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ABSTRACT

Lung squamous cell carcinoma (LUSC) is the most common cause of global cancer-

related mortality and the major risk factors is smoking consumption. By analyzing 

~500 LUSC samples from The Cancer Genome Atlas, we detected a higher mutational 

burden as well as a higher level of methylation changes in younger patients. The 

SNPs mutational profiling showed enrichments of smoking-related signature 4 and 

defective DNA mismatch repair (MMR)-related signature 6 in younger patients, while 

the defective DNA MMR signature 26 was enriched among older patients. Furthermore, 

gene set enrichment analysis was performed in order to explore functional effect 

of somatic alterations in relation to patient age. Extracellular Matrix-Receptor 

Interaction, Nucleotide Excision Repair and Axon Guidance seem crucial disrupted 

pathways in younger patients. We hypothesize that a higher sensitivity to smoking-

related damages and the enrichment of defective DNA MMR related mutations may 

contribute to the higher mutational burden of younger patients. The two distinct 

age-related defective DNA MMR signatures 6 and 26 might be crucial mutational 

patterns in LUSC tumorigenesis which may develop distinct phenotypes. Our study 

provides indications of age-dependent differences in mutational backgrounds (SNPs 

and CNVs) as well as epigenetic patterns that might be relevant for age adjusted 

treatment approaches.

INTRODUCTION

Lung cancer is the most common cause of global 

cancer-related mortality and the major risk factors are 

smoking consumption and occupational exposure to 

carcinogens [1]. The two major histological classes are non-

small-cell lung cancer (NSCLC) and small-cell lung cancer 

(SCLC). NSCLCs mostly comprise lung adenocarcinomas 

(LUAD) and lung squamous carcinomas (LUSC) [2], 

characterized by largely distinct mutational patterns [3].

The mutational landscape present in a cancer 

genome is the cumulative result of endogenous and/or 

exogenous mutational processes (e.g., smoking), constant 

or sporadic and with different strengths along patient 

ageing [4–7]. Therefore, multiple mutational processes are 

operative resulting in jumbled composite signatures and 

tumor characteristics vary between patients of different 

ages [7–9]. From the Catalogue Of Somatic Mutations 

In Cancer (COSMIC) which includes 10,952 exomes and 

1,048 whole-genomes across 40 distinct types of human 

www.oncotarget.com                               Oncotarget, 2018, Vol. 9, (No. 63), pp: 32161-32172

           Research Paper

http://www.oncotarget.com
http://www.oncotarget.com


Oncotarget32162www.oncotarget.com

cancer [10], 30 different mutational signatures were 

identified and publicly released (http://cancer.sanger.

ac.uk/cosmic/signatures). Each signature is characterized 

by the contribution of different factor (e.g., smoking, age, 

sex). Signature 1 (SI1) characterized by C>T transitions 

at CpG sites due to the deamination of 5-methylcytosine 

was associated to mutational processes related to the 

ageing [4–6, 11]. While Signature 4 (SI4) associated with 

C>A transversions was found in cancers in which tobacco 

smoking increases risk and mainly in those derived from 

cells directly exposed to the tobacco smoke. According 

to the SI4 pattern, LUSC patients can be classified by 

the “transversion status” in order to study high and low 

mutational rate profiles [3]. Past studies hypothesized 

that chemicals of tobacco smoke increases the speed with 

which these mutations accumulate [12]. Although the 

age at diagnosis of lung tumors is very closely correlated 

with the duration of smoking [13, 14], a previous study 

performed on 34 tumor types of the TCGA dataset [15], 

showed significant negative correlations between SNPs 

and patient age only in LUSC and LUAD. While 29 

tumor types exhibited positive correlations, among which 

the smoking-related tumors such as HNSCC [15, 16]. 

Therefore the hypothesis of the “mutator phenotype”, 

which is a tumor harboring mutations in DNA polymerases 

and DNA repair genes [15, 17], has to be taken into 

account.

