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SOME A POSTERIORI ERROR BOUNDS FOR REDUCED-ORDER
MODELLING OF (NON-)PARAMETRIZED LINEAR SYSTEMS
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Abstract. We propose a posteriori error bounds for reduced-order models of non-parametrized linear
time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors
of the transfer functions of the reduced-order models, and are independent of the model reduction
methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently
computable error bounds can be derived. According to the error bounds, reduced-order models of both
non-parametrized and parametrized systems, computed by Krylov subspace based model reduction
methods, can be obtained automatically and reliably. Simulations for several examples from engineering
applications have demonstrated the robustness of the error bounds.
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1. Introduction

The technique of model order reduction (MOR) has been successfully applied in many fields, e.g., mechanical
engineering, structural engineering, fluid dynamics, optimization, control, circuit simulation, microelectrome-
chanical systems (MEMS) simulation, uncertainty quantification, inverse problems etc.. The robustness of MOR
has been revealed in all the above application areas.

The purpose of MOR is to reduce the number of degrees of freedom in the original large-scale systems
described by algebraic equations, ordinary differential equations (ODEs), or differential algebraic equations
(DAEs) while attaining good accuracy. These systems usually come from (time-)spatial discretization of partial
differential equations describing the underlying process, devices, structure or dynamics, etc.. Sometimes, the
mathematical models are described directly by ODEs/DAEs, for example, the many models obtained based on
modified nodal analysis (MNA) in circuit or MEMS simulation.

Parametric model order reduction (PMOR) is an advanced MOR technique for more complex mathematical
models, where some variables, called parameters, are entries of the system matrices that are allowed to vary, such
that the systems are parametrized. For a parametrized system, PMOR methods aim to preserve the parameters
as symbolic quantities in the reduced-order models, such that a single reduced-order model is sufficiently accurate
for all possible variations of the parameters.
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Krylov subspace based moment-matching MOR and Gramian based MOR are popular MOR methods for
non-parametrized LTI systems. The very basic method of Gramian based MOR is balanced truncation, which
is well-known for its global error bound. Recent algorithmic progress has made this method applicable to truly
large-scale systems, see, e.g., [7]. As these advances include certain approximations, the global error bound is
not computable exactly, and therefore should be confirmed by an a posteriori error bound. Moment-matching
MOR methods are computationally efficient, and are widely used in large-scale problems arising from circuit or
MEMS simulation. However, they suffer from the lack of a global error bound, which leads to the fact that the
reduced-order model cannot be generated automatically and reliably.

Some attempts have been made to get error estimation for moment-matching MOR methods applied to non-
parametrized LTI systems [8, 12, 20, 29, 33, 43]. While showing the efficiency of their error estimators, these are
more or less heuristics [8, 12, 20, 29, 33]. Based on systems theory, an error bound is derived in [43], but faces
high computational complexity. The residual of the state vector is simply used in [29] as the error estimator of
the reduced-order model. All these error estimators are limited to non-parametrized systems. An a posteriori
error bound for parametrized LTI systems is proposed in time domain in [30]. Although it is stated that it can
be seen as a posteriori error bound for the Krylov subspace based method (e.g. moment-matching MOR), it is
hardly computable

In recent years, numerous model order reduction methods for parametrized LTI systems have been devel-
oped, for example, the Krylov subspace based (multi-moment matching) PMOR methods [16, 18, 19, 21], the
interpolation based PMOR methods [3,5,6,37], the Loewner approach to parametric model reduction [35], and
the reduced basis methods [14, 28]. A survey of PMOR methods can be found in [10]. Among these methods,
only for the reduced basis method a posteriori error bounds are known. These enable automatic generation of
a reliable reduced parametrized model.

