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Abstract

Tumors are characterized by somatic mutations that drive
biological processes ultimately reflected in tumor phenotype.
With regard to radiographic phenotypes, generally unconnected
through present understanding to the presence of specific muta-
tions, artificial intelligence methods can automatically quantify
phenotypic characters byusing predefined, engineered algorithms
or automatic deep-learning methods, a process also known as
radiomics. Here we demonstrate how imaging phenotypes can be
connected to somatic mutations through an integrated analysis
of independent datasets of 763 lung adenocarcinoma patients
with somaticmutation testing and engineered CT image analytics.
We developed radiomic signatures capable of distinguishing
between tumor genotypes in a discovery cohort (n ¼ 353) and
verified them in an independent validation cohort (n ¼ 352). All
radiomic signatures significantly outperformed conventional
radiographic predictors (tumor volumeandmaximumdiameter).

We found a radiomic signature related to radiographic heteroge-
neity that successfully discriminated between EGFRþ and EGFR�

cases (AUC ¼ 0.69). Combining this signature with a clinical
model of EGFR status (AUC ¼ 0.70) significantly improved
prediction accuracy (AUC ¼ 0.75). The highest performing sig-
nature was capable of distinguishing between EGFRþ and KRASþ

tumors (AUC ¼ 0.80) and, when combined with a clinical
model (AUC ¼ 0.81), substantially improved its performance
(AUC ¼ 0.86). A KRASþ/KRAS� radiomic signature also showed
significant albeit lower performance (AUC ¼ 0.63) and did
not improve the accuracy of a clinical predictor of KRAS status.
Our results argue that somatic mutations drive distinct radio-
graphic phenotypes that can be predicted by radiomics. This work
has implications for the use of imaging-based biomarkers in
the clinic, as applied noninvasively, repeatedly, and at low cost.
Cancer Res; 77(14); 3922–30. �2017 AACR.

Introduction
Somatic mutations, alterations in the DNA sequence that can

occur during an organism's lifetime, are potential biologic drivers
of cancers that, in turn, can accelerate the accumulation of further
somatic mutations. It is well known that the location of somatic

mutations, for example within specific genes, can influence bio-
logical processes involved in the development and progression of
tumors, ultimately influencing its phenotype.

With the introduction of genomic profiling in clinical practice,
cancer treatment decisions are increasingly based not only on the
patient's clinical characteristics and tumor morphology, but also
on individual mutational profiles (1, 2). For example, the use of
erlotinib and gefitinib, drugs that target specific mutations within
the EGFR gene, have resulted in improved outcomes in a subset of
lung cancer patients in which those mutations occur (3–5).
Although mutational sequencing of biopsies can be informative
and has become standard of care in some situations, they typically
quantify only a small part of a possibly heterogeneous tumor, and
they are often only performed once, that is, prior to initiation of
treatment. Furthermore, there are instances in which such screen-
ing can be impractical. Repeated tumor sampling, difficult-to-
access tissue samples, failure to determine amutational status due
to poor DNA quality, the relative high costs, and long turnaround
time can limit the applicability ofmolecular assays tomonitor the
cancer progression and its response to treatment (6–8).

Medical imaging is in routine use in oncology for tumor
detection, definition of location and extent of disease, treatment
planning, and longitudinal response monitoring. Tumor images
exhibit strong phenotypic differences between patients (Fig. 1A)
that can be used to assess tumor phenotype (including effects of
the genotype) and its local microenvironment, and these data can
be used in determining potential treatments (9). While imaging
cannot replace biopsies, imaging studies can provide additional
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information that biopsies fail to deliver, such as radiographic
intratumor heterogeneity, and can do so throughout the course of
treatment (10), providing longitudinal information on disease
state, evolution, and response to therapy.

The quantification of phenotypic characteristics on medical
imaging has classically been performed by (semi)-qualitative
assessment of radiologists, characterizing so-called "semantic"
features (10). Although some studies have shown association of
thesemeasures with clinical outcomes, their use has been limited,
primarily because they require substantially more work and have
shown strong inter- and intrareader variation.

