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Abstract

Aims/hypothesis The aim of this work was to investigate whether different clinical pain phenotypes of diabetic polyneuropathy

(DPN) are distinguished by functional connectivity at rest.

Methods This was an observational, cohort study of 43 individuals with painful DPN, divided into irritable (IR, n = 10) and non-

irritable (NIR, n = 33) nociceptor phenotypes using the German Research Network of Neuropathic Pain quantitative sensory

testing protocol. In-situ brain MRI included 3D T1-weighted anatomical and 6 min resting-state functional MRI scans. Subgroup

differences in resting-state functional connectivity in brain regions involved with somatic (thalamus, primary somatosensory

cortex, motor cortex) and non-somatic (insular and anterior cingulate cortices) pain processing were examined. Multidimensional

reduction of MRI datasets was performed using a machine-learning approach to classify individuals into each clinical pain

phenotype.

Results Individuals with the IR nociceptor phenotype had significantly greater thalamic–insular cortex (p false discovery rate

[FDR] = 0.03) and reduced thalamus–somatosensory cortex functional connectivity (p-FDR = 0.03). We observed a double

dissociation such that self-reported neuropathic pain score was more associated with greater thalamus–insular cortex functional

connectivity (r = 0.41; p = 0.01) whereas more severe nerve function deficits were more related to lower thalamus–

somatosensory cortex functional connectivity (r = −0.35; p = 0.03). Machine-learning group classification performance to iden-

tify individuals with the NIR nociceptor phenotype achieved an accuracy of 0.92 (95% CI 0.08) and sensitivity of 90%.

Conclusions/interpretation This study demonstrates differences in functional connectivity in nociceptive processing brain

regions between IR and NIR phenotypes in painful DPN. We also establish proof of concept for the utility of multimodal

MRI as a biomarker for painful DPN by using a machine-learning approach to classify individuals into sensory phenotypes.
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Abbreviations

BOLD Blood oxygen level-dependent

DFNS German Research Network of Neuropathic Pain

DPN Diabetic polyneuropathy

FDR False discovery rate

NTSS-6 Neuropathy Total Symptom Score-6

PPT Pressure pain threshold

QST Quantitative sensory testing

ROI Regions of interest

RS-fMRI Resting-state functional MRI

SVM Support vector machine

TCNS Toronto Clinical Neuropathy Score

TE Echo time

TR Repetition time

WUR Wind-up ratio

Introduction

Painful distal symmetrical peripheral neuropathy is highly

prevalent in individuals with diabetes and is often refractory,

causing substantial disability and deterioration in quality of

life. Pharmacotherapy is the mainstay of treatment but the best

we can hope for is 50% pain relief in only one-third of patients

[1]. This wide variability in treatment response may in part be

due to an underlying heterogeneity in clinical pain phenotypes

[2]. Using quantitative sensory assessments, individuals with

painful diabetic polyneuropathy (DPN) can be broadly

subdivided into two phenotypes: irritable (IR), presenting as

sensate or relatively preserved sensory function associated

with thermal and/or mechanical hyperalgesia; and non-

irritable (NIR), presenting as insensate (i.e. dominated by ther-

mal and mechanical sensory loss) [3]. Subsequent studies

suggest that some treatments are more effective in patients

with the IR compared with the NIR nociceptor phenotype

[4]. Consequently, pain phenotyping may become important

in guiding individual patients’ treatment, although the exact

approach is heavily debated.

Resting-state functional MRI (RS-fMRI) is a quick, non-

invasive technique for examining brain function during rest-

ing conditions. It utilises spontaneous fluctuations in blood

oxygen level-dependent (BOLD) signal to identify brain areas

of increased or decreased neuronal activity while the individ-

ual lies quietly. The analysis involves identification of
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correlations in BOLD signal between remote brain areas,

referred to as functional connectivity [5]. This recent advance

offers huge promise for improving the clinical applicability of

functional MRI.

We have previously reported structural and functional

central nervous system alterations in individuals with ‘painful

hypoaesthesia’ [6] or the painful/painless diabetic foot, which

is most closely related to the NIR phenotype. We have also

demonstrated how central nervous system changes relate to

treatment response in painful DPN [7]. Hence, we hypothesise

that in individuals who have painful DPN, alterations in

somatosensory network functional connectivity differentiate

those with the IR phenotype from those with the NIR pheno-

type. The primary aim of this study was to examine RS-fMRI

functional connectivity in individuals who have painful DPN

with the IR and the NIR phenotype. Our secondary aim was to

demonstrate ‘proof of concept’ that machine-learning

approaches can be used on neuroimaging datasets to classify

individuals with painful DPN into sensory phenotypes. If

successful, this would provide an alternative, objective, novel

method for assessing an individual’s pain phenotype.

