of mice in each cohort is shown in the figure. (C) Tumors were
graded histologically as described in the Supplementary Figure 6. Infection with Np21, Cp21, and 3xFp21 was associated with mostly moderate
grade tumors, with a few low-grade and high-grade tumors and one tumor-free Cp21-infected mouse. Infection with Np21Cy1 or Cp21Cy2
however resulted in few moderate grade tumors and many low-grade tumors. Moreover, half of the Cp21Cy2-infected mice were tumor free.

Figure 3 Genetic analysis of the Cy requirement. (A) The N-terminal Cy element is shaded. Circles above the sequence indicate the alanine
substitution mutations used. The bars below the sequence indicate the multisite mutations used. The expression of the mutants in DF-1 cells is
shown below the sequence. Symptom-free survival of the animals coinfected with each mutant and RCAS-PDGF-HA is shown at the bottom.
Mutations within the Cy element reduced complementation activity (S14A, P¼ 0.0001; R18A, P¼ 0.001; D25A, P¼ 0.005; HRK, P¼ 0.001). In
these mutants, at least 70% of the animals were still alive at the end of 7 weeks and no more than 40% of the animals had died by the end of the
11th week. Additionally, the S2A mutant abrogated complementation activity (Po0.0001) with two of the 11 mice dying by the fourth week, but
no subsequent loss of additional animals. In contrast, most of the other mutations outside the Cy element did not reduce complementation
activity (R8A, P¼ 0.4; S26A, P¼ 0.1; D32A, P¼ 0.1). At least 50% of these animals died by the seventh week and fewer than 30% survived to
the end of the experiment. The D6A mutation was intermediate, with a significant effect on complementation (Po0.005) early, with B80% of
the animals surviving beyond 7 weeks and then a dramatic decline with most animals expiring in the last three weeks. (B) In silico folding
analysis. Proteins were folded using algorithm at Predictprotein.org (Rost et al, 2004). The sequence of the N-terminal fragment is shown at the
top of the figure. Each row represents one of the proteins analyzed and its ability to complement tumor development is indicated by a (þ ) or
(�) on the right. Blue boxes indicate a high probability (470%) for folding into a loop, red boxes a high probability (470%) for folding into a
helix, and gray boxes indicate that neither a helix nor loop is of high probability. The Cy1, HRK, and R18A mutations all induce a structural
change in the Cy element region bordered by serine 18 and aspartate 25, both of which are required for cyclin–cdk binding. Structural changes
in the region encompassing serine 26 to arginine 31 do not correlate with complementation activity. (C) Cy elements facilitate the tumor-
promoting effect of p21. In the left panel, the expression of FLAG-tagged 3xFp21, 3xFp21Cy1Cy2, and 3xFp21Cy2 mutants were compared in
DF1 producer cells injected into recipient mice. Tubulin served as a loading control. In the panel on the right, survival of animals infected with
each recombinant p21 virus and RCAS-PDGF-HA is shown. Coinfection with either 3xFp21Cy2 or 3xFp21Cy1Cy2 significantly prolonged
survival (3xFp21Cy2, P¼ 0.001; 3xFp21Cy1Cy2, Po0.0001). Most (8/10) of the control animals injected with 3xFp21 died by week 4, and the
two remaining animals died by week 9. Meanwhile, half of the animals infected with either Cy element mutated construct were still living at the
conclusion of the experiment. The number of mice in each cohort is shown. A full-color version of this figure is available at the EMBO Journal
online.
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stitutions and another multisite mutation in Cy1 (HRSK-to-

AASA) revealed a role for this element in tumor initiation or

progression. We also found evidence that there may be

additional rate-determining functions in regions outside

what we defined as the Cy element. Mutation of D6 slowed

tumor development, and mutation of S2 abrogated comple-

mentation activity. We think this might reflect a second

domain. An in silico analysis of protein folding suggests

that neither the S2A and D6A mutation converted the flexible

linker of the Cy element region, bordered by S14 and D25, to

a more rigid helical fold as observed in the other noncom-

plementing mutants (Figure 3B).

To test if the Cy elements were sufficient to account for the

p21 requirement in PDGF-induced ODG, we generated addi-

tional RCAS constructs containing full-length p21 harboring

either a single mutation at the Cy1 or Cy2 site, or a double

mutation at both sites (Figure 3C). The p21Cy2 and

p21Cy1Cy2 mutants were expressed at levels similar to full-

length p21 (Figure 3C). The expression of the p21Cy1 mutant

was much lower than the others and thus we could not

analyze its effect (data not shown). Of the 11 p21Cy2-infected

animals, we were able to grade 10 tumors (one animal died

and that tumor was necrotic which prevents reliable grading).