Advanced image analysis algorithms, originating from the
Artificial Intelligence (AI) domain, make it possible to reproduc-
ibly quantify imaging phenotypes automatically by extracting a
large number of image features. This process of AI-based pheno-
typing is referred to as "radiomics" and can provide a far more
detailed characterization of the phenotype than would be possi-
ble by eye (Fig. 1; refs. 9–13). Radiomic methods are either based
on predefined engineered features, relying on expert domain
knowledge, or on deep learning methods that automatically can
learn feature representations from data. Some of these features
capture characteristics that are understandable by human obser-
vers andoften related to semantic features; others capture agnostic
characteristics that are generally higher order and filtered metrics.
For example, features can capture statistical (or first order) char-

acteristics thatmeasure simple histogram statistics such as average
intensity or distribution asymmetry of the image intensity values.
Their values are invariant of the position of the voxels or their
relationships within the image and can quantify characteristics
related to overall intensity (e.g., tumor density on CT). Other
features capture textural variations, which quantify spatial rela-
tionships of voxels over the image. For example, these can
quantify if voxels have similar values (e.g., related to necrosis),
or spatial variations (e.g., related to intratumor heterogeneity).
Additional features can describe the overall shape and size of the
tumor or other properties of the tumor outline such as elongation,
sphericity, and compactness.

Radiomic biomarkers have been shown to be associated with
several clinical endpoints, including survival (11, 14–16), nodule
malignancy (17, 18), pathologic response (19, 20), recurrence,
and distant metastasis (21–23), as well as tumor gene expression
patterns (11, 14, 21). A natural extension of this observation is
that tumor phenotype should be linked to the tumor genotype.
Given that somatic mutations affect the ability of cells to grow in
otherwise nonpermissive conditions, we decided to test whether
these conditions can be quantified by radiomics and if they reflect
the underlying mutational landscape, and whether one could use
radiomic phenotype to predict tumor genotype. Although, asso-
ciations between diagnostic imaging features andmutational data
have been explored (24–34), most studies suffer from small

Figure 1.

Analysis workflow. A, Examples of lung adenocarcinomas tumors imaged with CT imaging (left) and segmented in 3D (right). B, Quantification of the tumor
phenotype using radiomics feature algorithms. C, Radiomic and clinical data were used to develop signatures for EGFR and KRAS mutation status from
four independent datasets to investigate associations between the radiomic features and somatic mutations in lung adenocarcinomas. Details on the patient
and tumor characteristics of these cohorts are shown in Supplementary Table S1 and Supplementary Data S1.
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cohort sizes, do not include external validation, or have relied on
observer-dependent semiquantitative features that make replica-
tion difficult. We hypothesized that automated quantitative
radiomic feature extraction, applied to a large, heterogeneous
cohort, and rigorously validated, could establish the genotype-
imaging phenotype linkage.

In this study, we used a cohort of 763 lung adenocarcinoma
patients assembled from four institutions to investigate engi-
neered tumor radiomic features extracted from CT images and
tested these features against themost frequently occurring genetic
alterations in the disease, that is, EGFR and KRAS mutations. We
used adiscovery cohort of 353patients and identifiedmultivariate
radiomic signatures specific for EGFR and KRAS mutations. We
validated the predictive power of these signatures to identify EGFR
and KRAS mutations in an independent cohort of 352 patients.
Finally, we combined these signatures with clinical parameters to
create integrated predictors that, in general, exhibited improved
performance. Our results argue for integration of robust, repro-
ducible radiomic signatures into clinical practice as they can be
applied noninvasively and provide additional information that
can be used to assess mutational status.

Materials and Methods
Datasets

In this study we used the following four independent lung
cancer dataset:
* PROFILE: A total of 213 patients with confirmed lung cancer,

stages I–IV, were prospectively included, between June 2011
and June 2013, for mass spectrometry genotyping of 471
known mutations in 41 oncogenes and tumor suppressors
(PROFILEOncoMap) as described previously (35, 36). Tumor
genomic profiling and clinical data of all patients were
retrieved from the Clinical and Operational Research
Information System of the Dana-Farber Cancer Institute and
Brigham and Women's Hospital. All patients with a biopsy
performed in the primary tumor were selected. We excluded
cases whose histologic type was not of lung origin.