Methods

Study population Forty-three, right-handed individuals with

painful DPN, aged 18–65 years, with pain duration for at least

6 months, were consecutively recruited from attendees at

Sheffield Teaching Hospital NHS Trust painful DPN clinics.

Individuals with concurrent severe psychiatric disorders,

moderate-to-severe pain from other causes, non-diabetic

neuropathies, epilepsy, recurrent severe hypoglycaemia and

other factors that would preclude MRI were excluded. The

Institutional Review Board of the Sheffield Research Ethics

Committee approved the study. All participants provided writ-

ten informed consent for study participation.

Definition of painful DPN Painful DPNwas defined as a combi-

nation of neuropathic symptoms (Neuropathy Total Symptom

Score-6 [NTSS-6]) [8] and signs (Toronto Clinical Neuropathy

Score [TCNS] >5) [9], and was confirmed by abnormalities

noted in nerve conduction studies (see electronic supplementary

material [ESM] Methods) using the American Academy of

Neurology and American Association of Electrodiagnostic

Medicine recommendations for the minimum case definition

criterion for confirmation of DPN [10]. There were 16 sural

nerve (2 IR and 14 NIR) and 16 peroneal nerve conduction

responses (2 IR and 14 NIR) that were not recordable. The

NTSS-6 evaluates the frequency and intensity of individual

neuropathy sensory symptoms identified frequently by those

with DPN: numbness and/or insensitivity; prickling and/or

tingling sensation; burning sensation; aching pain and/or tight-

ness; sharp, shooting, lancinating pain; and allodynia and/or

hyperalgesia [8]. The TCNS is a screening tool for DPN and

correlates with DPN severity. It uses a simplified neurological

examination to assess peripheral sensory perception and the pres-

ence of neuropathy symptoms [9].

Sensory phenotyping and quantitative sensory assessments

Quantitative sensory testing (QST) is a means of assessing

sensory phenotype and differences in QST variables may give

insight into pathophysiological mechanisms. All participants

with painful DPN underwent QST of the feet using the proto-

col developed by the German Research Network of

Neuropathic Pain (DFNS) [11]. GS,MA and FH-G underwent

formal training in conducting the DFNS QST protocol at

Mannheim University using healthy volunteers. The QST

results were used to classify participants into IR and NIR

nociceptor phenotypes. Cold and warm detection thresholds,

as well as cold and heat pain thresholds and thermal sensory

limens (including paradoxical heat sensations), were

established using a MEDOC TSA-II Neurosensory Analyser

(Ramat Yishai, Israel). We also tested mechanical detection

and pain thresholds and mechanical pain sensitivity,

allodynia, pressure pain thresholds (PPTs), wind-up ratio

(WUR) and vibration detection thresholds. The mechanical

detection threshold was assessed with a set of standardised

von Frey filaments (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128 and

256 mN; Nervtest, Marstock, Germany) using a modified

method of limits. The mechanical pain threshold was assessed

with a set of seven metal probes of standardised stimulus

intensities (8, 16, 32, 64, 128, 256 and 512 mN; MRC

Systems – Medizintechnische Systeme, Heidelberg,

Germany), using a uniform skin contact area of 0.25 mm

and a modified method of limits. The mechanical pain sensi-

tivity of the skin and dynamic mechanical allodynia were

determined using the same set of seven metal probes with

standardised stimulus intensities and, in addition, a set of

seven light intensity stimuli: a cotton wool ball with a force

of 3 mN; a Q-tip (fixed to a plastic stick) with a force of 100

mN; and a paintbrush with an applied force of 200–400 mN.

