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ABSTRACT

Motivation: The sequencing of tumors and their matched normals is
frequently used to study the genetic composition of cancer. Despite
this fact, there remains a dearth of available software tools designed
to compare sequences in pairs of samples and identify sites that are
likely to be unique to one sample.
Results: In this article, we describe the mathematical basis of our
SomaticSniper software for comparing tumor and normal pairs. We
estimate its sensitivity and precision, and present several common
sources of error resulting in miscalls.
Availability and implementation: Binaries are freely available for
download at http://gmt.genome.wustl.edu/somatic-sniper/current/,
implemented in C and supported on Linux and Mac OS X.
Contact: delarson@wustl.edu; lding@wustl.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Second-generation sequencing technologies have been applied to
several cancer types to identify somatic mutations in an unbiased,
genome-wide manner (Ley et al., 2008; Mardis et al., 2009;
Pleasance et al., 2010a,b). In terms of raw numbers, the most
common somatic alteration is the single nucleotide variant (SNV).
These studies have proceeded by utilizing a variety of methods
for identifying somatic SNVs, and have used the number and
distribution of such changes in the genome to infer the driving
forces behind tumorigenesis, as well as the degree to which tumors
have been altered (Ding et al., 2010; Pleasance et al., 2010a,b). In
addition, the detection of these changes within coding regions led
to the discovery of candidate driver mutations in genes such as:
DNMT3A (Ley et al., 2010), IDH1 (Mardis et al., 2009), FOXL2
(Shah et al., 2009a) and ARID1A (Jones et al., 2010; Wiegand et al.,
2010).
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The strategy used to identify somatic SNVs has varied among
studies, but ultimately has hinged on the direct comparison of
sequences from the tumor and matched normal tissue either during
discovery or validation. Previous studies have relied on simple
subtractions of tumor and normal genotype calls to determine
somatic status (Pleasance et al., 2010a), hard thresholds on read
support (Ley et al., 2008) or individual processing of genomes
followed by comparison of likelihoods (Shah et al., 2009b).

Our own approach has revolved around the whole genome
sequencing (WGS) of the tumor and matched normal to depths of
∼25X–30X (Wendl and Wilson, 2008) and subsequent comparison
to discover mutations specific to the tumor. In addition, our initial
focus on leukemia prompted consideration of sample impurities and
their implications for the detection of SNVs.

Here we present our software, SomaticSniper, which employs
a Bayesian comparison of the genotype likelihoods in the tumor
and normal, as determined by the germline genotyping algorithm
implemented in the MAQ (Li et al., 2008) software package. We
test the algorithm on simulated data to estimate its detection power.
Additionally, we evaluate our associated somatic SNV detection
pipeline on external data for sensitivity and on internal validation
data for an estimation of precision. Finally, we examine sequence
features associated with an elevated false positive rate, especially
the beginning of Illumina’s Read Segment Quality Control Indicator,
which is an extended run of base quality 2 (Q2) bases at the 3′ end
of a read.

2 METHODS

2.1 Algorithm for detecting difference between tumor
and normal genomes

2.1.1 Initial derivation To detect somatic mutations, we calculate the
likelihood that a site is not somatic as follows. Given data from the tumor T
and the normal N and genotypes G , we calculate a somatic score S as:

S =−10log10
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Where the genotype likelihood is P(D|Gi|), D is the data in either tumor
or normal and where P(D|Gi|) is any of 10 possible diploid genotypes
(i.e. AA, AC, AG, AT, CC, CG, CT, GG, TT). For the genotype, the subscript
l indexes into this list (e.g. G0 =AA). We calculate the genotype likelihood
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using the MAQ algorithm and the prior probability P(G1) is calculated
as follows:

P(G1)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

θ Case 1
θ
2 Case 2

θ2 Case 3

1−
9∑

k=0
P(Gk)P(Gk �=GR) Case 4

where θ is the expected rate of heterozygous mutations in the population of
interest and GR is the reference base at the position of interest (Li et al.,
2009b). We use a value of θ=0.001 for human samples. Case 1 occurs when
the genotype is heterozygous, but shares an allele with the reference. For
example, the reference is A and Gl =AG. Case 2 occurs when the genotype
is homozygous variant. Case 3 occurs when the genotype is heterozygous,
but shares no alleles with the reference base. For example, if the reference
is A and Gl =CG. Lastly, Case 4 occurs when the genotype is homozygous
for the reference base.