Error bounds/estimators have been intensively studied in the context of the reduced basis method for
parametrized systems. Many error estimators developed for the reduced basis methods estimate the error in the
state vectors (field variables) [24,31,32,40], not for the outputs of the systems. In many applications, the output
or the transfer function (output in the frequency domain) of the system are of interest. The error estimations for
the state vectors often tends to overestimate the output errors. Nevertheless, output error estimators for reduced
basis methods are proposed in [39,42], which are only applicable to steady state systems. In [25], an output error
bound for linear parabolic equations is proposed, which estimates the output error of the reduced-order model
in time domain. Output error bounds in time domain are also introduced in [48–50] based on space-time vari-
ational formulation of the original system. Output error estimation in time domain for projection based MOR
and for general nonlinear systems is proposed in [51]. However, direct application of those time-domain error
bounds to the frequency-domain PMOR methods, such as the Krylov subspace based multi-moment matching
PMOR methods [16,18,19,21], is unclear. Typically, almost all the error bounds for the reduced basis methods
necessitate the bilinear forms of the PDE models [24, 25, 28, 31, 32, 39, 42, 48–50].

The above observations motivate us to derive output error bounds for dynamical systems in the discretized
vector space Cn. We propose several a posteriori error bounds for the reduced-order models of both, non-
parametrized LTI systems and parametrized LTI systems. The error bounds are the bounds for the difference
between the transfer function of the original system and that of the reduced-order model, and are applicable to
(P)MOR methods based on Petrov−Galerkin projection [16, 18, 19, 21] and other methods that allow efficient
residual evaluation of the output quantities.

The basic idea of the proposed error bounds originates from the output error bounds for the reduced basis
methods [14, 39, 42]. The main theoretical contributions of the newly derived error bounds are firstly, the error
bounds are independent of the discretization method (finite difference, finite element, finite volume) applied to
the original PDEs. Secondly, the error bounds can be directly used in the discretized vector space Cn, without
going back to the PDEs, and especially to the bilinear form (weak formulation) associated with the finite
element discretization. This is typically useful when only discretized systems are available in some situations.
In particular, most of the dynamical models in circuit and MEMS simulation are derived using commercial
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software, where the usable mathematical models appear directly as ordinary differential equations (ODEs), or
differential algebraic equations (DAEs). The bilinear form of the PDE models are usually unknown.

Technically, the proposed error bounds provide a way of automatically generating reliable reduced-order
models computed by the Krylov subspace based (P)MOR methods, which is desired in design automation
for circuits and MEMS. Although Krylov subspace based (P)MOR methods have been integrated into some
simulation tools [41], the reduced-order model cannot be guaranteed to satisfy the required accuracy due to the
lack of an robust error bound. We are making the design automation reliable by proposing some a posteriori
error bounds for both non-parametrized and parametrized linear systems.

The paper is organized as follows. In the next section, we present the transfer function of an LTI system,
and the reduced transfer function of the reduced-order model. Our goal is to propose error bounds for the
error between the two transfer functions. We further show several examples of LTI systems, for which the error
of the corresponding reduced-order models can be measured by the proposed error bounds. In Section 3, we
propose an a posteriori error bound which has strong limitations on the system matrices. a posteriori error
bounds for more general LTI systems are proposed in Section 4. How to efficiently compute the error bounds
is discussed in Section 5. Section 6 relates the error bound analysis in Section 4 to a new reduction method.
In the section that follows, the basic idea of moment-matching MOR/multi-moment matching PMOR methods
are reviewed. One will see that automatic generation of reduced-order models relies on adaptive selection of
expansion points. Algorithms for automatic selection of the expansion points according to the a posteriori error
bounds are proposed. Simulation results are presented in Section 8. Conclusions and future work are given in
the end.