Of the four animals that died within 6 weeks, three had low-

p21 and gliomagenesis
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grade tumors and one had a moderate-grade tumor. Although

low-grade tumors generally do not affect survival, occasion-

ally these cells infiltrate and destroy critical brain structures

leading to morbidity. Of the remaining six animals that lived

into the 12th week, three had no tumor, two had low-grade

tumors and one had a moderate-grade tumor. We could grade

all 11 p21Cy1Cy2-infected animals. Of the five animals that

died in the first 9 weeks, three had moderate-grade tumors

and two had low-grade tumors. Of the remaining six animals

that lived into the 12th week, two were negative and four had

low-grade tumors. No mouse, regardless of p21 status, devel-

oped tumors when injected with an RCAS vector encoding

p21 or any of the p21 mutants used in this study alone. PDGF

was required to drive tumor development and p21, through

its Cy domains, appears to affect progression.

p21 gene status affects accumulation of nuclear cyclin D

and cyclin D-associated kinase activity

Our data implicate the Cy element in the function of p21

during PDGF-induced ODG development. This domain is

necessary for the association of p21 with cyclin–cdk com-

plexes (Chen et al, 1996). Evidence from our lab and others

has suggested that binding of p21 and p27 to cyclin D–cdk4

complexes does not inhibit their kinase activity in proliferat-

ing cells (Soos et al, 1996; Blain et al, 1997; LaBaer et al,

1997), but rather can interfere with nuclear export (Alt et al,

2002) and cytosolic ubiquitin-dependent protein turnover

(Lin et al, 2006). In addition to cyclin–cdk interaction, we

have found that the Cy element is also required for the

interaction of p21 with two proteins involved in receptor

and endosome trafficking (YL, Hediye Erdjument-Bromage,

Paul Tempst, and AK, unpublished data).

To determine which type of interaction was more likely to

account for the p21 requirement during ODG, we looked at

both changes in cyclin D and associated kinase activity (see

Supplementary data) and PDGF receptor density at the cell

surface (see Supplementary data). Cyclin D1 accumulated in

the nucleus of tumor cells induced by PDGF in wild-type

mice, as it did in any tumor that arose when p21-deficient

mice were reconstituted with different alleles of p21

(Supplementary Figure 9A). Furthermore, in PDGF-trans-

formed glial progenitors, p21 was nuclear (Supplementary

Figure 9B) and bound to cyclin D–cdk4 (Supplementary

Figure 9C). p21 immunoprecipitates contained an Rb kinase

activity (Supplementary Figure 9D). In p21-deficient cells, the

amount of cyclin D–cdk4 complex and cyclin D-associated

kinase activity were reduced (Supplementary Figure 9C and

D), even though p27, a related cdk inhibitor, was present

(Supplementary Figure 9E), suggesting that there might be a

division of function between Kip-family members in this cell

type. Furthermore, the amount of the D-type cyclins and cdk6

were reduced in p21�/� PDGF-transformed progenitor cells

(Supplementary Figure 9E). The half-life of cyclin D was

reduced five-fold, from approximately 60 min in wild-type

cells to 12 min in p21-deficient cells.

p21 is an inhibitor of cdk2 activity. While the amount of

cyclin E, cyclin A and cdk2 were only modestly affected by

p21 deficiency (Supplementary Figure 9E), cdk2- and cyclin

A-associated kinase activity was increased approximately

60% in p21-deficient cells (Supplementary Figure 9F).

There was no change in cyclin E-associated kinase activity

(Supplementary Figure 9F). Thus, in PDGF-transformed glial

cells, p21 status clearly affected the accumulation of nuclear

cyclin D.

We also looked at the expression of PDGF receptor on the

cell surface. The density of PDGF receptors on the cell surface

was similar in both wild-type and p21-deficient cells

(Supplementary Figure 10). This reduces the likelihood that

p21 deficiency is affecting PDGF receptor accumulation at the

cell surface by acting in the receptor trafficking or endosome-

sorting pathway. Together, these data suggest that the re-

quirement for the Cy element was likely to reflect its role of

stabilizing nuclear cyclin D1–cdk4 complexes.