This initial derivation is equivalent to comparing the probabilities of the
two mutations as independent germline mutations. Thus, any correlation
between the two samples is not explicitly accounted for. In addition, we
provide the option to use uniform prior probabilities.

Previous validation results within our institute indicated that very few
valid somatic mutations have a somatic score <15 (data not shown) and,
therefore, we do not typically report any sites with a score below this number.
In addition, we exclude randomly mapped reads (mapping quality 0) from
contributing to mutation calls.

2.1.2 Derivation utilizing somatic mutation rate The initial derivation
above assumes that the tumor and normal genotypes are independent. Since
these two samples are from a single individual, a better derivation, taking
into account the dependence of the tumor and normal genotypes on each
other, is:

S =−10log10
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In this equation, G is the genotype in the normal and is defined identically
as before and H is the genotype in the tumor. The probability P(Hm|G) takes
into account the prior probability of a somatic mutation, μ, for a given normal
genotype, G, as follows:
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A value for μ of 0.01, which is much larger than observed somatic mutation
rates in tumors (Greenman et al., 2007), yields similar results to the original
equation. When evaluating this derivation, we use the same minimum
somatic score cutoff of 15, though we note that at lower values of μ this
may no longer be appropriate.

2.2 Standard somatic detection filters
Our standard pipeline (Ding et al., 2010; Mardis et al., 2009) for identifying
candidate somatic mutations consists of several steps to filter calls with
respect to errors unaccounted for in the MAQ genotyping model. We initially
filter using Samtools (Li et al., 2009a) calls from the tumor. Sites are retained
if they meet all of the following rules inspired by MAQ (Li et al., 2008):

(1) Site is >10 bp from a predicted indel of quality �50.

(2) Maximum mapping quality at the site is �40.

(3) Fewer than three SNV calls in a 10 bp window around the site.

(4) Site is covered by at least three reads.

(5) Consensus quality �20.

(6) Single Nucleotide Polymorphism (SNP) quality �20.

SomaticSniper predictions passing the filters are then intersected with calls
from dbSNP build 130 (Sherry et al., 2001) and sites matching both
the position and allele of known dbSNPs are removed. Sites where the
normal genotype is heterozygous and the tumor genotype is homozygous
and overlaps with the normal genotype are removed as probable loss of
heterozygosity events.

Lastly, we empirically classify our mutations into two bins based upon our
validation experiences (data not shown). We define a high confidence (HC)
mutation as a site where the reads supporting the variant have an average
mapping quality �40 for BWA (or 70 for MAQ) and the somatic score
is �40.

2.3 Simulation of variant sites
In order to evaluate the software on theoretical data, we implemented a
simple simulation method to generate 10 000 variants. We simulated 1 bp
reads covering each variant with a mapping quality of 60, a base quality of
30 and various variant allele frequencies. Variant bases were generated by
sampling from a binomial distribution with expectation equal to the simulated
allele frequency. Base errors were introduced at a rate equal to the base
quality. The probability that the base error was reported as any particular
incorrect base was uniform.

2.4 Training and use of SNVMix2
We sought to compare the sensitivity of SomaticSniper with that of
another SNV caller, SNVMix2 (Goya et al., 2010). To train SNVMix2
for calling, we obtained Affymetrix Genome Wide SNP 6 microarray
data from the Wellcome Trust Sanger Institute Cancer Genome Project
website, http://www.sanger.ac.uk/genetics/CGP, and called genotypes using
the default options of the CRLMM R package (Carvalho et al., 2010). We
retained genotypes receiving a confidence score >0.99 and extracted the
position of each probe using version 30 of the Genome Wide SNP 6.0 from
Affymetrix. We then reduced the number of calls by randomly removing 98%
of them in order to reduce our number to a similar scale as used for training
SNVMix previously (Goya et al., 2010). This left 17 469 sites for the normal
and 16 761 sites for the tumor. We generated tallies of the spanning reads
for these sites (pileup) for each sample using Samtools and used the pileup
output to train a SNVMix2 model for each sample.