Furthermore, Copy Number Variations (CNVs) play 

also important roles in the development of cancer showing 

an association with ageing in terms of longevity, healthy 

aging, and aging-related pathologies [18–20]. Although 

the number of studies about CNVs and ageing are very 

limited, age-related CNVs increase observed in human 

blood cell genomes [21, 22] suggests that CNVs could 

play a key role even in LUSC.

Moreover, epigenomic alteration is now increasingly 

recognized as part of aging and its associated pathologic 

phenotypes as cancer [23]. There is ample evidence 

for changes in DNA methylation patterns at CpG sites 

during development and aging, driving essential somatic 

functions. A general demethylation is linked with aging 

which may reflects some deficiency in maintenance re-

methylation. The epimutation rate appears to be almost 

100,000 times the mutation rate and aberrant DNA 

methylation can predispose to malignancy [22, 24, 25].

This study aims to provide better insight into the 

underlying genetic and epigenetic patterns of LUSC in 

relation to patient age. To this end, we investigated the 

relationships between patient age and the average number 

of SNPs, CNVs and methylation changes as well as 

the SNPs profiling and the respective correlation to the 

previously defined signatures in COSMIC. Furthermore, 

we performed gene-specific correlation analysis in relation 

to patient age with a particular focus on the significantly 

mutated genes in LUSC [3] and the most frequently 

mutated DNA repair genes in lung cancer [26]. Finally, 

gene set enrichment analysis was performed in order to 

explore functional effect of somatic alterations in relation 

to patient age.

The current study may pave the way for future 

studies of molecular tumorigenesis in relation to human 

ageing and underlines the need to consider age-adjusted 

treatments not only based on age and morbidity of older 

patients, but also on differences in tumor biology.

RESULTS

Somatic alterations and patient age

Genome-wide mutations and epigenomic changes 

are expected to varying among tumor subtypes showing 

a different distribution across age. To characterize these 

distinct distribution patterns, we firstly estimated the 

global number of SNPs, CNVs, and methylation changes 

at CpG sites for 504 samples across LUSC cancer cohort 

available through The Cancer Genome Atlas (TCGA). 

We used the Spearman’s rank correlation coefficient to 

explore the relation between the number of SNPs, CNVs 

and methylation changes with patient age.

The global SNPs load showed a slightly negative 

correlation with patient age (Table 1), which indicated a 

higher mutational rate among younger patients (Figure 

1A). Then, we classified SNPs according to their expected 

biological effect as low, moderate, or severe (as shown in 

Supplementary Table 1) and we identified the genes with at 

least a severe or moderate mutation. We reported a lower 

correlation between the age and the number of genes with 

disruptive mutations (rho=-0.08, p=0.077, FDR=0.26). The 

global CNVs load showed no correlation with patient age 

(Figure 1B). While methylation changes were negatively 

correlated with patient age (rho=-0.11, p=0.030, FDR=0.23) 

displaying a higher level of methylation at CpG sites among 

younger patients (Figure 1C).

We repeated the analysis on patient sub-cohorts 

established according to the tobacco exposure data (i.e., 

tobacco smoking history indicator), tumor staging (i.e., ajcc 

pathologic tumor stage), and mutational rate profile (i.e., 

transversion status) in order to explore the influence of patient 

features on the relation among SNPs, CNVs, and methylation 

changes with patient age. The analysis of sub-cohort with a 

high mutational load (i.e., transversion-high status) showed a 

negative correlation between the SNPs load and patient age 

while no correlations were detected in the low mutational 

load sub-cohort (i.e., transversion low status) (Table 1). The 

results regarding CNVs and methylation changes were fully 

reported in Supplementary Table 2.

Gene-specific alterations enrichment along 

patient ageing

The Spearman’s rank correlation was computed 

between SNPs, CNVs, and methylation changes in 
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each gene and patient age, we reported the results in 

Supplementary Table 3. A special focus was placed on 

the 20 significantly mutated genes previously found 

in LUSC [3] (Supplementary Table 4, Figure 1D–1F). 