Re-expression of functional cyclin D1 can support

PDGF-induced tumor development during

oligodendrogliomagenesis

To evaluate the ability of p21 to stabilize the cyclin D–cdk4

complex during PDGF-induced tumor development, we asked

if enforcing expression of functional cyclin D1–cdk4 com-

plexes would be sufficient to overcome the effect of p21

deficiency on tumor growth. Simply overexpressing wild-

type cyclin D1 did not suffice to drive nuclear accumulation

in p21-deficient glial cells; however, two cyclin D1 mutants

were previously shown to accumulate in cki-deficient cells,

and we confirmed this in our p21-deficient glial cells as well.

Mutation of Thr286 to Ala (cycD1T286A) blocks phosphor-

ylation at this residue and prevents nuclear export (Alt et al,

2000). Mutation of Thr156 to Ala (cycD1T156A) largely,

although not completely, accumulates in the cytosol where

it binds cdk4 but fails to activate it (Diehl and Sherr, 1997).

Thus, using these two mutants, we could test the relative

importance of accumulated cyclin D1–cdk4 complexes.

cDNAs encoding these mutants were cloned into RCAS

vectors and their subcellular localization was confirmed by

immunofluorescence. Almost all the cycD1T286A protein

accumulated in the nucleus, and the cycD1T156A accumu-

lated almost exclusively in the cytosol (Figure 4A).

Approximately 15% of the cycD1T156A-expressing cells

also had some nuclear staining, consistent with previously

published work (Diehl and Sherr, 1997). Although

cycD1T286A is a weak oncogene in a lymphoma model

(Gladden et al, 2006), we did not observe this in our model

probably because of the short time frame in which animals

were maintained post-infection. Similarly, expression of

cycD1T156A alone did not induce tumors in mice.

We subsequently examined the ability of these mutants to

promote ODG when introduced into p21�/� mice with RCAS-

PDGF-HA. Expression of these mutants in the DF-1 producer

cells was approximately equivalent (Figure 4B inset). p21-

deficient mice infected with cycD1T286A had reduced survi-

val compared to those infected with cycD1T156A (Figure 4B).

Survival of cycD1T286A animals was slightly better, although

not statistically significant, than those reconstituted with full-

length p21. Greater than 50% of the p21-deficient mice

infected with cycD1T286A developed moderate grade ODGs

within 5 weeks and most of the mice were dead by 10 weeks

with moderate- to high-grade glioma. Consistent with the

reduced nuclear accumulation of cycD1T156A, the rate of

tumor progression was significantly slower in p21�/� mice

infected with the RCAS-cycD1T156A mutant. Of the 10 p21-

deficient mice infected with cycD1T156A, only two died

within the first 6 weeks and these had low-grade tumors.

Four more mice died over the next four weeks, all with low-
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grade tumors. The tumors that arose in both cycD1T286A-

and cycD1T156A-expressing animals were ODGs as judged by

histological appearance of the cells, positive staining for olig2

and negative staining for NeuN. cycD1T286A was able to

bind to cdk4, and did not bind cdk2 or cdk6 (Figure 4C). This

suggests that enforced nuclear accumulation of cyclin

D1–cdk4 complexes bypassed the requirement for p21.

The ability of cdk4 to associate with cyclin D is required

for complementation activity

Nuclear cyclin D can interact with both Kip-family members

and nuclear hormone receptors (Neuman et al, 1997; Reutens

et al, 2001). Association with Kip-family members depends

on the ability of the cyclin to bind to cdks, whereas associa-

tion with nuclear hormone receptors is prevented by cdk

binding (Zwijsen et al, 1997). Thus, we wanted to determine

whether the ability of cycD1T286A to complement the p21

deficiency was also dependent on its ability to bind to cdk4.

To accomplish this, we generated an RCAS vector expressing

another cyclin D1 mutant, cycD1T286A/K114E, which did not

bind to cdk2, 4, or 6 (Figure 5A), but accumulated in the

nucleus of all cells (Figure 5B). This cycD1K114E mutant was

originally characterized as a non-cdk-binding protein (Hinds

et al, 1994). We also observed cytosolic accumulation in

about 30% of these cells where protein accumulated in the

nucleus as well. Alone, when infected into p21�/� mice or

wild-type mice, this mutant did not promote tumor develop-

ment by 9 weeks, when this experiment was ended. However,

unlike cycD1T286A, cycD1T286A/K114E did not support the

development of ODG induced by RCAS-PDGF (Figure 5C).

The one mouse that died during the sixth week was tumor

free. Consequently, we conclude that the nuclear cyclin D1–

cdk4 is the most likely target of p21 responsible for the tumor-

promoting effect of p21.