We ran SNVMix2 using the models generated by training on the
microarray data. Since SNVMix2 is, at its core, a single genome caller,
we implemented a comparison of the probabilities produced to generate a
somatic score analogous to the score calculated by SomaticSniper. For sites
in the tumor called as a variant by SNVMix2 and receiving a call in the
normal, we calculated a somatic probability as follows:
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where T is the genotype in the tumor sample and N is the genotype in
the normal sample as called by SNVMix2. Each genotype is drawn from
three distinct diploid possibilities x,y,z={aa,ab,bb} where a is the reference
allele and b the variant allele. We report any sites where P(Somatic) �0.9
as a somatic call by SNVMix2.

3 RESULTS
As a result of our work sequencing leukemia genomes, we
developed a method for identifying potentially somatic mutations.
Our algorithm, previously referred to as glfSomatic (Ding et al.,
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2010; Mardis et al., 2009), explicitly calculates the likelihood of
genotype difference between two genomes at all positions with
coverage in both and reports variants in the tumor along with
a somatic score, a Phred-scaled value indicating the likelihood that
the site is not somatic.

3.1 Performance on simulations
Samples of tumors, and potentially normals, are heterogeneous
populations of both tumor and normal cells. To evaluate the
theoretical upper bound on the performance of our algorithm, we
tested its ability to detect simulated heterozygous mutations across
a wide range of abundances. We held mapping quality, base error
rate and sequencing depth in both tumor and normal constant and
evaluated the number of variants called with the variant base at
each position. For allele frequencies that are clearly somatic, these
simulations yield an estimate of our power to detect variants at those
abundances. For simulations of roughly equal allele frequencies, the
number of called variants gives an estimate of the false positive rate.

Our simulations show that at a depth of 30X in both tumor and
normal, the algorithm is powered to detect 90% of mutations for
tumor allele frequency >30% if the normal is completely pure
(Fig. 1A). In cases such as leukemia, where there are frequently
tumor cells mixed in with the normal sample, power is still >90%
for tumor variant allele frequencies >35% and normal variant allele
frequencies of �5%. Higher variant allele frequencies in the normal
rapidly diminish our predicted power with frequencies of 10%
essentially capping the power at 67% and reducing it to <5% at
or above normal allele frequencies of 20%. This reduction occurs
even at very high tumor allele frequencies.

We also conducted simulations at higher depths of 60X and
90X and found that, for highly pure tumor and normal samples,
our power increased with depth allowing for >90% sensitivity for
mutations present at 25% allele frequency with 90X depth (Fig. 1B
and C). In contrast, while our power increased for normal allele
frequencies <10%, it was reduced for normal allele frequencies
above ∼15%. Thus, higher depth increases power for cases where
the normal sample is relatively pure, but reduces it for impure normal
samples. Simulations using uniform prior probabilities showed an
increase in sensitivity for pure samples, but reduced sensitivity
for impure samples (Supplementary Fig. S1A–C). With somatic
prior probabilities, we observed similar trends with a somatic prior
probability of 0.01, but observed a large reduction in the power of
detection at 30X depth when using a somatic prior of μ=0.000001
which is much closer to the somatic mutation rate of adult tumors
(Supplementary Fig. S1D–I).

The estimated false discovery rate (FDR) remained �15% across
all depths and frequency combinations, but peaked for variants at
∼15% frequency in both tumor and normal (Fig. 1). In contrast,
the simulations showed a lower FDR with either uniform prior
probabilities or somatic prior probabilities (Supplementary Fig. 1).
Using the more realistic somatic prior probability of μ=0.000001
resulted in a sub-10% FDR (Supplementary Fig. S1G–I).