A negative correlation between patient age and both 

CNVs (rho=-0.13, p=0.005, FDR=0.16) and methylation 

changes (rho=-0.14, p=0.006, FDR=0.06) was detected 

on NOTCH1, while no SNPs correlation was displayed. 

A significantly higher level of methylation at CpG sites 

in younger patients was as well exhibited in RASA1 

(rho=-0.19, p=0.0002, FDR=0.01), ARID1A1 (rho=-

0.22, p=0.00005, FDR=0.006), PASK (rho=-0.11, p=0.04, 

FDR=0.16) and NSD1 (rho=-0.13, p=0.02, FDR=0.09).

In order to explore the hypothesis of possible 

mutator phenotypes contributing to the high mutational 

rate detected among younger patients, we analyzed 

whether mutations harboring on the top 20 frequently 

mutated DNA repair genes in lung cancer [26] might 

have a significant impact on the SNPs load. For each of 

them, the Wilcoxon test was performed to compare the 

mutational load of the patient sub-cohorts exhibiting the 

somatic alterations against the wild-type patient groups 

(Supplementary Table 5). The percentage of patients 

which have at least one of the genes mutated was >83% in 

each age-group. The mutator phenotype had a significant 

impact on the mutational load in 60-70 and 70-80 age 

classes. Therefore the analysis was repeated grouping the 

patient global cohort in younger and older than 60 years 

old. While only 3 genes were significant in ≤60 years old 
patients, 14 out of 20 genes had a significant impact on the 

mutational load in >60 years old patients.

Age-related COSMIC signatures

Somatic mutation profile is the sum of multiple 

mutation processes, such as the intrinsic infidelity of the 

DNA replication machinery, exogenous or endogenous 

mutagen exposures, enzymatic modification of DNA, and 

defective DNA repair. In order to analyze each mutation 

process separately, we correlated the patient age with 

single nucleotide variants (Supplementary Table 6) and 

COSMIC signatures (Supplementary Table 7) using the 

Spearman’s rank correlation. Additionally, the Wilcoxon 

Rank-Sum test was performed to evaluate the differences 

between each age group (i.e., <50, 50-60, 60-70, 70-80, 

>80) and the rest of the cohort.

The defective DNA mismatch repair (MMR)-

related signature 6 (SI6) was negatively correlated (rho=-

0.13, p=0.004, FDR=0.12) with the patient age (Figure 

2A) while the signature 26 (SI26) as well associated 

with defective DNA MMR, was positively correlated 

(rho=0.11, p=0.013, FDR=0.20) with the patient age 

(Figure 2B). Both signatures showed similar trend in the 

transversion-high sub-cohort. The smoking-related SI4 

Table 1: SNPs loads correlations with patient age

Classification Patients n. rho [95%CI] p-value FDR

Global 480 -0.09 [-0.19 0] 4.53×10-2 1.81×10-1

Transversion Status

 High 387 -0.11 [-0.22 -0.01] 2.60×10-2 1.56×10-1

 Low 84 0.15 [-0.05 0.34] 1.87×10-1 3.21×10-1

Tobacco smoking history indicator

 Lifelong non-smokers 18 0.11 [-0.41 0.61] 6.54×10-1 7.85×10-1

 Current smokers 131 -0.12 [-0.29 0.05] 1.66×10-1 3.21×10-1

 Current reformed smokers for >15 yrs 78 -0.19 [-0.38 0.03] 9.88×10-2 2.96×10-1

 Current reformed smokers for < or = 15 yrs 236 -0.09 [-0.22 0.05] 1.59×10-1 3.21×10-1