Discussion

Our understanding of the roles that proteins play in hemato-

logical malignancies is further advanced than our under-

standing in solid tumors. Germline mutations are widely

used to study both hematological malignancies and solid

tumors; however, in hematological malignancies our ability

to isolate stem cells from mice, genetically manipulate these

ex vivo, and reintroduce them into syngenic animals allows

us to determine the role of each protein or pathway in a

natural setting. Our understanding of the pathways impacting

solid tumor development is commensurately poorer because

the cell of origin of many solid tumors remains a mystery and

an allograft may not recapitulate the environment in which

tumors evolve.

The cki family of proteins was originally identified by their

ability to bind to G1 cdks, ultimately inhibiting kinase activity

and preventing progression through the G1-S transition.

However, we have begun to appreciate that this is only one

biochemical activity, and growth suppression is only one role

that these proteins have. For example, p21 and p27 play

distinct roles in the growth and differentiation of OPC

(Casaccia-Bonnefil et al, 1997; Zezula et al, 2001; Doetsch

et al, 2002). These proteins are also useful prognostic mar-

kers in ODG, albeit in a reciprocal fashion with high p27-

staining indices associating with good prognosis, and high

p21-staining indices associating with poor prognosis (Cavalla

et al, 1999; Miettinen et al, 2001). In our studies we found

that p21 facilitates the development of PDGF-induced ODG in

mice. Thus, p21 makes a contribution to tumor progression. It

is ‘oncogenic.’

How common are tumor-promoting activities? While there

is an abundance of examples where cki are growth suppres-

sive, there are a smaller number in which an ‘oncogenic’ role

is consistent with the data. The biochemical activities of cki

might reflect the specific cell types or conditions in which

they are studied; thus, ‘oncogenic’ activity might be restricted

to certain cell types or carcinogenic insults. In a Pten/Nkx3.1-

deficient prostate model (Gao et al, 2004), an MMTV-erbB2/

neu mammary model (Muraoka et al, 2002), and an MMTV-

Wnt1 mammary model (Jones et al, 1999), the complete

absence of p21 or p27 reduces tumor development, suggest-

Figure 4 Cyclin D1T286A can complement p21 deficiency for
tumor progression. (A) Subcellular localization of the cyclin D1
mutants used in this study was determined by immunofluorescence
in 293 cells transiently transfected with RCAS-cycD1T156A, RCAS-
cycD1T286A, or an empty RCAS vector (uninfected) as indicated
above each panel. These cells were incubated with an anti-cyclin D1
antibody (green) and counterstained with DAPI (blue) to identify
the nuclei. (B) The rate of disease progression was similar in p21�/�

mice coinfected with RCAS vectors expressing PDGF-HA and either
cycD1T156A, or p21Cy1Cy2, whereas coexpression of cycD1T286A
with RCAS-PDGF-HA significantly accelerated the rate of disease
progression (Po0.005). The number of mice in each cohort is
shown. In the inset, immunoblotting shows that the expression
levels of cycD1T286A and cycD1T156A were comparable in the DF-
1 producer cells injected into the recipient mice. Tubulin served as a
loading control. (C) CycD1T286A binds to cdk4. PDGF-transformed
wild-type and p21-deficient glial cells were transfected with either
3xFLAG-cycD1T286A (left) or myc-cycD1T286A (right) and extracts
prepared 48 h later. FLAG-cycD1T286A co-precipitated with cdk4
antibodies. Because the FLAG antibodies did not immunoprecipitate
efficiently, we immunoprecipitated myc-tagged cyclin D to look at
cdk interactions. Cdk4, but not cdk2 or cdk6 co-precipitated with
cycD1T286A. A full-color version of this figure is available at the
EMBO Journal online.
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ing that at least some level of p21 or p27 might be required for

tumor progression under these conditions. In these three

studies the cki was nuclear. A more recent study in a

p27ck(�) knock-in animal model suggested a cdk-indepen-

dent function promoting stem cell expansion and tumor

development, and p27ck(�) protein was both nuclear and

cytoplasmic (Besson et al, 2007). In addition to ODG, there

are suggestions for p21 ‘oncogenicity’ in other human cancers

as well, including prostate (Aaltomaa et al, 1999; Baretton

et al, 1999; Omar et al, 2001), cervical (Bae et al, 2001;

Cheung et al, 2001), breast (Ceccarelli et al, 2001), squamous

cell carcinoma (Sarbia et al, 1998), and tall-cell and well-

differentiated papillary thyroid cancer (RG, BS and AK,

unpublished data). Consequently, a growth- or tumor-pro-

moting role is not unusual, but our understanding of it at the

molecular and cellular levels is largely based on inferences

drawn from subcellular localization and evaluation of the

affect of protein levels on proliferation and apoptosis. Genetic

evidence validating such notions has been elusive.