3.2 Estimation of sensitivity on real data
While we have evaluated SomaticSniper on a large number of cancer
genomes within our institute, we sought also to test its sensitivity
on an external dataset, as well as to compare its performance to pre-
existing tools. To evaluate sensitivity, we used the recently published

sequence data of a melanoma cell line (Pleasance et al., 2010a),
having obtained these data for both the tumor and normal cell lines
from the Wellcome Trust Sanger Institute Cancer Genome Project
via the European Bioinformatics. Out of 497 previously validated
sites, we called 496 for a sensitivity of 99.8%. Visual inspection
of the single uncalled site showed a low variant allele frequency
of 23% and many low-quality bases (mean base quality of 15.22).
Our complete pipeline with standard filters resulted in substantial
filtering of calls with only a modest decrease in sensitivity (Table 1).

Since the estimated sensitivity of the Pleasance study was ∼88%
and the majority of reported variants came from that particular study,
we also examined our performance on sites in COSMIC (Forbes
et al., 2011) where the WGS study was not the sole source of
the mutation. Of the 83 somatic sites in this set, 77 were called
by SomaticSniper for a sensitivity of 92.3%. The sites that were
missed either had a variant frequency <20% (three sites <20%)
or an average variant base quality <20 combined with a variant
frequency <30% (two sites). For our complete pipeline, we again
saw only a modest reduction of sites for an overall sensitivity of
89.2% in this dataset (Table 1).

We also ran SNVMix2 on the same dataset for comparison
purposes. SNVMix2 is a single genome caller that has been
developed for the identification of somatic mutations in other
studies, albeit not for direct comparison of tumor/normal pairs
(Goya et al., 2010). SNVMix2 generated a similar number of calls
as unfiltered SomaticSniper and showed a comparable sensitivity
(Table 1). There was a large amount of overlap between the two call
sets with 537 522 calls being shared between the two and 234 779
unique to SNVMix2 and 98 945 unique to SomaticSniper.

3.3 Estimation of precision
We recently completed the sequencing of a relapse tumor sample
from an earlier Acute Myeloid Leukemia (AML) case (L.Ding et al.,
submitted for publication). This genome had 34.2X coverage in the
relapse and 26.2X coverage in the matched normal. We predicted
variants from these data using SomaticSniper with uniform prior
probabilities. These calls should provide a conservative estimate
of the precision of the algorithm, as validation for other samples
indicated that calls made with uniform priors validate at a lower
rate than those with the standard priors (data not shown). We used
solid phase capture (Nimblegen) to pull down predicted variants and
then re-sequenced the captured fragments using the Illumina GAIIx
platform to generate deep coverage (mean depth across targets of
1065X for the normal and 520X for relapse). A small number of
variants that failed to meet these criteria, which we had previously
validated as somatic, were also targeted, but are not included in this
work. The resulting data were used to assemble a set of true variants
to estimate precision. To obtain independently verified results, we
used VarScan2 (Koboldt et al., 2009) as an orthogonal caller, a
minimum coverage requirement of 30 reads in each sample, and
a P-value cutoff of 0.001 to determine the somatic status of each
mutation.

We attempted to validate 1018 mutations in coding, non-coding
RNA, potentially regulatory and non-repetitive regions of the
genome according to our standard partitioning (Ding et al., 2010;
Mardis et al., 2009). This set contained predictions of both high and
low confidence bins for sites falling within coding and non-coding
transcripts, but the remaining mutations were drawn solely from the
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Fig. 1. Simulations of power across various variant allele frequencies and across different depths in both samples: 30 reads (A), 60 reads (B) and 90 reads
(C). Contours indicate the power for each combination of variant allele frequencies. The dashed line indicates simulations where the allele frequencies in
tumor and normal are equal and thus, the contours intersecting this line indicate the expected FDR for those allele frequencies.