 Current reformed smokers, duration not 

specified
5 -0.1 [-1 1] 9.50×10-1 9.50×10-1

Ajcc pathologic tumor stage

 1 233 -0.07 [-0.19 0.06] 3.13×10-1 4.70×10-1

 2 153 0.02 [-0.13 0.19] 7.66×10-1 8.36×10-1

 3 83 -0.35 [-0.53 -0.15] 1.12×10-3 1.34×10-2

 4 7 -0.29 [-0.96 0.62] 5.56×10-1 7.41×10-1

Correlations between the SNPs loads and patient age for each patient sub-group established according to the patient 

characteristic evaluated in our study, such as tobacco exposure data (i.e., tobacco smoking history indicator), tumor staging 

(i.e., ajcc pathologic tumor stage), and mutational rate profile (i.e., transversion status).
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was negatively correlated (rho=-0.11, p=0.02, FDR=0.21) 

with patient age (Figure 2C), showing higher values in the 

≤50 and 51-60 age groups (Supplementary Table 7). No 
correlation was detected for the age-related SI1.

In order to study the patient sub-cohorts, which 

predominantly exhibit SI26 and SI6, we divided the 

overall LUSC cohort into four subgroups using the 

mean values of SI6 and SI26 as threshold (Figure 2D): 

high-SI6/high-SI26 (77/480=16.0%), low-SI6/high-SI26 

(55/480=11.0%), high-SI6/low-SI26 (223/480=45.8%), 

and low-SI6/low-SI26 (130/480=27.1%). We selected and 

characterized the low-SI6/high-SI26 and high-SI6/low-

SI26 subgroups (Supplementary Table 8). The patients age 

of the low-SI6/high-SI26 cohort was significantly higher 

than the high-SI6/low-SI26 cohort (Wilcoxon Rank-Sum 

test: p=0.005).

Gene set enrichment analysis

On the basis of the previous analysis, the LUSC 

mutation profile in relation to ageing is characterized by 

two major defective DNA MMR-related signatures (i.e., 

SI6 and SI26). To study the molecular effects of these 

signatures independently, we projected the SNPs, CNVs 

and DNA methylation values from the high-SI6/low-SI26 

and low-SI6/high-SI26 subtypes into the space of the 186 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathways by means of single-sample gene set enrichment 

analysis (ssGSEA) (Supplementary Table 9) [27].

Using the Wilcoxon Rank-Sum test, we reported 

as major significant differences, that Extracellular 

Matrix (ECM)-Receptor Interaction pathway (p=0.0002, 

FDR=0.04) was significantly enriched of SNPs while 

Figure 1: Correlation between genomic alterations and patient age in global cohort. Number of (A) SNPs, (B) CNVs and 

(C) methylation changes with their relative 95% confidence interval for each patient distributed along patient age. Medians (black line) and 

their relative 95% confidence interval (red area) were calculated locally in a range of ±10 years. (D) SNPs, (E) CNVs and (F) methylation 

changes profile of the 20 significantly mutated genes in LUSC. Significantly positive and negative correlated genes were highlighted in 

red and blue respectively.
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the Nucleotide Excision Repair pathway was enriched 

in CNVs (p=0.0007, FDR=0.14) in high-SI6/low-SI26 

sub-cohort (Figure 3). The Regulation of Autophagy 

pathway (p=0.0006, FDR=0.06) showed an enrichment of 

SNPs in low-SI6/high-SI26 patient sub-cohort. Using the 

Spearman’s Rank Correlation Coefficient, we detected a 

negative correlation between SNPs harboring on ECM 

Receptor Interaction pathway and patient age (rho=-

0.16, p=0.016, FDR=0.73) in high-SI6/low-SI26 sub-

cohort. In Figure 3, the GSEA values of “ECM-Receptor 

Interaction” pathway were reported for both (Figure 3A) 

high-SI6/low-SI26 and (Figure 3B) low-SI6/high-SI26 

patient sub-cohorts in order to visualize the different trends. 

Unsupervised hierarchical clustering of SNPs frequencies of 

genes involved in the “ECM Receptor Interaction” pathway 

(according to the KEGG database) was added in order to 

report the pathway mutation profile (Figure 3C–3D).