2. Preliminaries

In this paper, we consider a posteriori error bounds for model order reduction of LTI systems, whose transfer
functions are of the form

H(μ) = C(μ)G−1(μ)B(μ). (2.1)

where μ := (μ1, . . . , μp)T ∈ Cp is a vector of parameters or a vector of functions of parameters, e.g., μi :=
φi(p1, . . . , pq) : Cq �→ C, i = 1, . . . , p. B(μ) ∈ Rn×m1 is the input matrix associated with the input signal
u(t) ∈ Rm1 , C(μ) ∈ Rm2×n is the output matrix defining the output response y(t, μ), and G(μ) has different
forms depending on the systems considered, see the examples below. Assume that the transfer function of the
reduced-order model is,

Ĥ(μ) = Ĉ(μ)Ĝ−1(μ)B̂(μ), (2.2)

the goal of this paper is to present some a posteriori error bounds Δ(μ), so that

‖H(μ) − Ĥ(μ)‖max ≤ Δ(μ), (2.3)

where ‖ · ‖max denotes the max norm of a matrix, B̂(μ) ∈ Rr×m1 , Ĉ(μ) ∈ Rm2×r, Ĝ(μ) ∈ Rr×r. We consider
general multiple-input and multiple-output (MIMO) systems, i.e. m1 ≥ 1 and m2 ≥ 1.

2.1. Systems that can be evaluated via the proposed error bounds

We consider several examples of the systems whose reduced-order models can be evaluated via the proposed
error bounds for the transfer function. Firstly, the transfer function of a first-order LTI system, e.g.,

E(μ̃)
dx(t, μ̃)

dt
= A(μ̃)x(t, μ̃) + B(μ̃)u(t),

y(t, μ̃) = C(μ̃)x(t, μ̃),
(2.4)

can be written as in (2.1), with G(μ) = sE(μ̃) − A(μ̃). Here and below, the entries in μ could be certain
functions of the geometrical or physical parameters μ̃ := (μ̃1, . . . , μ̃p̃)T ∈ D ⊂ Rp̃ and the Laplace variable s,
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e.g., μi := φi(μ̃1, . . . , μ̃p̃, s), where D is the feasible parameter domain. E(μ̃) ∈ Rn×n, A(μ̃) ∈ Rn×n are the
system matrices. x ∈ Rn is the state vector.

Secondly, second-order LTI systems,

M(μ̃)
d2x(t, μ̃)

dt2
+ K(μ̃)

dx(t, μ̃)
dt

+ A(μ̃)x(t, μ̃) = B(μ̃)u(t),

y(t, μ̃) = C(μ̃)x(t, μ̃),
(2.5)

have transfer functions H(μ) as in (2.1), with G(μ) = s2M(μ̃) + sK(μ̃) + A(μ̃). Therefore, the error of the
reduced-order model of either a first-order LTI system or a second-order LTI system can be evaluated via (2.3).

Finally, steady-state systems without time evolution can be written in the form

G(μ̃)x(μ̃) = B(μ̃),

y(μ̃) = C(μ̃)x,
(2.6)

The output y(μ̃) of (2.6) has the same form as H(μ) in (2.1). Therefore, the output error of the reduced-order
model of (2.6) can also be evaluated via (2.3), by replacing H(μ) with y(μ̃), and Ĥ(μ) with ŷ(μ̃), the approximate
output computed from its reduced-order model.

3. Error bound for special LTI systems

The technique of deriving the error bound in this section is motivated by the method in [39], where an output
error bound for the reduced-order model is derived based on the weak formulation of certain PDEs. The error
bound in [39] is derived in functional space, and is only valid for parametrized systems with real parameters.
Here, we consider estimating the error of the reduced-order model directly in the vector space Cn. Further
extensions have been made, so that the derived error bound is applicable to systems with complex parameters,
and finally, it can be used for adaptive selection of the multiple expansion points discussed in Section 7.1.1.

In Section 5, we will see that the error bound derived in this section is only valid for some special systems. For
example, for non-parametrized systems with G(μ) = sE − A, E is required to be symmetric positive definite,
and A needs to be symmetric negative definite. For parametrized systems, there are more limitations on G(μ).
This will be discussed in detail in Section 5.

3.1. Derivation of an error bound for SISO systems

We only consider single-input single-output (SISO) systems in this subsection. The results will be used to
get an a posteriori error bound for MIMO systems in the next subsection.