These stimuli were applied 50 times (five runs of ten stimuli

per test site in different pseudo-randomised sequence), and the

participants were asked to rate the intensity of each stimulus

on a 0–100 numeric rating scale (0, no pain; 100, most severe

pain). The WUR, as a measure of enhanced temporal summa-

tion, was examined by a pinprick stimulus of standardised

intensity (256 mN). The stimulus was first applied singularly

and then in a series of ten stimuli with a frequency of 1 Hz

within an area of 1 cm2. Participants were asked to rate the

intensity of the first stimulus and the mean of ten stimuli on a

scale of 0–100. The ratio between the two measures was

calculated as WUR; a WUR of >1 indicates enhanced tempo-

ral summation. The vibration detection threshold was exam-

ined using a tuning fork (64 Hz, 8/8 scale) at the (lateral or

medial) malleolus area. Muscular pressure pain threshold was
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examined by applying mechanical pressure at a rate of 0.5 kg/s

(Algometer, Somedic, Sweden) at the abductor halluces

muscle. Except for the vibration detection threshold and pres-

sure pain threshold, all sensory tests were performed in the S1

dermatome bilaterally (unless defined by the distribution of

symptoms). Participants were familiarised with the testing

procedure on the dorsum of the forearm before all variables

were measured over the dorsum of both feet (S1 dermatome).

PPTs were recorded over the arch of the foot and vibration

detection thresholds were tested over the medial malleolus.

The QST data were entered into the data analysis system

eQUISTA provided by the DFNS. eQUISTA transformed the

rawQST data into z scores thus normalising for age, sex and the

body location of testing [12]. Positive z scores denote gain of

function, whereas negative z scores denote loss of function.

Based on quantitative sensory assessment findings, participants

were divided into IR nociceptor phenotype (defined as the pres-

ence of either dynamic mechanical allodynia, reduced mechan-

ical or pressure threshold, increased mechanical pain sensitivi-

ty, or lower cold or heat pain threshold, or any combination of

these signs of hyperexcitability) or NIR nociceptor phenotype

(participants not classified as IR nociceptor phenotype [i.e.

sensory loss with no signs of hyperexcitability]) using recom-

mendations previously described [13].

MRI acquisition and analyses Anatomical data were acquired

using a T1-weighted magnetisation prepared rapid acquisition

gradient echo sequence (repetition time [TR] 7.2 ms, echo

time [TE] 3.2 ms, flip angle 8° and voxel size 0.9 mm3, yield-

ing isotropic spatial resolution). A 6 min resting-state fMRI

sequence was acquired while participants fixated on a cross

using a T2*-weighted pulse sequence (TE 35 ms; TR

2600ms, in-plane pixel dimensions 1.8 mm× 1.8 mm, contig-

uous trans-axial slices 4 mm thick). MRI was performed at

3.0 T (Ingenia; Phillips Medical Systems, Best, Holland).

Ten regions of interest (ROIs) involved in somatic and

non-somatic pain processing were chosen for analyses: bilat-

eral primary somatosensory cortex (S1), motor cortex (M1),

insular cortex, anterior cingulate gyrus and thalamus. RS-

fMRI analysis was performed using the NITRC Functional

Connectivity (CONN) Toolbox 18.b (www.nitrc.org/

projects/conn) [14] and SPM8 (Wellcome Trust Centre for

Neuroimaging London, UK) in Matlab 2019a (the

MathWorks, Natick, MA, USA). Functional connectivity

matrices between the pre-specified ROIs were calculated and

the IR vs NIR nociceptor phenotype interaction was exam-

ined. The significance of ROI-to-ROI connection was deter-

mined through false-positive control false discovery rate

(FDR)-corrected p values with a χ2 test with two-sided infer-

ences [14]. Cortical reconstruction and volumetric segmenta-

tion were performed with FreeSurfer software (http://surfer.

nmr.mgh.harvard.edu) to obtain anthropometric measures for

each of the ROIs. These results were used to adjust for

regional morphological differences in the resting-state func-

tional connectivity analyses.

Machine-learning methodsWe classified participants with the

IR and NIR nociceptor phenotypes using a hyperparameter

tuned support vector machine (SVM) classifier. Of the 55 total

participant labels used, 14 participants (0.25 testing set) were

used to train and the rest to test our classifier performance. The

ten sources chosen a priori were as described in the resting-

state processing step. These sources were also the features

extracted from the structural and volumetric analysis. Of

these, the most relevant features from both the resting-state

and the T1 image analysis were chosen using a cross-

validated recursive feature elimination method. Lastly, a

tenfold cross-validation was implemented to reduce out of

sample bias. All our analyses were performed using the

Scikit-learn package in Python version-0-22-0 (https://

github.com/scikit-learn/scikit-learn) [15]. The performance

of the machine-learning algorithm to classify participants with

the NIR nociceptor phenotype was determined by the area

under the receiver-operating-characteristic curve, accuracy

and F1 scores. Our classifier was also optimised and the

following hyperparameter tuning values were used in our

SVM classifier.