* TIANJIN: A total of 257 surgical patients with lung
adenocarcinoma, stages I–IV, with data on EGFR and KRAS
mutations were included in our analysis. For all patients,
diagnostic CT imaging, and tumor delineations were
available. Data on EGFR and KRAS mutations were routinely
clinically collected and extracted from the electronic medical
records.

* MOFFITT: A cohort of 131 lung cancer patients treated at the
Moffitt cancer center was included in our analysis. Clinical
stages ranged from stage I–IV. For these patients, mutation
status was determined using mass spectrometry in the KRAS,
EGFR, TP53, STK11 genes.

* HARVARD-RT: A cohort of 162 patients with lung
adenocarcinoma, stages I–IIIb, treated with radiation
oncology at the Dana-Farber Cancer Institute and Brigham
and Women's Hospital. Data on EGFR and KRAS mutations
were routinely clinically collected and extracted from the
electronic medical records.

The Institutional Review Boards (IRB) of each of the partic-
ipating centers approved the studies: Profile and Harvard-RT
(Dana-Farber/Harvard Cancer Center IRB, Boston, MA), Tianjin
(Tianjin Medical University IRB, Tianjin, China) and Moffitt

(IRB Moffitt Cancer Center, Tampa, FL). All research was
performed according to the International Ethical Guidelines
for Biomedical Research Involving Human Subjects (CIOMS).
Details on the patient's and tumor characteristics as well as data
available are provided on Supplementary Table S1 and Sup-
plementary Fig. S1. Analysis of this study was performed under
an institutional review board within the Consented Research
Data Repository of the Dana-Farber/Harvard Cancer Center.
Written informed consent for all patients in the MOFFITT and
TIANJIN datasets was obtained. Informed consent was waived
for the PROFILE and HARVARD datasets due to the retrospec-
tive nature of our analyses, according to local IRB protocols. A
detailed description about the datasets is available in Supple-
mentary Methods S1.

Radiomic quantification
The tumor imaging phenotype was described using a set of

quantitative radiomic features extracted from the segmented
tumor regions on the CT scans. Briefly, CT images and tumor
contours were imported into 3D-Slicer in NRRD format. Because
of the differences in pixel spacing and slice thickness, the images
and tumor contours were subsequently normalized to isometric
voxels (3 mm) using a cubic interpolation. Next, feature extrac-
tionwas performedusing an in-house developed Radiomics plug-
in for 3D-Slicer. All features have been described in detail previ-
ously (11, 21).

Features were grouped as follows: (i) tumor intensity features:
these include first-order statistics, calculated from the histogram
of all tumor voxel intensity values. (ii) Textural features: these
quantify intratumor heterogeneity and are calculated in all three-
dimensional directions within the tumor volume, thereby taking
the spatial location of each voxel compared with the surrounding
voxels into account. The size-zone matrix was used to quantify
regional heterogeneity. This matrix allows characterization of
arrangements of voxels within the tumors, therefore describing
tumor regional heterogeneity. (iii) Shape features: metrics of the
three-dimensional shape and size of the tumor. (iv) Wavelet
features: features in groups I and II are extracted after applying
a series of wavelet transforms to the CT images. The wavelet
transform decomposes the original image into low and high
frequencies, thereby focusing the features on different frequency
ranges within the tumor volume. (v) Laplacian of Gaussian
features: these are textural features extracted after in-plane filtra-
tion using a Laplacian of Gaussian spatial band-pass filter. This
filter highlights textural and anatomic patterns of different width
depending of the spatial scale of the filter. By modifying the filter
width, fine, medium, and coarse textures can be highlighted and
textural features are subsequently calculated.

Statistical analysis
First, we investigated the associations between the imaging

phenotype and the most common somatic mutations in the
integrated dataset (Fig. 1). We used an unsupervised two-step
feature selection methodology. First, we used the RIDER NSCLC
test-retest dataset (n ¼ 31) to assess stability of the radiomic
features (Supplementary Methods S2; ref. 37). For each patient,
we extracted radiomic features from the test and re-test scans. The
intra-class correlation coefficient (ICC) was used to determine the
stability of the features (Supplementary Fig. S2). Features with an
ICC lower than 0.8 were excluded from the analysis. In a second
step, we performed a principal component (PCA)-based analysis
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(38) to identify the highest correlated features (Pearson r > 0.90)
to the principal components that describe at least 90% of the
variance in the radiomic data. This resulted in a selection of 26
variance-retaining features (Supplementary Fig. S3). Tumor vol-
ume and axial diameter were added for comparison. We com-
pared the radiomic features distributions between mutated and
nonmutated cases for each gene using a two-sided Wilcoxon test.
To correct for multiple comparisons, we adjusted P values by the
false discovery rate (FDR ¼ 5%) procedure according to Benja-
mini and Hochberg (39).