To derive the error bound, we define the norm ‖ · ‖Ã: Cn → R for a complex vector x as

‖x‖Ã = (x∗Ãx)1/2

Here, the matrix Ã is assumed to be symmetric positive definite. In the following, no further assumptions on
Ã are made during the proofs of the propositions and theorems. It can be simply taken as the identity matrix,
then the norm reduces to the standard 2-norm. x∗ is the conjugate transpose of x ∈ Cn. The norm ‖ · ‖Ã is
actually associated with the inner product: 〈·, ·〉: 〈x1, x2〉 = x∗

2Ãx1, ∀x1, x2 ∈ Cn.
We also assume that the matrix-valued function G(μ): C

p �→ C
n×n satisfies the following coercivity conditions3

Re(x∗G(μ)x) ≥ α(μ)(x∗Ãx), ∀x ∈ C
n, x �= 0, Re(s) ≥ 0, ∀μ̃ ∈ D ⊂ R

p̃. (3.1)

3we assume that the systems considered are stable, i.e. the system eigenvalues λ for the system in (2.4), [λE(μ̃) − A(μ̃)]x = 0,
and for the system in (2.5), [λ2M(μ̃) + λK(μ̃) + A(μ̃)]x = 0, where μ̃ is defined in (2.4), (2.5), are in the open left plane, ∀μ̃. Note
that the entries of the vector μ are functions of the parameters μ̃ and the Laplace variable s, i.e. μi := φi(μ̃1, . . . , μ̃p̃, s), as defined
in (4). As a result, to avoid defining G(μ) on the eigenvalues, we restrict s to be on the closed right half plane, i.e. G(μ) is assumed
to satisfy (3.1) and (3.2), ∀s on the closed right half plane: Re(s) ≥ 0, ∀μ̃ ∈ D ⊂ Rp̃. The domain D of the parameters μ̃ may be any
subset of Rp̃, it is only implicitly restricted by the coercivity assumptions. That is, our results are valid only for those parameter
domains D for which (3.1) and (3.2) are satisfied.



ERROR BOUNDS FOR LINEAR MOR 2131

and
Im(x∗G(μ)x) ≥ γ(μ)(x∗Ãx), ∀x ∈ C

n, x �= 0, Re(s) ≥ 0, ∀μ̃ ∈ D ⊂ R
p̃. (3.2)

where Re(·) means the real part of x∗G(μ)x, and Im(·) it’s imaginary part. α(μ) > 0, γ(μ) > 0 may depend on
the parameter μ. Efficient computation of α(μ) > 0, γ(μ) > 0 is given in Section 5. Our goal is to derive an
error bound for the error |H(μ)− Ĥ(μ)|, where | · | means the absolute value or modulus of a complex number.

We first define an auxiliary primal system in the frequency domain,

G(μ)x(μ) = B(μ),

y(μ) = C(μ)x(μ),
(3.3)

It is easy to see that the output y(μ) in (3.3) equals the transfer function H(μ) of the original system (2.1).
Note that (3.3) is an instance of the original system for a particular input function (impulsive excitation). It is
only used to derive the transfer function error bounds, and it is not the target of our consideration. Assume that
the transfer function Ĥ(μ) in (2.2) corresponds to the reduced matrices4 Ĝ(μ) = WT G(μ)V , B̂(μ) = WT B(μ),
and Ĉ(μ) = C(μ)V . Then the reduced-order model for the primal system (3.3) is defined as

WT G(μ)V z(μ) = WT B(μ),

ŷ(μ) = C(μ)V z(μ),
(3.4)

where W, V ∈ Rn×r are the matrices used to obtain Ĥ(μ). Here x̂(μ) := V z(μ) is the approximation of x(μ)
in (3.3). Analogously, ŷ(μ) equals the transfer function Ĥ(μ).

To assist the derivation of the error bound, we need a dual system in the frequency domain,

G∗(μ)xdu(μ) = −C∗(μ),

ydu(μ) = B∗(μ)xdu(μ).
(3.5)

The reduced-order model for the dual system is defined as

V T G∗(μ)Wzdu(μ) = −V T C∗(μ),

ŷdu(μ) = B∗(μ)Wzdu(μ),
(3.6)

where G∗(μ) is the conjugate transpose of G(μ). x̂du(μ) := Wzdu(μ) is the approximate solution to the dual
system, xdu(μ) ≈ x̂du(μ).