& Regularisation parameter: C = 100 chosen as imbalanced

datasets benefits from a higher C value [16]

& L2 penalty: we chose L2 as a conventional approach to

regularisation [17]

& Early gradient descent stop at 1 × 10−4: this default value

was chosen to optimise speed

& No class weights: this is the default parameter

& Radial basis function kernel: this was easy to calibrate, is a

non-parametric model enabling better model selection,

and has been shown to perform better than linear and

polynomial kernels [18].

Statistical analysis A p value of < 0.05 was considered statis-

tically significant. Categorical variables were expressed as

numbers and percentages and were compared using Fisher’s

exact or ordinal χ2 tests as appropriate. Continuous variables

were expressed as medians and IQRs or as means and SDs, as

appropriate, and were compared using Student’s t tests (SPSS

Statistics forWindows, version 26.0; IBM, Armonk, USA). In

addition, z values of functional connectivity that were signif-

icantly correlated to severity of neuropathy (TCNS) and pain

scores (NTSS-6) were determined using Pearson correlation

for normally distributed data and Spearman Rank correlation

for non-normally distributed data. The z score was chosen as it

is assumed to be more appropriate than the magnitude of

difference because it also considers the variance in the signal.

Finally, we statistically compared the partial correlation
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Table 1 Clinical and neurophys-

iological characteristics of the

study participants

Characteristic IR nociceptor

phenotype

NIR nociceptor

phenotype

p value

N 10 33

Age, years 56.9 (12.9) 58.4 (11.2) 0.74

Male sex, n (%) 9 (90.0) 20 (60.6) 0.08

Type of diabetes, n type 1/n type 2 3/7 10/23 0.65

Duration of diabetes, years 17.2 (9.5) 18.4 (13.1) 0.78

Duration of pain, years 8.9 (5.6) 8.3 (7.0) 0.80

HbA1c, mmol/mol 69.1 (17.6) 67.6 (15.0) 0.79

HbA1c, % 8.5 (3.8) 8.3 (3.5)

NTSS-6 score 16.5 (3.0) 13.1 (5.0) 0.02

TCNS 19.7 (4.6) 16.1 (9.0) 0.26

Medications, n (%)

Pregabalin/gabapentin 7 (70.0) 14 (42.4) 0.12

Duloxetine 6 (60.0) 10 (30.3) 0.14

Amitriptyline 0 (0) 5 (15.2) 0.32

Opiates 5 (50.0) 11 (33.3) 0.46

Other 0 (0) 2 (6.1) 0.59

Sural nervea

Conduction velocity, m/s 34.2 (9.7) 39.0 (8.1) 0.30

Amplitude, mAmp 3.8 (5.7) 2.9 (6.7) 0.73

Common peroneal nerveb

Conduction velocity, m/s 37.6 (5.0) 35.4 (6.1) 0.41

Amplitude, mAmp 4.7 (2.0) 4.4 (4.2) 0.87

Distal latency (ms) 3.6 (2.4) 1.4 (1.3) 0.007

DFNS QST (z scores)