The ability to predict the mutational status of the radiomic
features was assessed by the area under the curve (AUC) of the
receiver operator characteristic (ROC) as implemented in the
survcomp R package (Version 1.12.0; ref. 40). Significance of
AUCs was determined using the "noether" method implemented
in the R survcomp package.

For the multivariate analysis, we used a temporal split
(median scan acquisition date) to divide each of the four
cohorts into training and validation sets. All training cohorts
were combined into an integrated discovery cohort to identify
radiomic signatures for EGFR and KRAS mutations while the
validation cohorts were combined into an integrated validation
dataset. To statistically compare radiomics and clinical multi-
variate models, we excluded all the samples with any missing
clinical (stage, gender, smoking status, age, or race) or mutation
(EGFR or KRAS status) information from each of the four
cohorts before the temporal split. This exclusion resulted in
total 257, 186, 142, and 120 samples in TIANJIN, PROFILE,
LUNG-RT, and SPORE-MOFFITT cohorts, respectively, and
hence, 353 patients were used for discovery and 352 patients
for independent validation. To compare the two positive muta-
tions (EGFRþ and KRASþ), we also excluded the wild-type
cases (EGFR� and KRAS�) from each cohort before the tem-
poral split. This further reduction resulted in total 136, 114,
78, and 53 samples in TIANJIN, PROFILE, HARVARD-RT, and
MOFFITT cohorts, respectively, and hence, 190 patients were
used for discovery and 191 patients for independent validation.
Radiomic signatures to predict mutation status were built in the
integrated discovery cohort, by minimum redundancy maxi-
mum relevance (MRMR) feature selection. MRMR has been
shown previously to be a stable feature selection algorithm for
radiomics (41). The MRMR algorithm (42) was applied on all
radiomic features with respect to a given mutational status, that
is, EGFR, to select a nonredundant and highly informative set of
features. Using the top 20MRMR ranked features, controlling for
differences in event ratios, we trained a random forest (RF)
classifier on the discovery cohort. RF classifiers have also shown
stability and high accuracy on radiomics analyses (15, 41, 43,
44). RF models were built for radiomic features and mutation
data on the discovery cohort and their performance was eval-
uated on the validation cohort; therefore, none of the models
were overfitted because models were trained only on the dis-
covery cohort. The prediction performance was assessed using
area under receiver operator characteristics curve (AUC). We also
built RF-based clinical multivariate models using five clinical
variables, that is, tumor stage, gender, smoking status, age, and
race. Distributions of these clinical variables across the four
cohorts can be obtained from the patient characteristics table
(Supplementary Table S1). To assess the additive effect in
prediction, combined models with 20 MRMR-ranked radiomic
features and 5 clinical variables were built using RF. Prediction

performance (AUC) of these different models were statistically
compared using one-sided t test as implemented in the R
package survcomp. To compute additional prediction measures
(e.g., sensitivity, specificity, accuracy, NPV and PPV), we used the
event (mutation) ratios of the discovery cohort as a probability
threshold and obtained a corresponding cut-off point on the
ROC curves. These prediction measures were computed using
the R package pROC. MRMR feature selection was implemented
using the MATLAB toolbox FEAST (42) and Matlab (Version
R2012b, The Mathworks). All other statistical analyses were
performed using R (Version 3.0.2).