When evaluating the global cohort, we detected 

a significant negative correlation between patient age 

and SNPs harboring on “Axon-Guidance” (rho=-0.15, 

p=0.0007, FDR=0.14) and ECM Receptor Interaction 

(rho=-0.13, p=0.003, FDR=0.16) pathways, particularly 

in the 51-60 age group. Furthermore, the Axon-Guidance 

(rho=-0.16, p=0.001, FDR=0.12) pathway was the only 

negatively enriched pathway in transversion-high sub-

cohort (Supplementary Table 10).

DISCUSSION

We identified a slightly higher SNPs load among 

younger patients of the TCGA LUSC patient cohort 

confirming a previous study [15]. In particular, the 

correlation was higher in tumors with high mutational 

burden. Since the correlation was not robust, we believe 

that our results must be evaluated in an independent 

cohort to confirm higher mutational rate in younger 

patients. Interestingly, a higher overall methylation 

rate at CpG sites was as well detected among younger 

patients. Although the knowledge is still limited, 

numerous studies showed that CpG methylation plays 

an important role in maintaining gene silencing. Several 

studies have revealed that tumor suppressor gene 

promoter hypermethylation is noted in tumor cells [28]. 

However, normal non-proliferative cells also showed gene 

promoter hypermethylation as age increases [29, 30]. Age-

dependent hypermethylation at CpGs was observed to 

be enriched with DNA binding factors and transcription 

factors, therefore the dysregulation can simultaneously 

affect several biological processes [31, 32]. On the 

contrary Heyn et al. [32] revealed that centenarians 

exhibit lower DNA methylation levels compared with 

newborns. Therefore, the higher methylation level at 

CpG sites among younger patients detected in our study 

Figure 2: Correlation of SNPs profiling and patient age in global cohort. Correlation between defective DNA MMR (A) SI6 

and (B) SI26, and smoking related (C) SI4 with patient age. Medians (black line) and their relative 95% confidence interval (colored area) 

were calculated locally in a range of ±10 years. (D) Classification of the overall LUSC cohort into four subgroups using the mean values 

(dashed red lines) of SI6 and SI26 as threshold: high-SI6/high-SI26, low-SI6/high-SI26 (green circle), high-SI6/low-SI26 (blue circle) and 

low-SI6/low-SI26. The values are converted as log(x+1).
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might comprise both aberrations and normal age-related 

patterns. We detected 5 out of 20 significantly mutated 

genes in LUSC (NOTCH1, RASA1, ARID1A1, PASK, 

NSD1) exhibiting a significantly higher methylation 

levels in younger patients. CNVs enrichment was as well 

detected in NOTCH1 among younger patients. NOTCH1 

is one of the highly significant mutated genes in Cancer. 

Cross-talking with many other critical cancer genes and 

pathways, NOTCH1 is involved in multifaceted regulation 

of cell survival, proliferation, tumor angiogenesis, and 

metastasis. A recent study observed that with long-term 

smoking exposure, the DNA sequence suffers persistent 

miscoding that triggers epigenetic changes in NOTCH1 

[33]. Therefore NOTCH1 aberrations might be involved 

Figure 3: (A) GSEA value of “ECM-Receptor Interaction” pathway in high-SI6/low-SI26 and (B) low-SI6/high-SI26 patient sub-cohorts. 

Unsupervised hierarchical clustering of SNPs frequencies of genes involved in the “ECM Receptor Interaction” pathway (according to the 

KEGG database) in (C) high-SI6/low-SI26 and (D) low-SI6/high-SI26.
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in the peculiar higher mutational burden of younger LUSC 

patients.

Mutator phenotypes might develop in LUSC 

tumorigenesis [15], therefore we evaluated the mutational 

profile of the top 20 frequently mutated DNA repair genes 

in lung cancer [26]. No significant differences in mutation 

frequencies were detected among the age classes. More 

than 83 % of the patients harbored at least one of the genes 

mutated in all age classes. Thus, mutator phenotypes seem 

evenly distributed along patient ageing, contributing to the 

overall high mutational burden in LUSC patients. On the 

contrary, the impact of these mutations on the mutational 

load was significantly higher in >60 years old patients. 