Cold detection threshold −2.64 (0.6) −2.24 (1.1) 0.28

Warm detection threshold −1.83 (0.3) −1.87 (0.5) 0.79

Thermal sensory limens −2.20 (0.6) −2.13 (0.7) 0.80

Cold pain threshold −1.00 (0.1) −0.73 (0.6) 0.05

Heat pain threshold −1.46 (0.3) −1.38 (0.5) 0.61

PPT 1.80 (1.6) −0.83 (2.2) 0.05

Mechanical pain threshold −1.43 (1.6) −1.71 (1.6) 0.65

Mechanical pain sensitivity 1.07 (2.1) −1.00 (1.6) 0.003

WUR 1.03 (2.2) 0.03 (1.3) 0.12

Mechanical detection threshold −3.35 (1.3) −3.20 (1.6) 0.92

Vibration detection threshold −2.66 (2.4) −3.41 (2.3) 0.39

Brain morphometry

Somatosensory cortex

Surface area, mm2 578.2 (64.3) 535.3 (54.1) 0.04

Verticesc 988.7 (96.1) 913.4 (115.1) 0.05

Volume, mm3 1481.9 (186.2) 1424.7 (185.8) 0.39

Thalamus

Right volume, mm3 6475.0 (701.3) 5874.4 (626.3) 0.01

Left volume, mm3 7327.0 (894.6) 7039.5 (1145.7) 0.47

Anterior cingulate cortex

Thickness, mm 2.38 (0.2) 2.57 (0.2) 0.02

Volume, mm3 1773.5 (390.1) 1773.5 (321.7) 0.99

Verticesc 1032.1 (236.1) 982.7 (165.2) 0.46

Motor cortex

Surface area, mm2 4719.8 (606.6) 4535.9 (413.6) 0.28
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coefficients using the Steiger z transform test [19] implement-

ed on the web version (https://blogs.gwu.edu/weissba/

teaching/calculators/hotellings-t-and-steigers-z-tests/).

Results

Forty-three participants (10 IR nociceptor phenotype, 33 NIR

nociceptor phenotype) completed the study. There was no

significant difference in age, duration or type of diabetes, or

duration of pain or type of pain medication between study

groups (Table 1). Participants with the IR nociceptor pheno-

type (vs NIR nociceptor phenotype) had reduced cold pain

threshold (p=0.05) and greater mechanical pain sensitivity

and PPT (p < 0.05, ESM Fig. 1). A significantly higher

proportion of participants with the IR nociceptor phenotype

displayed dynamic mechanical allodynia (χ2 26.0; p < 0.001)

and paradoxical heat sensation (χ2 10.9; p = 0.001) when

compared with participants with the NIR nociceptor

phenotype.

RS-fMRI data was unavailable for three participants (IR 1,

NIR 2). In participants with the IR nociceptor phenotype,

there was significantly greater resting functional connectivity

between the thalamus and insular cortex (Fig. 1b; β = 0.2,

T(38) = 3.11; p-FDR = 0.03) when compared with partici-

pants with the NIR nociceptor phenotype. Conversely, there

was an opposing pattern for thalamus–somatosensory cortex

functional connectivity; participants with the IR nociceptor

phenotype displayed decreased functional connectivity

compared with those having the NIR nociceptor phenotype

(Fig. 1d; β = −0.22, T(38) = −4.98, p-FDR = 0.03). There

were no significant group differences in functional connectiv-

ity between the other ROIs examined.

Given the relatively low correlation between self-reported

pain and neuropathy severity scores (r = −0.03, p = 0.85), we

investigated whether these measures were associated with

different patterns of thalamic resting-state functional connec-

tivity. Specifically, we tested the double dissociation such that

NTSS-6 pain scores were more associated with thalamus–

insular cortex functional connectivity, while the TCNS scores

were more associated with thalamus–somatosensory cortex

functional connectivity. We observed two significant partial

correlations: one linking NTSS-6 pain scores to thalamus–

insular cortex functional connectivity (Fig. 1e,g, bar 1; r =

0.41; p = 0.01) and the other linking TCNS to thalamus–

somatosensory cortex functional connectivity (Fig. 1f,g, bar

4; r = −0.35; p = 0.03). These results indicate that individuals

with greater thalamus–insular cortex functional connectivity

exhibit higher self-reported pain scores (in keeping with the

IR nociceptor phenotype group having significantly greater

NTSS-6 score than the NIR phenotype group; Table 1, p =

0.02), while individuals with lower functional connectivity of

the thalamus–somatosensory cortex have a larger neuropathy

deficit. By contrast, the partial correlations between NTSS-6

and thalamus–somatosensory cortex functional connectivity

(Fig. 1g, bar 2) and between TCNS and thalamus–insular

cortex functional connectivity (Fig. 1g, bar 3) were not signif-

icant. Of note, the Steiger z transform test revealed that the

magnitude of the partial r encompassing the NTSS-6 score

was significantly greater for thalamus–insula cortex than for

thalamus–somatosensory cortex functional connectivity (Fig.

1g, bar 1 vs bar 2; two-tailed Steiger z test, z = 2.07, p = 0.04).

By contrast, the magnitude of the partial r encompassing the

TCNS score was significantly larger for thalamus–

somatosensory cortex than for thalamus–insula cortex (Fig.

1g, bar 3 vs bar 4; two-tailed Steiger z test, z = 2.02, p =

0.04). These analyses revealed a double dissociation

connecting self-reported pain scores selectively and preferen-

tially to the functional connectivity of the thalamus–insular

cortex within the right hemisphere. By contrast, neuropathy

deficit was related to the reduction in the functional connec-

tivity of the thalamus–somatosensory cortex.