Results
Genotype–phenotype associations

To investigate genotype–phenotype associations, we compared
CT radiomic features with somatic mutation status in lung ade-
nocarcinoma patients (Fig. 1). To incorporate the diversity of
genotypic and phenotypic variations between the individual
cohorts (see Supplementary Fig. S4), we performed an integrated
analysis combining four cohorts, totaling 763 patients (Supple-
mentary Table S1). Twenty-six robust and nonredundant radio-
mic features were included in our analysis. These features were
selected in an unsupervised fashion-based on test–retest perfor-
mance and interfeature correlation, and independent ofmutation
status or anyother outcome (seeMaterials andMethods). Selected
features included intensity histogram metrics, shape, and texture
features, with or without wavelet or Laplacian-of-Gaussian filters.
These features are capable to quantify a panel of phenotypic
characteristics, such as intratumor homogeneity and heterogene-
ity, tumor density, and spherical disproportion, describing tumor
roundness.

We then investigated the association of selected features with
the most frequent somatic mutations in lung adenocarcinoma,
KRAS (28.2%, 215 of 763) and EGFR (24%, 183 of 763). Using a
nonparametric, two-sided Wilcoxon test on the integrated cohort
and correcting for multiple testing (5% FDR), we separately
compared EGFR-mutated and KRAS-mutated tumors to cases
without EGFR or KRAS mutations, respectively.

We found sixteen radiomic features to be significantly associ-
ated with EGFR mutations and ten features associated with KRAS
mutations (Fig. 2). Significant features were reported as overrep-
resented (þ) or underrepresented (�), indicating the relative
feature representation.

For EGFR-mutated tumors, we found the Homogeneity and
Inverse Variance radiomic features to be underrepresented,
whereas Sum Entropy and Short Run Emphasis were overrep-
resented. Homogeneity is sensitive to the number of unique
discrete values in the images such that the fewer unique values
that are accessed, the more homogeneous the image. Inverse
variance assesses variations in intensity of voxels close to
each other and therefore quantifies another aspect of homoge-
neity. Sum Entropy is the entropy of the cooccurrence matrix
and therefore quantifies complexity. Short Run Emphasis
is a run length feature that indicates successive voxels have
similar intensity values. Together, the representation of these
features indicates that EGFRþ tumors are more likely to be
heterogeneous.

In contrast, Sum Entropy was underrepresented for KRAS-
mutated tumors, indicating that KRAS mutants are more
homogeneous. Total Energy is associated with a LLL wavelet
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filter, which is a low pass filter that enhances the general
information of the image while reducing its noise. Total Energy
was underrepresented in EGFR-mutated tumors and overrep-
resented in KRAS-mutated tumors so that EGFR-mutated
tumors had a quantitatively lower Total Energy metric, com-
pared with KRAS-mutated tumors.

We then compared radiographic features between EGFR- and
KRAS-mutant tumors. We found 14 significant features, all of
which were among the 16 that distinguished EGFR-mutant from
EGFR nonmutated tumors. This pronounced difference between
EGFR-mutated tumors and others is consistent with tumor vol-
umetric analysis. EGFR-mutant tumors were smaller than non-
mutated tumors (18.15 � 81.7 cm3 vs. 29.7 � 61.1 cm3, FDR
P < 0.05) while KRAS-mutant tumors were more similar in size
to nonmutated tumors (29.6 � 62.7 cm3 vs. 25.6 � 69.2 cm3,
P ¼ 0.365).

Predictive radiomic signatures for EGFR and KRAS mutation
status

To evaluate the value of radiomic data to predict EGFR and
KRAS mutation status, we developed and independently validat-
ed radiomic signatures, and compared their performance with
clinicalmodels (Fig. 1C). To incorporate thediversity of genotypic
and phenotypic variations across the datasets into the signature
development, we divided each of the four cohorts into an inde-
pendent training set (n¼ 353) and an independent validation set
(n¼ 352; Supplementary Fig. S4). Three radiomic signatures were
developed for classifying: (i) between EGFRþ and EGFR�, (ii)
betweenKRASþ andKRAS�, and (iii) between EGFRþ andKRASþ.
Furthermore, we also developed clinical models incorporating
age, gender, smoking status, race, and clinical stage, to classify
between these three groups. The performances of the radiomic
and clinical signatures were compared with each other, and to
conventional radiographic parameters used in clinical settings
(axial diameter and volume of the tumor).