Therefore, mutator phenotypes might have different 

consequences in relation to ageing processes.

The overall SNPs mutational profiling and the 

corresponding correlations with COSMIC signatures 

showed an enrichment of the smoking-related signature 

(i.e., SI4) among younger patients. Past studies described 

a similar scenario showing that despite maintained 

carcinogen exposure, tumors from smokers showed a 

relative decrease in smoking-related mutations over time 

[34, 35]. Therefore, younger patients may develop higher 

sensitivity to smoking-related mutations. The defective 

DNA MMR SI6 and SI26 were as well significantly 

correlated with patient age. The SI6, characterized 

predominantly by C>T at NpCpG sites (any nucleotide 

followed by C followed by G), was enriched in younger 

patients. While the SI26, mostly composed of T>C 

transitions, was enriched in older patients. Both SI6 and 

SI26 are found in microsatellite unstable tumors with 

high numbers of small (shorter than 3bp) insertions and 

deletions at mono/polynucleotide repeats [36, 37]. The 

role of MMR system is to recognize and repair erroneous 

insertion, deletion, and mis-incorporation of bases arising 

during DNA replication and homologous recombination, 

as well as repairing some forms of DNA damage. Given 

the importance of these processes in the maintenance of 

genomic stability, DNA MMR deficiency might leads to 

hypermutation [38, 39]. A recent study showed that out 

of a large number of DNA repair deficiencies analyzed, 

MMR deficiency leads to the by far highest mutation 

rate [36]. Our results suggest that different causing 

factors might contribute to MMR system aberrations 

along patient ageing. Therefore we performed gene 

set enrichment analysis in patient sub-cohorts which 

predominantly exhibit SI6 or SI26. We identified the 

SNPs enrichment in ECM-Receptor Interaction pathway 

among younger patients of high-SI6/low-SI26 sub-cohort. 

The ECM-Receptor Interaction pathway is structurally and 

functionally involved in interactions at the ECM which 

lead to a direct or indirect control of cellular activities 

such as cell migration, differentiation, proliferation, and 

apoptosis [40–42]. Aberrant ECM may promote genetic 

instability and might compromise DNA repair pathways 

necessary to prevent malignant transformation [40]. 

Furthermore, we identified an enrichment of CNVs in 

Nucleotide Excision Repair (NER) pathway in high-SI6/

low-SI26 sub-cohort. Since the NER system is primarily 

responsible for detecting and removing bulky DNA lesions 

induced by tobacco smoke in the respiratory tract [43], 

SNPs in NER protein-encoding genes may contribute to 

the higher sensitivity to smoking consumption detected in 

younger patients. Early studies identified associations with 

lung cancer risk in selected mutated NER genes (ERCC1-

6, LIG1, POLE, XPA, and XPC genes) [44–47].

The low-SI6/high-SI26 sub-cohort was enriched in 

SNPs disruptions of Regulation of Autophagy pathway 

involved in lysosome-dependent degradation processes. 

On one hand, autophagy has been shown to regulate 

some of the DNA repair proteins after DNA damage 

by maintaining the balance between their synthesis, 

stabilization, and degradation. One the other hand, 

some evidence has demonstrated that some DNA repair 

molecules have a crucial role in the initiation of autophagy 

[48, 49]. Therefore, disruption of Regulation of Autophagy 

pathway might contribute to the defective DNA MMR 

system in low-SI6/high-SI26 patient sub-cohort.