Table 1. Sensitivity estimation on COLO-829 data

Program Filtering Total calls Called from Pleasance (sensitivity), n (%) COSMIC only (sensitivity), n (%)

SomaticSniper None 636 467 496 (99.8) 77 (92.8)
SomaticSniper Standard 111 239 490 (98.6) 74 (89.2)
SomaticSniper HC + standard 43 875 488 (98.2) 73 (88.0)
SomaticSniper Standard + additional 53 489 468 (94.2) 73 (88.0)
SomaticSniper Standard + additional + HC 36 489 466 (93.8) 72 (86.8)
SNVMix2 None 772 301 493 (99.2) 75 (90.4)

HC bin. VarScan identifies variants based on coverage and observed
allele frequency, and assigns them to one of three categories based
on a Fisher’s exact test of the read counts supporting each allele:
Reference, indicating there is no variant at this site in either tumor
or normal; Germline, indicating there is a single variant present in
both tumor and normal (P � 0.001); and Somatic, indicating there is
a tumor specific variant at the site (P<0.001). We obtained sufficient
coverage for 930 sites, from which 384 sites were called as Somatic.
Thus, we observed a net validation rate of 37.7% and a covered
validation rate of 41.3% (Table 2). The false positives were divided
among 504 Reference calls and 33 Germline calls. Nine sites were
called Somatic but did not meet our P-value cutoff.

We also attempted to evaluate the sensitivity and precision using
a somatic prior probability of 0.01 on this data. This resulted in
somewhat fewer calls with a sensitivity of 98.9%. In addition, a
large bin of novel calls (228) was present after standard filtering. We
reviewed these calls and identified likely somatic mutations in this
set. Were all these novel predictions to validate, our precision with
this alternate method would be 48.3% (Supplementary Table S1).

3.4 Frequent sources of false positives
Our simulation results predicted a maximal FDR of ∼15% in the
absence of mapping errors and in the presence of perfectly calibrated
base qualities. Since neither of these assumptions is true for real

data, we expected a higher FDR than the simulations and we sought
to identify any systematic errors that might cause false positive
predictions. Since the validation identified 537 clear false positive
sites, we examined the original WGS data for sites that did not
validate in the capture data. We observed several indicators that a
site was likely to be a false positive that were borne out by more
detailed analysis and were developed into several filters to improve
the overall validation rate.

3.4.1 Strand bias One major indicator of a false positive is strand
bias, where the variant allele arises primarily from reads aligning on
one strand versus the other. We examined the strand distribution, as
the fraction of variant supporting reads mapping to the plus strand,
for each of the three variant classes arising from our validation
experiment. We found that the reference calls were enriched for sites
strongly biased toward one direction or the other (Supplementary
Fig. S2).

3.4.2 Effective 3′ end Beginning with version 1.5, the Illumina
pipeline uses the Read Segment Quality Control Indicator to identify
3′ portions of reads that should be discarded. This is done by setting
the base quality for the region to 2 and we will henceforth refer to
such a region as a Q2 region. We have observed that false positive
bases of high quality frequently occur near these regions. Since not
every read has a Q2 region and Q2 regions may be removed by
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Table 2. Estimation of SomaticSniper precision

Sample Tumor type Filter Target regions Assays designed Successful assays Validated Maximal sensitivity, % Precision, %

933 124 AML Standard 1018 1000 930 384 100 37.7
933 124 AML Standard + review 1018 1000 930 376 100 36.9
933 124 AML Additional 493 486 480 372 98.9 75.5
16 319 Breast Standard 5578 5542 5499 4702 100.00 84.30
16 319 Breast Additional 5290 5273 5243 4689 99.72 88.64
16 347 Breast Standard 860 841 818 546 100.00 63.49
16 347 Breast Additional 684 678 667 545 99.82 79.68
16 454 Breast Standard 2430 2401 2346 1798 100.00 73.99
16 454 Breast Additional 2117 2103 2073 1775 98.72 83.85

quality trimming, we defined a measurement we call the distance
to the effective 3′ end (DETPE), which equals the smallest distance
between the variant base and either the 3′ end of the read, the 3′
clipped end or the 5′ end of the Q2 run normalized by the unclipped
read length.