Each of the three signatures used twenty radiomic features (see
Materials and Methods; Supplementary Methods S3). It is note-
worthy that a large number of included features (9 of 20), were
common across the three signatures. These included textural
features that are sensitive to tumor radiographic heterogeneity,
such as gray-level nonuniformity (GLNU) and low intensity small
area emphasis (LISAE), both sensitive to complex patterns or high
variation, as well as cluster prominence (CP) and inverse differ-
ence moment (IDM), which emphasize voxel pattern from close
range intensity (e.g., smooth transition between voxel intensity),
and are related to radiographic homogeneity.

Figure 3 and Supplementary Tables S2–S4 show the perfor-
mances of radiomic signatures on the validation cohort. Conven-
tional radiographic predictors, that is, maximum diameter
and tumor volume showed significant, albeit low, performance
in distinguishing between EGFRþ and EGFR� tumors (AUC ¼
0.61, P ¼ 5.88 � 10�04 and AUC ¼ 0.60, P ¼ 8.44 � 10�04,
respectively). Neither diameter nor volume were able to distin-
guish between KRASþ and KRAS� (AUC ¼ 0.53, P ¼ 0.44 and
AUC ¼ 52, P ¼ 0.63, respectively), or to distinguish between
EGFRþ and KRASþ (AUC ¼ 0.58, P ¼ 0.07 and AUC ¼ 0.56,
P ¼ 0.12, respectively).

The radiomic signature we developed showed a significant
ability to discriminate between EGFRþ and EGFR� cases
(AUC ¼ 0.69, P ¼ 5.32 � 10�10, Fig. 3A). This signature signi-
ficantly outperformed axial diameter (P < 0.03) and tumor
volume (P < 0.02). A clinical model of EGFR status, including
age, gender, smoking status, race, and clinical stage, also showed
high performance (AUC ¼ 0.70, P ¼ 1.71 � 10�09), and was
similar to the performance of the radiomic signature (P ¼ 0.46).
We tested whether the radiomic and clinical signatures were
complementary by creating a combined predictor and identified
a combined signature that improved the accuracy (AUC ¼ 0.75,
P ¼ 8.93 � 10�18), significantly better than the radiomic
(P ¼ 0.05 � 10�02) and clinical (P ¼ 0.03) signatures alone.
The complementary power of the two signatures was supported
by a higher sensitivity for the radiomic signature and greater
specificity for the clinical signature alone, with the combined
signature having both high sensitivity and specificity (Supple-
mentary Table S4; Supplementary Fig. S2).

A KRASþ/KRAS� radiomic signature also showed significant,
albeit lower, performance (AUC¼ 0.63, P¼ 5.45� 10�05), and
outperformed maximum diameter (P ¼ 0.02) and tumor
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Somatic genotype-imaging phenotype associations by comparing radiomic
feature distributions between mutation subtypes. Heatmap shows the
normalizedmeandifference of radiomic featuredistributions for 26 reproducible
and variant imaging features of 763 lung adenocarcinoma patients. Volumetric
features were included for comparison. � , 5% FDR-corrected P values using a
two-sided Wilcoxon test. Note that many features are significantly different
between EGFRþ versus EGFR� and between EGFRþ and KRASþ, although less
for KRASþ versus KRAS�.
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volume (P ¼ 0.01; Fig. 3B). A clinical predictor of KRAS, that
included age, gender, smoking status, race, and clinical stage,
status showed a very high performance (AUC ¼ 0.75, P ¼
5.86 � 10�19), and was significantly higher than the radiomic
model (P ¼ 8.73 � 10�05). Combining both signatures reduced
the overall performance (AUC ¼ 0.69). In fact, the accuracy
was higher for the clinical signature (0.66) than for either the
radiomic (0.56) or combined (0.60) signature (Supplementary
Table S4; Supplementary Fig. S5).

Finally, we developed a predictive signature to distinguish
between EGFR-mutated and KRAS-mutated tumors (Fig. 3C).
This radiomic signature had the best overall performance
(AUC ¼ 0.80, P ¼ 1.20 � 10�20), significantly higher than
either maximum diameter (P¼ 1.65� 10�05) or tumor volume
(P ¼ 6.17 � 10�06). Combining this signature with a clinical
signature (AUC ¼ 0.81, P ¼ 1.37 � 10�21), substantially
improved its performance (AUC ¼ 0.86, P ¼ 9.88 � 10�39).
This improvement was also significantly higher than either
the radiomic or clinical model alone (P ¼ 0.02 � 10�02 and
P ¼ 0.02, respectively). The combined model also had a
high specificity (0.87) and accuracy (0.79) (Supplementary
Table S4; Supplementary Fig. S5).