Table 1 (continued)
Characteristic IR nociceptor

phenotype

NIR nociceptor

phenotype

p value

N 10 33

Verticesc 7347.2 (935.5) 7094.8 (746.0) 0.38

Volume 11,562.3 (1410.4) 11,167.7 (1218.5) 0.39

Insular cortex

Thickness, mm 2.87 (0.2) 2.80 (0.1) 0.27

Volume, mm3 6056.6 (965.9) 6016.3 (677.7) 0.88

Verticesc 3167.3 (428.1) 3182.6 (357.5) 0.91

Data are shown as mean (SD), except where they are reported as n (%)
aTwenty-three (NIR 19, IR 4) sural nerve conduction responses were not recordable
bTwelve (NIR 11, IR 1) peroneal nerve conduction responses were not recordable
c Structural measure vertices are expressed as an arbitrary unit of measurement
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Next , we examined whe the r the func t iona l

connectivity–neuropathy scores dissociation was driven

by structural changes in the thalamus, insular cortex or

somatosensory cortex (Table 1). We repeated the partial

correlation analysis but we also regressed out the

volumes measurements of each of these brain regions.

Once again, the partial correlations linking self-reported

pain scores (NTSS-6) to the thalamus–insular cortex

functional connectivity (r = 0.37, p = 0.03) and linking

neuropathy severity (TCNS) to thalamus–somatosensory

cortex functional connectivity (r = 0.35, p = 0.03) were

demonstrated. Hence, structural changes to the thalamus,

insular cortex and somatosensory cortex do not account

for the functional connectivity–neuropathy score double

dissociation.

Finally, group classification performance of the machine-

learning model for the NIR phenotype achieved an accuracy

of 0.92 (95% CI 0.08) and sensitivity of 90%. The positive

predictive value (NIR) and negative predictive value (IR) was

100% and 67%, respectively. AUC analysis indicated that the

machine-learning model exhibited good performance

accuracy.

Fig. 1 (a–d) Right view of resting-state functional connectivity in indi-

viduals with painful DPN who had the IR nociceptor phenotype (a) and

NIR nociceptor phenotype (c); R, right; IC, insular cortex (Montreal

Neurological Institute [MNI] coordinates: 44, 4, 0); Post CG, postcentral

gyrus (MNI coordinates: 2, −36, 62); Thal, thalamus (MNI coordinates:

10, −19, 6). Bar charts show the effect size of differences in mean thala-

mus–insular cortex (b) and thalamus–postcentral cortex (d) functional

connectivity between study groups (error bars represent 95% CI). (e, f)

Scatter-plots depicting linear correlation between the right thalamus–

insular cortex functional connectivity (R Thal-IC FC) and the NTSS-6

pain scores (e) and between the right thalamus–somatosensory cortex

functional connectivity (R Thal-Post CG FC) and the TCNS (f). (g) Bar

graph plotting four functional connectivity and behaviour partial correla-

tion coefficients (Pearson’s r) derived from the functional connectivity of

the right thalamus–insular cortex (R Thal-IC FC, white bars) and the right

thalamus–somatosensory cortex (R Thal-Post CG FC, black bars). Bars 1

and 2 indicate correlations involving the NTSS-6 and bars 3 and 4 indi-

cate correlations involving the TCNS. Each partial r (e.g. bar 1) is obtain-

ed by correlating a given behaviour (e.g. self-reported pain scores, NTSS-

6) with the functional connectivity derived from a given network (e.g.

right Thal-IC FC). *p<0.05
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Discussion

The key findings from this study were that individuals with

the IR nociceptor phenotype have significantly greater

thalamus–insular cortex functional connectivity and

decreased thalamus–somatosensory cortex functional connec-

tivity compared with those with the NIR nociceptor pheno-

type. Indeed, there was a significant positive correlation

between thalamus–insular cortex functional connectivity and

pain scores (NTSS-6). Similar associations between insular

cortex functional connectivity and pain scores have also been

demonstrated across other chronic pain conditions [20]. Thus,

the insular cortex, which plays a pivotal role in affective and

attentional pain processing [21], may be an overactive pain-

promoting brain region in individuals with the IR nociceptor

phenotype. In addition, there was a greater reduction in

thalamus–somatosensory cortex functional connectivity in

individuals with more severe neuropathy (TCNS). This

suggests that the deafferentation or dying-back axonopathy,

resulting from a severe neuropathy, lead to reduced peripheral

sensory input which in turn leads to a reduction in somatosen-

sory cortical volume [6] and functional connectivity.