What biochemical activities of p21 and p27 might be

important for ‘oncogenicity’? cki are found in multiple pro-

tein complexes, sometimes operating in distinct subcellular

locations (Coqueret, 2003; Denicourt and Dowdy, 2004; Child

and Mann, 2006). These features might account for their

‘oncogenic’ role (McAllister et al, 2003; Denicourt and

Dowdy, 2004; Wu et al, 2006). Some of these interactions

occur when the cki are in the cytosol. In neuronal cells and

mouse embryo fibroblasts, cytoplasmic p27 interacts with

rhoA to affect cell migration (Besson et al, 2004; Nguyen et al,

2006). Cytoplasmic p27 can also interact with grb2 (Moeller

et al, 2003). Reducing cytosolic p27 inhibits cancer cell

motility and tumorigenicity by affecting rho and akt signaling

pathways (Wu et al, 2006). Binding of cytosolic p21 to

procaspase 3 (Suzuki et al, 1998, 1999, 2000a, b; Dotto,

2000; Glaser et al, 2001; Weiss, 2003) or ask1 (Asada et al,

1999; Zhan et al, 2007) can desensitize tumor cells to

apoptotic stimuli. Conversely, nuclear roles should be con-

sidered. As mentioned previously, nuclear p21 and p27 facil-

itate tumor development in the Pten/Nkx3.1, MMTV-Wnt1,

and MMTV-erbB2/neu models. Nuclear cki can promote the

accumulation of cyclin D–cdk4 (Cheng et al, 1999; Weiss

et al, 2000), and p21 can interact with a surfeit of transcrip-

tion factors and chromatin remodeling proteins (Dotto, 2000;

Gartel, 2006a, b). However, establishing that a particular

interaction is responsible, in situ, in a developing tumor is

a considerable challenge. Furthermore, given the cornucopia

of possible interactions, it is unlikely that a single mechanism

explains its role in all tumors.

In the studies presented here we have shown that p21

accumulates in the nucleus of ODG tumor cells and in glial

cells stimulated by PDGF signaling. We have shown that this

is associated with the accumulation of nuclear cyclin D1 and

formation of cyclin D–cdk4 complexes, and increased prolif-

eration and reduced apoptosis. Most importantly, by using

somatic cell engineering, we established that p21 acts cell

autonomously to promote tumor development, and this

depends on the Cy element. Through this element, p21

interacts with cyclin–cdk complexes, and interacts with com-

ponents of the receptor trafficking and endosome sorting

machinery. Nevertheless, the status of p21 had no effect on

the accumulation of PDGF receptors at the cell surface, and

we were able to bypass the effect of p21 deficiency by

enforcing accumulation of functional cyclin D1. Mutants of

cyclin D1 that fail to accumulate in the nucleus but bind cdk4,

or that accumulate in the nucleus but fail to bind cdk4 were

both unable to support tumor development. All together, this

suggests that p21 promotes ODG by stabilizing cyclin D1–

cdk4 in the nucleus. Although this mechanism has been

suggested before, specifically for p27 in the Pten/Nkx3.1

and MMTV-erbB2 models, and for p21 in the MMTV-Wnt1

model, this is the first time that a genetic proof has been used

to assess the veracity of this model.

Nevertheless, our approach to identify protein domains

will also benefit from further biochemical refinement. For

example, it was surprising that the ability of the p21Cy2 and

p21Cy1Cy2 mutants were comparable, albeit there was a ‘cy-

dose’ dependency to the onset of morbidity. We expected that

the p21Cy2 mutant, with an intact Cy1 element, would

support tumor development, just like Np21. The fact that it

does not suggests that its interactions with other proteins in

the cell could affect its availability to associate with cyclin D–

cdk4, which is unaffected in vitro (data not shown).