Discussion
Cancer is characterized by distinct molecular and environmen-

tal events that drive tumor development andprogression (45, 46).
Radiomic assessment of the tumor phenotype can be used with
noninvasive images that are collected routinely in the clinic

throughout the course of care. Our driving hypothesis is that the
tumor phenotype, measured quantitatively through radiomics,
should reflect the tumor genotype. We investigated the associa-
tion between CT radiomic phenotypes and the most common
somatic mutations in lung adenocarcinoma, that is, EGFR and
KRAS mutations. We performed an integrated analysis of four
large independent cohorts of lung adenocarcinoma patients for
whom clinical, imaging, and mutational profiling data were
available. We applied a stringent statistical design with indepen-
dent training and validation cohorts in a large number of patients,
to ensure validity of results. We found that EGFR tumors were
more likely to be heterogeneous, with a smaller volume, and
presenting an overall lower density on CT images. On the other
hand, KRAS tumors could not be discriminated on the basis of
volumetric information; however, they were more likely to be
homogeneous.

We developed radiomic signatures predictive of mutational
status in a discovery cohort of 353 patients that showed strong
predictive performance in a validation cohort of 352 patients. We
found radiomic signatures were predictive of EGFR mutations
(AUC ¼ 0.69) and were able to reliably distinguish between
EGFRþ and KRASþ (AUC ¼ 0.80) tumors. The EGFRþ/EGFR�

radiomic signature complemented the predictive value of a sig-
nature based on clinical factors (AUC ¼ 0.75).

Few studies have investigated associations between the tumor
imaging phenotype and the underlying molecular landscape
(24–31, 33). These studies generally had small sample sizes, used
subjective observer-dependent imaging descriptors, and did not
perform robust external validation. For example, associations

EGFR+ vs. EGFR− KRAS+ vs. KRAS− EGFR+ vs. KRAS+ 
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Figure 3.

Radiomic signatures to predict somatic mutations. Performance of radiomic signatures on the validation cohort for each mutational status classification on an
independent validation dataset (n ¼ 353). For comparison, conventional radiographic parameters (axial diameter and tumor volume) were included. Clinical
models, including age, gender, smoking status, race, and clinical stage, were developed for each classification. Asterisk (�) on bottom of bars indicates that
the performance of a model is significantly better than random. Furthermore, the segments indicate if a signature is significantly higher than another (� , P < 0.05;
�� , P < 0.01; ��� , P < 0.001; ns, not significant). Note, that overall the radiomic signatures significantly outperform radiographic volumetric predictors.
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have been reported between textural imaging features and KRAS
mutations in combined imaging modalities (CT, 18F- FDG PET
and dynamic contrast-enhanced CT) in colorectal cancer (25),
and using CT in NSCLC (27, 47), but within small cohorts (<100
patients), and, more importantly, without external validation,
which is a critical component of radiomic analyses (9, 10). Our
analysis of radiomic features extracted fromCT images found that
they had relatively weak predictive power for KRAS, a result that
we validated in an independent validation set, indicating a
generally similar imaging phenotype for KRASþ and KRAS�

tumors. For instance,Wang and colleagues, found a single seman-
tic CT feature, tumor spiculation, to be associated with the
presence of KRAS mutations in a single cohort of stage I lung
adenocarcinoma patients (47). We found, however, that EGFRþ

and EGFR� tumors exhibit distinct imaging phenotypes, allowing
more sensitive and specific classification of tumor EGFR status. In
a recent single cohort association study, Liu and colleagues found
16 semantic CT annotations to be associatedwith EGFR status in a
cohort of NSCLC patients. EGFR mutations were associated with
tumor size, with ground glass opacity, and enhancement hetero-
geneity. Their study, however, lacked validation of their multi-
variate models and did not include multiple testing corrections
(48). Similarly, Park and colleagues, in a single cohort association
study of advanced stage lung adenocarcinomas, found that
EGFRþ tumors presented more frequently ground-glass opacity,
while KRASþ cases were more likely solid tumors (49).