Crucially, we observed a double disassociation such that defi-

cits of nerve function were more correlated with thalamus–

somatosensory cortex functional connectivity and self-

reported pain scores were more correlated with thalamus–

insular cortex functional connectivity. Taken together, we

have demonstrated how MRI measures of functional connec-

tivity relate to both the somatic (i.e. TCNS) and non-somatic

(self-reported pain intensity ratings) assessment of painful

DPN. To the best of our knowledge, this is the first time this

has been demonstrated in painful DPN. Future prospective

studies are required to determine the natural history of the

alterations in functional connectivity described in relation to

the onset of painful DPN.

Current therapies for painful DPN have limited efficacy,

as reflected in the high psychosocial burden, low rates of

functional recovery and return to work, and continued

reliance on opioid analgesics [1, 22, 23]. The lack of a

reliable biomarker to stratify patients and to predict thera-

peutic response is one of the main barriers preventing the

identification and development of safe and effective, non-

additive pain medications. We have demonstrated how

structural and functional changes within the central

nervous system reflect an individual’s clinical pain pheno-

type [6] and also predict response to neuropathic pain

treatment [7]. There is now increasing evidence that

magnetic resonance neuroimaging could serve as a reliable

biomarker in clinical trials of pain therapeutics. This could

increase the probability of novel compounds advancing to

Phase II trials, reduce the variability of the therapeutic

response and reduce the overall expense and time of drug

development.

We used machine-learning approaches to integrate MRI

anatomical data and resting-state functional connectivity data

to classify individuals with painful DPN into sensory pheno-

types. We found this approach is feasible with a good degree

of accuracy and performance. Although these findings are

promising, more research is now needed to externally validate

our machine-learning model with a larger sample size. If

successfully validated, multidimensional reduction ofmagnet-

ic resonance neuroimaging data through machine-learning

offers a novel approach to classify patients with painful

DPN into sensory phenotypes.

This study has some limitations, including a study population

with a male predominance and a long pain duration. To assess

this further, we completed a sensitivity analysis by examining

differences in functional connectivity between sexes (male vs

female) and between individuals with long (>8 years) vs short

(<8 years) duration of pain (mean duration of pain in the whole

study population was 8.5 [SD 6.9] years). We found no signifi-

cant differences in functional connectivity in these two compar-

isons. Nevertheless, further studies are required to determine

whether the findings in this study are reproducible across sexes

and individuals with different pain durations. Another limitation

was the lack of a painless DPN control group. This would have

enabled us to determine the differential impact of neuropathy vs

the presence of pain. However, our study findings provide clues

to address this limitation. There was a clear disassociation

between deficits of nerve function that correlated with

thalamus–somatosensory cortex functional connectivity and

self-reported pain scores, which were more correlated with the

thalamus–insular cortex functional connectivity. Future studies

should consider the inclusion of individualswith painlessDPN to

explore this further.

In summary, there has been considerable progress towards a

mechanism-based approach to managing painful DPN in recent

years [24].Much of the focus has been on sensory profiling using

QST, which remains a subjective psychophysical measure.

Crucially, these methods do not capture the complex multiface-

ted experience of pain, which not only affects sensory but also

emotional/cognitive processing. What is clear is that many of the

factors influencing pain perception are centrally mediated and

neuroimaging provides the best tool to quantify this. Using

advanced multimodal magnetic resonance neuroimaging, we

have demonstrated alterations in pain-processing brain regions

that relate to clinical pain phenotype, treatment response [7] and

behavioural/psychological factors impacted by pain [6]. Taken

together, these assessments could serve as a possible central pain

signature for painful DPN. The challenge now, is to apply this

potential pain biomarker at an individual level in order to demon-

strate clinical utility. To this end, we have shown proof of

concept that a machine-learning approach to classify individuals

into different clinical pain phenotypes using brain imaging

features taken from a quick, 6 min RS-fMRI scan is feasible. In

future studies we aim to externally validate and optimise this
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model on a larger cohort of individuals and examinewhether and

how such a model can be used as a biomarker in clinical trials of

pain therapeutics.
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