Considering the “global” cohort, SNPs harboring 

on genes involved in ECM-Receptor Interaction and 

Axon Guidance pathways were enriched among younger 

patients. Intriguingly, in our previous study on HNSCC, 

we detected the same two pathways enriched among older 

patients, which were the higher mutational rate samples 

due to the proportional relation between the HNSCC 

global mutational load and patient age [16]. Therefore, 

although the inverse tendency, Axon Guidance and ECM-

Receptor Interaction pathways seem to show a relation 

with higher mutational rate squamous carcinomas. Several 

studies reported that Axon Guidance pathway is involved 

in lung cancer development and progression through 

interacting with cell survival, migration, and tumor 

angiogenic pathways [50–54]. Further studies are needed 

to determine whether disruptions in these pathways are a 

correlative phenotype to higher mutational rate squamous 

carcinomas or a causative factor.

In conclusion, multiple mutational processes 

appear to be simultaneously operative with various 

dynamic changes due to the endogenous and exogenous 

environments, life style habits and physiological ageing. 

Previous hypothesis of a mutator phenotype concealing 

the effect of age-related accumulation of mutations 

might have different causing factors in relation to ageing 

processes. We hypothesize that a higher sensitivity 

to smoking-related damages and the enrichment of 

defective DNA MMR SI6 may contribute to the higher 

mutational burden of younger patients. A higher overall 

level of methylation was as well detected in younger 

patients. While the defective DNA MMR SI26 showed 

increasing tendency along patient ageing. Therefore, the 

two distinct age-related defective DNA MMR signatures 

SI6 and SI26 might be crucial mutational patterns 
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in LUSC tumorigenesis which may develop distinct 

phenotypes.

The evaluation of somatic genomic alterations 

along patients ageing might be relevant for a better 

comprehension of LUSC tumorigenesis and development 

of age-adjusted treatments.

MATERIALS AND METHODS

TCGA data sets

Multiplatform genomic data sets were generated by 

TCGA Research Network (http://cancergenome.nih.gov/). 

Cancer molecular profiling data were generated through 

informed consent as part of previously published studies 

[55] and analyzed in accordance with each original study’s 

data use guidelines and restrictions. The clinical data of the 

504 LUSC normal paired exome sequences was derived 

via download from the publicly available GDC Data Portal 

(https://portal.gdc.cancer.gov/).

Whole exome analysis

Somatic mutations were obtained from the open 

access MAFs available from the GDC Legacy Archive 

(https://portal.gdc.cancer.gov/legacy-archive). We 

considered three different exclusion criteria for mutation 

data entries. Samples belonging to the same patient share 

a very similar mutational profile. In the first exclusion 

criteria, we considered only once a mutation present in 

different samples belonging to the same patient. The 

mutations not included were equal to the 25.2% (282163 

=>210948).

Some genes can share a similar sequence, such as 

paralogous genes. In presence of a mutation event on a 

sequence shared among different genes, it will not be 

possible to identify the mutated gene. With the second 

exclusion criterion, we decide to remove mutations that 

were associated to more than one gene. In this step we 

removed the 0.1% of mutations (210948 => 210700).

The challenges of repetitive sequence, which 

constitute 50–69 % of the human genome leads to false 

positive variant calls due to systematic sequencing errors 

and local alignment challenges [56]. Therefore, only 

somatic mutations with “ref context” containing less than 

6 continuous single repetitions, less than 4 continuous 

duplets, less than 3 continuous triplets, less than 3 

continuous quadruplets, less than 3 continuous quintuplets 

were kept. With the third exclusion criteria, the mutations 

were reduced from 210700 to 194170 (~8.8%).

The patient TGCA-66-2755 was excluded from the 

following analysis due to the unusual number of mutations.

SNP array-based copy number analysis

DNA from each tumor or germline-derived sample 

had been hybridized to Affymetrix SNP 6.0 arrays [57] 

and processed through GISTIC [58, 59] by the TCGA 

consortium.

High-level copy gain or copy loss events for 

individual genes were inferred using the publicly 

available Firehose’s (Gistic2.Level4) data (http://gdac.

broadinstitute.org/runs/analyses__2016_01_28/data/

LUSC/20160128/) (+2 values being indicative of gains 

greater than 1-2 copies, -2 values being indicative of 

near total copy loss). Global CNV load were calculated 

summing the absolute values from each patients.