Figure 5 Cdk4 binding is required for cycD1T286A to complement p21 deficiency for tumor progression. (A) CycD1T286A/K114E does not
bind to cdk4. As described in the legend to Figure 4C, cells were transfected with myc-cycD1T286A/K114E, extracts immunoprecipitated with
anti-myc antibodies, and the presence of cdks and myc-cyclin D1 assessed by immunoblotting. (B) Subcellular localization of cycD1T286A/
K114E was determined by immunofluorescence as described in the legend to Figure 4A. (C) The rate of disease progression was diminished in
p21�/� mice coinfected with RCAS vectors expressing PDGF-HA and cycD1T286A/K114E (Po0.005). The one animal that did develop
morbidity had no evidence of a tumor when examined by gross histology. For comparison, we included the survival data of p21-deficient mice
reconstituted with either full-length p21 or the cycD1T286A mutant. The number of mice in each cohort is shown. To the right of the Kaplan–
Meier curve, immunoblotting showed that the expression levels of cycD1T286A and cycD1T286A/K114E were comparable in the DF-1 producer
cells injected into the recipient mice. Tubulin served as a loading control. A full-color version of this figure is available at the EMBO Journal
online.
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Additionally, overexpression of the mutants from a hetero-

logous promoter might allow ‘weak’ alleles to have func-

tional affect.

In the absence of a genetic analysis, suggestions based on

knowing where a cki accumulates and the effect of its

absence on proliferation and apoptosis might be incorrect.

For example, it is difficult to reconcile the suggestion that p21

supports cyclin D–cdk4 accumulation in the MMTV-Wnt1

model, when Yu et al (2001) later demonstrated that cyclin

D1 was not required in this model. Ultimately, identifying the

correct mechanism is critical for providing insight into how to

modulate p21 levels for therapeutic gain.

Materials and methods

Cell culture
RCAS vectors were propagated in chicken DF-1 cells (ATCC, CRL-
12203), cultured as suggested by ATCC. Only DF-1 cells that had
been in culture for less than six passages after transfection with
RCAS-viral cDNA were used for infections. PDGF-transformed glial
progenitors were generated by infecting whole brain cultures of
either p21þ /þNtv-a or p21�/�Ntv-a mice with RCAS-PDGF-HA viral
supernatants obtained from infected DF-1 cells, and maintained in
DMEM supplemented with 10% fetal bovine serum.

Plasmid construction
The FLAG-p21 expression plasmid was constructed by cloning the
mouse p21-coding sequence into pcDNA3 (Invitrogen). FLAG-
tagged p21 deletion constructs were generated by PCR-based DNA
mutagenesis. FLAG- or myc-tagged cyclin D1 expression plasmids
were obtained by cloning mouse cyclin D1 into either p3XFLAG-
CMV14 (Sigma) or pCMV-myc (CloneTech), respectively. Mutation
was carried out using an in vitro site-directed mutagenesis kit
(CloneTech). All FLAG-tagged cDNAs were subcloned into RCAS
vectors using the Gateway in vitro recombination system. All
mutations were confirmed by sequencing both DNA strands. The
RCAS-PDGF-HA expression plasmid employed was described
previously (Dai et al, 2001).

In vivo infection of TvA-transgenic mice
DF-1 cells producing RCAS viruses were trypsinized, suspended in
B50 ml of media, and placed on ice before injection as described
previously (Dai et al, 2001). An aliquot of these cells was taken to

make an extract to allow the detection of vector expression by anti-
FLAG immunoblotting (Shaffer et al, 2005).

Proliferation and apoptosis
To measure proliferation, cells were grown on coverslips and
incubated for 90 min in medium containing 65mM BrdU, and
subsequently fixed with 4% paraformaldehyde and stained with
anti-BrdU antibodies as described previously (Zezula et al, 2001; Liu
et al, 2004). To measure apoptosis, 2B3�105 cells were analyzed
using an Annexin V-FITC apoptosis detection kit according to the
manufacturer’s instructions (BD Pharmingen).

In tumors, proliferation and apoptotic indices were determined
by counting the number of Ki67 or cleaved caspase 3-positive cells
in five fields of three random sections for each tumor.

FISH analysis
Brain touch imprints or metaphase spreads on glass slides were air-
dried, fixed in 3:1 methanol/glacial acetic acid at �201C for 20 min,
air dried, then stored at �201C. FISH was performed as described
(Shaffer et al, 2005). Mouse DX-Was70 was used as reference probe.
RCAS probes were labeled with Digoxigenin-dUTP (Roche) and X
chromosome probes were nick translation labeled with Spectrum
orange-dUTP (Vysis). Two hundred cells were scored for the
analysis. Areas of overlapping cells were excluded from analysis.

Statistical analysis
A logrank (Mantel-Cox) test was used to determine significance.

Additional Materials and methods can be found in the
Supplementary data.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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