The distribution of this measure on our data hovered at ∼0.46 as
assessed in reads containing heterozygous SNVs from microarray
data for known germline variants (Supplementary Fig. S3). We then
examined the distributions in the original data for this attribute
and found that variants that validated as Reference tended to be
associated with a small DETPE (Fig. 2A). In addition, we found
that this measure was positively correlated with the aforementioned
strand bias (Pearson’s correlation of 0.31). In contrast, association
of the variant bases with the physical 3′ end of the read indicated
little bias between classes (Fig. 2B).

3.4.3 Homopolymers and paralogs We found two remaining
sources of error: variant bases that appeared to be generated from
read-through of homopolymer runs and reads that appeared to map
from paralogs not in the reference. To identify reads that might
support a paralog, we quantified the number of mismatches in a given
read by summing the base qualities of the mismatches up for a given
read the mismatch quality sum (MMQS). This is similar to what is
done in MAQ (Li et al., 2008). Since introduction of a somatic
mutation within a read length from a germline mutation on the
same chromosome would result in a higher MMQS, we compared
the MMQS for reads containing the variant in the tumor to the
normal directly. We found an enrichment among the false positive
sites in both germline and reference classes for a high MMQS
difference (Supplementary Fig. S4). In addition, we examined both
the maximum and sum of the number of adjacent bases identical to
the variant base in both 5′ and 3′ directions. Inspection showed clear
biases in the data for these features (Supplementary Fig. S5).

3.5 Application of additional filters
Based on these observations, we implemented filters that should
apply to 100 bp read length data. We calculated a stranded bias
P-value under the null hypothesis that reads are expected to be
sampled equally from each strand as a binomial model with ‘success’
taken arbitrarily as a read mapping to the forward strand. For
calculating the bias of the variant base’s distance to the effective
3′ end, we applied a Kolmogorov–Smirnov (KS) test using a
reference distribution built from true heterozygous germline SNPs
as determined by SNP array. We then used the beta approximation

of the KS test (Zhang and Wu, 2002) to calculate the DETPE
P-value. If both P-values were <0.1, we filtered the variant. We
also made some simple heuristic filters on the MMQS difference
and homopolymer difference based on the observed distributions.
We removed potential homopolymer errors by removing variants
flanked by homopolymers of length >3 or surrounded by >6
identical bases. Based on the empirical distribution of MMQS, we
removed variants with a MMQS difference of �60.

After determining appropriate filters, we sought to evaluate their
performance on both of our testing datasets. Applying all of the
above filters to the original whole genome data from our leukemia
dataset (L.Ding et al., submitted for publication) removed 525
mutations, including 12 called somatic mutations. Upon manual
review, eight of these called somatic mutations were actually false
positives as was one additional somatic mutation that passed all
filters (Table 2). If these filters had been applied to the original data,
then we would have increased our precision to 75.5% and observed
a decrease in sensitivity of at most 1.1% (Table 2).

To verify that these filters were not over-fitted to our training set,
we applied them to the COLO-829 data (Pleasance et al., 2010a) as
well as three breast cancer genomes from our recent sequencing of
46 breast cancer tumors (M.J.Ellis et al., submitted for publication).
For COLO-829, application of the additional filters resulted in nearly
half as many calls, but only a decrease in sensitivity of at most 4.4%.
Similar results were observed on the COSMIC sites (Table 1). For
the three breast cancer genomes, somatic variants were called and
validated identically to our leukemia dataset as described above. We
observed a precision of between 64% and 84% before additional
filtering. Application of the additional filters increased the precision
in all cases to between 79% and 89% with an accompanying maximal
decrease in sensitivity between 0.2% and 1.2% (Table 2). Thus, we
infer that the proposed filters are not over-fitted to the AML data and
are generally applicable to somatic predictions.