Array-based DNA methylation assay

DNA methylation profiles had been previously 

generated by TCGA using either the Infinium HM450 or 

HM27 assay probe. The level 3 beta value DNA methylation 

scores for individual genes were inferred using publicly 

available data generated by Illumina Human Methylation 

450 platform downloaded from the GDC Legacy Archive 

(https://portal.gdc.cancer.gov/legacy-archive). Methylation 

values were mean centered and scaled to unit variance. 

After the transformation, the rate of methylation changes 

was calculated summing the values of each gene.

Single nucleotide variants and COSMIC 

signatures

The signature profile was evaluated using the 

six subtype: C>A, C>G, C>T, T>A, T>C, and T>G 

(all substitutions were referred to by the pyrimidine 

of the mutated Watson-Crick base pair). Further, each 

of the substitutions was examined by incorporating 

information on the bases immediately 5’ and 3’ to each 

mutated base generating 96 possible single nucleotide 

variants (6 types of substitution x 4 types of 5’ base 

x 4 types of 3’ base). The profile of these 96 single 

nucleotide variants was considered as the results of the 

combination of the 30 different COSMIC signatures. 

The profile of each tumor sample can be represented by 

a unique contribution of each COSMIC signature as the 

following expression:

a
1
 × SI1 + a

2
 × SI2 + a

3
 × SI3 + … + a

30
 × SI30  (1)

where a
i
 is the coefficient representing the 

contribution of the i
th
 COSMIC signature. The 

coefficients of each tumor samples were calculated 

minimizing the difference between the tumor profile 

and the expression (1). This procedure was implemented 

using the function optim (method “L-BFGS-B” [60]) of 

the R software [61].

Molecular pathway and biological process analysis

Pathway analyses were performed by ssGSEA 

using the GenePattern module ssGSEA Projection (v4) 

(genepattern.broadinstitute.org). ssGSEA enrichment 

http://cancergenome.nih.gov/
https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm
https://portal.gdc.cancer.gov/legacy-archive
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
http://gdac.broadinstitute.org/runs/analyses__2016_01_28/data/LUSC/20160128/
https://portal.gdc.cancer.gov/legacy-archive
http://genepattern.broadinstitute.org
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scores were calculated from SNPs, CNV, and methylation 

LUSC data sets. The result is a single score per patient 

per gene set, transforming the original data sets into 

a more interpretable higher-level description. For the 

use of ssGSEA software, annotated gene sets reference 

were obtained from the C2 KEGG sub-collection of the 

Molecular Signature database (MSigDB) [62]. Silent 

mutations (point mutations that would not result in a 

change in the amino acid sequence) were not included in 

the analysis.

Statistical analysis

The Spearman’s Rank Correlation Coefficient 

was used to identify correlation between patient age 

and genomic/epigenomic data (e.g., SNP, CNV, and 

methylation loads). For every Spearman’s test performed 

in this study, p-values were computed using algorithm 

AS 89 included in the R function cor.test where the 

permutation distribution was estimated by an Edgeworth 

approximation [63]. The coefficient interval of rho value 

was calculated by bootstraping (with 1000 replicates) 

using the function spearman.ci of the R package 

RVAideMemoire. Fisher’s exact test was used to examine 

the significance of the association between COSMIC 

signature related subgroups (i.e., low-SI6/high-SI26 and 

high-SI6/low-SI26) and clinical/demographic/molecular 

patient features, such as gender, tobacco smoking history 

indicator, and mutated / wild type genes. Fisher’s exact 

test was computed using the R function fisher.test. 

Wilcoxon Rank-Sum test was performed to compare 

continuous variables between two patient subgroups using 

the R function wilcox.test. A p-value <0.05 was considered 

to be significant. To account for multiple testing, a FDR 

of ≤20% was applied to reduce identification of false 
positives [64]. The FDR was calculated using the R 

function p.adjust. All calculations were made using R 

software [61].
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