Let rpr(μ) = B(μ)−G(μ)x̂(μ) be the residual of x̂(μ), and rdu(μ) = −C(μ)∗−G∗(μ)x̂du(μ) be the residual of
x̂du(μ). In order to make the final description of the error bound as concise as possible, we use the representations
of rpr and rdu in terms of another basis in Cn. Since Ã is positive definite, its column vectors are a basis in Cn.
Therefore, rpr and rdu can be represented by the column vectors of Ã, i.e.

rpr(μ) = Ãξpr(μ) (3.7)

and
rdu(μ) = Ãξdu(μ). (3.8)

For the sake of brevity, in the following we will leave out the dependency of rpr(μ), rdu(μ), ξpr(μ), ξdu(μ), x(μ),
xdu(μ), x̂(μ), x̂du(μ), z(μ), zdu(μ) on μ, which will be clear from the context. We first propose a relation between
H(μ) − Ĥ(μ) and the errors of the approximate state vectors x̂ and x̂du. This relation will be repeatedly used
to derive the error bound.

4Since we assume that the systems matrices in (2.4)−(2.6) are all real matrices, it is usually preferred that the reduced-order
models also have real system matrices. Therefore, we choose real projection matrices W, V ∈ Rn×r to guarantee this condition.



2132 L. FENG ET AL.

Proposition 3.1. If the reduced-order model (3.4) of the primal system and that of the dual system (3.6) are
obtained by the same pair W and V , then

H(μ) − Ĥ(μ) = C(μ)x − C(μ)x̂ = −(εdu)∗G(μ)εpr,

where εdu = xdu − x̂du and εpr = x − x̂.

Proof. From (3.4), we have WT B − WT G(μ)x̂ = 0, i.e.

WT G(μ)x − WT G(μ)x̂ = 0

⇔ WT G(μ)(x − x̂) = 0

⇒ (zdu)∗WT G(μ)(x − x̂) = 0

⇔ (x̂du)∗G(μ)(x − x̂) = 0

⇔ (x̂du)∗G(μ)εpr = 0.

(3.9)

From (3.5) and (3.9), we get

C(μ)x − C(μ)x̂ =C(μ)εpr

= − (xdu)∗(G∗(μ))∗εpr

= − (xdu)∗G(μ)εpr + (x̂du)∗G(μ)εpr . (3.10)

= − (εdu)∗G(μ)εpr . �

Since the computation of εdu and εpr involves computation of xdu and x, the solutions of the full dual and the
full primal systems, |(εdu)∗G(μ)εpr | cannot act as a computable error bound for |H(μ) − Ĥ(μ)|. Next, we will
use Proposition 1 and the assumptions on G(μ) to derive computable error bounds for the real and imaginary
parts of H(μ)− Ĥ(μ) separately. The final error bound can be obtained from the error bounds for the real and
imaginary parts.

Proposition 3.2. If the reduced-order model (3.4) of the primal system and that of the dual system (3.6) are
obtained by the same pair W and V , and G(μ) satisfies (3.1), then

−SR − βR ≤ Re(H(μ) − Ĥ(μ)) ≤ SR − βR.

Here,

βR =
1

4α(μ)

[
(ξpr)∗Ãξdu + (ξdu)∗Ãξpr

]
, SR =

1
4α(μ)

[
κ0(ξpr)∗Ãξpr +

1
κ0

(ξdu)∗Ãξdu

]
,

and

κ0 =

(
(ξdu)∗Ãξdu

(ξpr)∗Ãξpr

)1/2

·

Proof. We begin by defining an auxiliary vector ε−α = 1
α(μ)ξ

pr − 1
κα(μ)ξ

du. Here and below, κ > 0 is a variable

to be specified. We first derive an upper bound for Re(H(μ) − Ĥ(μ)). Since α(μ) > 0,