4 DISCUSSION
The detection of somatic SNVs in tumors is an important part
of tumor resequencing because these mutations can be directly
relevant to the disease and are the most numerous. One method
of discovering somatic SNVs is to compare the sequencing results
between a matched tumor and normal pair. To this end we developed
SomaticSniper to directly compare the tumor and normal reads
and calculate the probability that the two samples have identical
genotypes in both samples.
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Fig. 2. Association of erroneous calls with the effective 3′ end. Kernel density estimates comparing the distribution of two different measures of variant
location across three different validation results. The bandwidth (bw) for each kernel density is shown in the legend. (A) Variants that validated reference
show a clear bias toward association with the effective 3′ end. (B) All three classes of validated mutations show no clear bias in association with the end of
the sequenced read.

Our simulations on the algorithm show that it should be able
to detect most mutations if the mutation is present in the majority
of cells, and the normal is relatively pure. We have evaluated
SomaticSniper on external data and found it to be more sensitive
than other methods and, based on the total number of calls, of
comparable specificity. Additionally, we have explored the precision
of our algorithm by validating predicted somatic mutations on
internally generated data. In contrast to our simulations, which
suggested an FDR <15% if mapping error is non-existent, this
validation experiment demonstrated a higher FDR. Our subsequent
investigations revealed a number of reliable indicators that a
predicted variant was, in fact, not real. Most interestingly, we
identify an association of false positive bases with the Illumina Q2
base quality designation. This new feature may also prove useful
in other false positive reduction techniques, such as base quality
recalibration. By implementing some statistical and empirical filters,
we were able to greatly increase the validation rate on both our
training set and four independent datasets with only a small number
of validated somatic mutations failing the filters. While our precision
is low on the AML sample, this is expected since there are a smaller
number of detectable events due to both tumor cells in the normal
sample and a lower mutation rate for this cancer type. In solid
tumors, where neither problem is likely to be as severe, we expect
that the precision should be similar to that observed on the tested
breast cancer tumors.

Despite the success of SomaticSniper on the COLO-829 data,
this dataset represents an ideal case for somatic SNV calling and
there remains room for improvement in future work. Since COLO-
829 is a cell line, it represents the simple case of a perfectly pure,
homogenous tumor with a perfectly pure, homogenous matched
normal. Cancer projects will rarely work with such an ideal sample
and tumors can be expected to contain multiple subclones with
varying expected allele frequencies depending on their site-specific
copy number and abundance within the tissue sample. Indeed, the
internal data with which we evaluated our precision were obtained
from a patient with a high white blood cell count (105 000 cells
per microliter) and our data indicate that ∼30% of the cells from
the normal sample were, in fact, tumor (Ley et al., 2008). In

addition, the tumor sample will likely be impure in many cases.
While the matched normal can be expected to be free of tumor
cells for most samples, this may not always be the case (especially
for liquid tumors that circulate into all tissues, and for solid
tumors where the matched normal tissue is obtained from adjacent
tissue).

Our simulation studies demonstrate the rapid decline of detection
power that occurs when the normal sample contains tumor cells. This
is due, in part, to the assumptions of the MAQ genotyping model
underlying SomaticSniper, which currently operates by ignoring the
copy number state and sample purity. This is true for SNVMix2
as well, since it derives its expected genotype frequencies from
training on germline variants. Optionally, our caller can take into
account the prior knowledge that somatic SNVs are expected to be
rare, although our testing suggests that incorporating such a penalty
significantly reduces the sensitivity of the algorithm at current WGS
coverage levels (Supplementary Fig. S1). As outlined above, these
assumptions are inappropriate for optimal somatic SNV calling and
future improvements in somatic SNV calling must take these issues
into account.

Sites predicted to be somatic by our method will include both true
mutations and some false positives. The number of false positives
is likely to be a function of the quality of the reference sequence,
the alignments, the data quality and the ability to accurately provide
error estimates to the software. While our filters increase precision,
fully specified error models or adjustments to the error estimates
provided in the mapping qualities and base qualities of the data
ought to improve the specificity and sensitivity of these filters.
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