This is the first study to evaluate associations between somatic
mutations and radiomic features in a large cohort of lung ade-
nocarcinoma patients, and to validate its findings in an indepen-
dent patient cohort. Our findings suggest the need for studies in
other cancers to learnmore general rules formapping clinical and
imaging features to the tumor's mutational status in single tissues
and across tissues, and to understand whether temporal changes
in tumor morphology can be associated with changes in tumor
mutational status.

Despite strong results, our study has a number of limitations.
We used diagnostic CT scans as performed routinely in the clinic
with heterogeneous scanning protocols. CT images were acquired
using scannersmanufactured bydifferent companies, with a range
of image reconstruction algorithms, different slice thicknesses,
with and without contrast, and using different dosages. We
normalized all images to isovolumetric voxels to reduce the effect
of different slice thicknesses. However, despite these factors
potentially adding noise to the data, we were able to identify a
strong signal predictive of EGFR mutations. It is conceivable that
heterogeneity in CT protocols could have obscured more subtle
differences in the phenotype of KRASþ and KRAS� tumors.
Further optimization and standardization of imaging data is an
important aspect for the introduction of imaging-based biomar-
kers. Several groups, such as the Quantitative Imaging Network
(50), investigate these issues by implementing feature standard-
ization efforts such as segmentation challenges, radiomic feature
definition standardizations, and developing open source, pub-
licly available analyses platforms.

Radiomic features report three-dimensional scores that are
representative of the tumor as a whole, that is, as an average
score for textural features in all directions in the three-dimen-
sional space. We believe that a detailed analysis of the intra-
tumoral tumor heterogeneity, by compartment mappings,
particularly if paired with multiple biopsies at distinct geo-
graphical locations, such as investigated in renal cell carcino-

mas (7, 51), may allow us to further elucidate intratumoral
genotype–phenotype relationships. Localized and temporal
tumor heterogeneity represents a challenge for repeated tissue
sampling for genomic assays (6); thus, imaging signatures may
be useful as a surrogate for genomic assays when a biopsy is
not possible, or as a complementary assay to monitor response
to therapy. Similarly, if the radiomic signature predicts a
different EGFR status compared with tissue assessment, par-
ticularly if an EGFR-targeted treatment was to be delivered, this
could indicate rebiopsy, to rule out sampling error or misdi-
agnosis (52). Furthermore, quantitative radiomic analysis can
add in the evaluation of treatment response in EGFR-mutant
lung adenocarcinoma patients, treated with EGFR tyrosine
kinase inhibitors, beyond tumor volume assessments and
RECIST criteria (53). This, however, still needs to be evaluated
in clinical data.

There are fundamental differences between radiology and
pathology-based tests. Radiology can capture the phenotype at
a macroscopic level (millimeter resolution), and not a micro-
scopic level, as provided by histopathology and required for a
detailed quantification of underlying biological processes. An
advantage of imaging is that it easily can sample the complete
disease burden sequentially over time. Therefore, imaging-based
biomarkers couldpotentially be applied in clinical situationswere
biopsy-based assays are not possible, and it could also provide
complementary information, especially over the course of treat-
ment. It might also be interesting to compare radiomics-based
genotype predictions with liquid biopsy–based information, as
both of these approaches can reflect the overall tumor load as
opposed to the partial sampling provided by biopsies (54).

Nevertheless, this study lays important groundwork for
establishing radiomics as an important adjunct approach to
existing clinical predictors of disease status and therefore treat-
ment protocol. Ongoing prospective data collection projects
such as PROFILE at the Dana-Farber/Brigham and Women's
Cancer Center, are collecting comprehensive mutational data
on almost all lung cancer patients receiving treatment (35) and
these data are linked to comprehensive clinical records includ-
ing radiologic scans collections. Such initiatives are needed to
further validate imaging-based predictors that can be useful for
clinical application.

In summary, we demonstrated an association between the
imaging phenotype captured with a radiomic signature and
EGFR-mutant tumors, in four independent cohorts of lung adeno-
carcinomas. This association may have clinical impact in selecting
patients for targeted therapies. Imaging phenotype associations
with other molecular subtypes of NSCLC should to be further
investigated in prospective genotype profiling cohorts (33, 55).
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