0 ≤ κα(μ)
〈

εpr − 1
2
ε−α , εpr − 1

2
ε−α

〉
= κα(μ)

(
εpr − 1

2
ε−α

)∗
Ã

(
εpr − 1

2
ε−α

)
= κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε−α )∗Ãε−α − κα(μ)
2

(ε−α )∗Ãεpr − κα(μ)
2

(εpr)∗Ãε−α

⇔ κα(μ)
2

(ε−α )∗Ãεpr +
κα(μ)

2
(εpr)∗Ãε−α ≤ κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε−α )∗Ãε−α .

(3.11)
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From the property of the inner product

(ε−α )∗Ãεpr = (εpr)∗Ãε−α , (3.12)

we only have to estimate (εpr)∗Ãε−α in the last inequality of (3.11). From the definition of ε−α ,
and (3.7), (3.8), (3.10), we get

(εpr)∗Ãε−α =
1

α(μ)
(εpr)∗Ãξpr − 1

κα(μ)
(εpr)∗Ãξdu

=
1

α(μ)
(εpr)∗rpr − 1

κα(μ)
(rdu)∗εpr

=
1

α(μ)
(εpr)∗(B(μ) − G(μ)x̂) − 1

κα(μ)
(−C∗(μ) − G∗(μ)x̂du)∗εpr

=
1

α(μ)
(εpr)∗(G(μ)x − G(μ)x̂) − 1

κα(μ)
(G∗(μ)xdu − G∗(μ)x̂du)∗εpr

=
1

α(μ)
(εpr)∗G(μ)εpr − 1

κα(μ)
(G∗(μ)εdu)∗εpr

=
1

α(μ)
(εpr)∗G(μ)εpr − 1

κα(μ)
(εdu)∗G(μ)εpr

=
1

α(μ)
(εpr)∗G(μ)εpr +

1
κα(μ)

(C(μ)x − C(μ)x̂).

(3.13)

Using the relation in (3.12), and substituting the last inequality in (3.13) into the last inequality of (3.11) yields

κα(μ)
2

(ε−α )∗Ãεpr +
κα(μ)

2
(εpr)∗Ãε−α ≤ κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε−α )∗Ãε−α

⇔ κ

2

[
2Re((εpr)∗G(μ)εpr) +

2
κ

Re(C(μ)x − C(μ)x̂)
]
≤ κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε−α )∗Ãε−α

⇔ κRe((εpr)∗G(μ)εpr) + Re(C(μ)x − C(μ)x̂) ≤ κα(μ)(εpr)∗Ãεpr +
κα(μ)

4
(ε−α )∗Ãε−α

⇔ Re(C(μ)x − C(μ)x̂) ≤ −κRe((εpr)∗G(μ)εpr) + κα(μ)(εpr)∗Ãεpr +
κα(μ)

4
(ε−α )∗Ãε−α

⇒ Re(C(μ)x − C(μ)x̂) ≤ κα(μ)
4

(ε−α )∗Ãε−α ,

(3.14)

where the last inequality holds due to (3.1). Substituting ε−α = 1
α(μ)ξ

pr − 1
κα(μ)ξ

du into the last inequality
of (3.14) gives

Re(C(μ)x − C(μ)x̂) ≤ κα(μ)
4

(ε−α )∗Ãε−α

≤ κ

4α(μ)
(ξpr)∗Ãξpr +

1
4κα(μ)

(ξdu)∗Ãξdu − 1
4α(μ)

(ξpr)∗Ãξdu − 1
4α(μ)

(ξdu)∗Ãξpr

⇔ Re(H(μ) − Ĥ(μ)) ≤ fR(κ) − βR,
(3.15)

where fR(κ) = κ
4α(μ) (ξ

pr)∗Ãξpr + 1
4κα(μ) (ξ

du)∗Ãξdu.

Next we derive the lower bound, Re(H(μ)− Ĥ(μ)) ≥ −fR(κ)− βR. We now define a second auxiliary vector
ε+α = 1

α(μ)ξ
pr + 1

κα(μ)ξ
du. Replacing ε−α in (3.11) with ε+α , we obtain a similar expression for ε+α ,

κα(μ)
2

(ε+α )∗Ãεpr +
κα(μ)

2
(εpr)∗Ãε+α ≤ κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε+α )∗Ãε+α . (3.16)
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It is not difficult to see from (3.13) that

(εpr)∗Ãε+α =
1

α(μ)
(εpr)∗G(μ)εpr − 1

κα(μ)
(C(μ)x − C(μ)x̂). (3.17)

Using the relation (ε+α )∗Ãεpr = (εpr)∗Ãε+α , substituting (3.17) into (3.16), and following calculations similar
to (3.14), yields

κα(μ)
2

(ε+α )∗Ãεpr +
κα(μ)

2
(εpr)∗Ãε+α ≤ κα(μ)(εpr)∗Ãεpr +

κα(μ)
4

(ε+α )∗Ãε+α

⇒ −Re(C(μ)x − C(μ)x̂) ≤ κα(μ)
4

(ε+α )∗Ãε+α .

(3.18)

Substituting ε+α = 1
α(μ)ξ

pr + 1
κα(μ)ξ

du into the last inequality of (3.18), and following calculations analogous
to (3.15), we can assert that

−Re(C(μ)x − C(μ)x̂) ≤ κα(μ)
4

(ε+α )∗Ãε+α

⇔ Re(H(μ) − Ĥ(μ)) ≥ −fR(κ) − βR.
(3.19)

Combining the last equality of (3.15) with that of (3.19), we have |Re(H(μ) − Ĥ(μ)) + βR| ≤ fR(κ). It is not
difficult to check that when κ = κ0, fR(κ) reaches the minimum, and fR(κ0) = SR. �

Proposition 3.3. If the reduced-order model (3.4) of the primal system and that of the dual system (3.6) are
obtained by the same pair W , V , and G(μ) satisfies (3.2), then

−SI + βI ≤ Im(H(μ) − Ĥ(μ)) ≤ SI + βI .

Here,

βI =
1

4γ(μ)

[
(ξpr)∗Ãξdu + (ξdu)∗Ãξpr

]
, SI =

1
4γ(μ)

[
κ0(ξpr)∗Ãξpr +

1
κ0

(ξdu)∗Ãξdu

]
,

and κ0 is defined as in Proposition 3.2.

Proof. We first derive the upper bound for Im(H(μ)− Ĥ(μ)). Similar to the proof of Proposition 2, let us define
an auxiliary vector ε−γ = 1

γ(μ)ξ
pr − 1

κγ(μ)ξ
du. In the following discussions, j =

√−1 is the imaginary unit. Since
γ(μ) > 0,

0 ≤ κγ(μ)
〈
εpr +

j

2
ε−γ , εpr +

j

2
ε−γ
〉

= κγ(μ)(εpr +
j

2
ε−γ )∗Ã

(
εpr +

j

2
ε−γ
)

= κγ(μ)(εpr)∗Ãεpr +
κγ(μ)

4
(ε−γ )∗Ãε−γ − jκγ(μ)

2
(ε−γ )∗Ãεpr +

jκγ(μ)
2

(εpr)∗Ãε−γ

⇔ jκγ(μ)
2

(ε−γ )∗Ãεpr − jκγ(μ)
2

(εpr)∗Ãε−γ ≤ κγ(μ)(εpr)∗Ãεpr +
κγ(μ)

4
(ε−γ )∗Ãε−γ .

(3.20)

Since the only difference between ε−α and ε−γ is the denominator, from (3.13) we see

(εpr)∗Ãε−γ =
1

γ(μ)
(εpr)∗G(μ)εpr +

1
κγ(μ)

(C(μ)x − C(μ)x̂). (3.21)
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We proceed analogously to the proof of Proposition 3.2. Using the relation (ε−γ )∗Ãεpr = (εpr)∗Ãε−γ , and substi-
tuting (3.21) into the last inequality of (3.20), yields

jκγ(μ)
2

(ε−γ )∗Ãεpr − jκγ(μ)
2

(εpr)∗Ãε−γ ≤ κγ(μ)(εpr)∗Ãεpr +
κγ(μ)

4
(ε−γ )∗Ãε−γ

⇔ j2κ

2

[
−2Im((εpr)∗G(μ)εpr) +

2
κ

Im(C(μ)x − C(μ)x̂)
]
≤ κγ(μ)(εpr)∗Ãεpr +

κγ(μ)
4

(ε−γ )∗Ãε−γ

⇔ κIm((εpr)∗G(μ)εpr) − Im(C(μ)x − C(μ)x̂) ≤ κγ(μ)(εpr)∗Ãεpr +
κγ(μ)

4
(ε−γ )∗Ãε−γ

⇔ −Im(C(μ)x − C(μ)x̂) ≤ −κIm(εpr)∗G(μ)εpr) + κγ(μ)(εpr)∗Ãεpr +
κγ(μ)

4
(ε−γ )∗Ãε−γ

⇒ −Im(C(μ)x − C(μ)x̃) ≤ κγ(μ)
4

(ε−γ )∗Ãε−γ ,

(3.22)

where the last inequality holds because of (3.2). Substituting ε−γ = 1
γ(μ)ξ

pr − 1
κγ(μ)ξ

du into the last inequality
of (3.22), and following calculations similar to (3.15) gives

Im(H(μ) − Ĥ(μ)) ≥ −fI(κ) + βI , (3.23)

where fI(κ) = κ
4γ(μ) (ξ

pr)∗Ãξpr + 1
4κγ(μ)(ξ

du)∗Ãξdu.

We continue to prove the next claim Im(H(μ) − Ĥ(μ)) ≤ fI(κ) + βI . Defining a second auxiliary vector
ε+γ = 1

γ(μ)ξ
pr + 1

κγ(μ)ξ
du yields

0 ≤ κγ(μ)
〈
εpr +

j

2
ε+γ , εpr +

j

2
ε+γ

〉
= κγ(μ)(εpr +

j

2
ε+γ )∗Ã

(
εpr +

j

2
ε+γ

)
⇔ jκγ(μ)

2
(ε+γ )∗Ãεpr − jκγ(μ)

2
(εpr)∗Ãε+γ ≤ κγ(μ)(εpr)∗Ãεpr +

κγ(μ)
4

(ε+γ )∗Ãε+γ .

(3.24)

From (3.21), we know

(εpr)∗Ãε+γ = 1
γ(μ) (ε

pr)∗G(μ)εpr − 1
κγ(μ) (C(μ)x − C(μ)x̂). (3.25)

Using the relation (ε+γ )∗Ãεpr = (εpr)∗Ãε+γ , substituting (3.25) into the last inequality of (3.24), and follow-
ing (3.22), we obtain

Im(C(μ)x − C(μ)x̃) ≤ κγ(μ)
4 (ε+γ )∗Ãε+γ . (3.26)

Substituting ε+γ = 1
γ(μ)ξ

pr + 1
κγ(μ)ξ

du into (3.26), it follows immediately

Im(H(μ) − Ĥ(μ)) ≤ fI(κ) + βI . (3.27)

From (3.23) and (3.27), we have |Im(H(μ)− Ĥ(μ))− βI | ≤ fI(κ). When κ = κ0, min
κ

fI(κ) = fI(κ0) = SI . �

Based on Proposition 3.2 and 3.3, we can immediately get the error bound for |H(μ) − Ĥ(μ)| given in the
following theorem.

Theorem 3.4. The error of Ĥ(μ) is bounded by Δ(μ) defined as below:

|H(μ) − Ĥ(μ)| =
√

|Re(H(μ) − Ĥ(μ))|2 + |Im(H(μ) − Ĥ(μ))|2 ≤
√

B2
R + B2

I := Δ(μ). (3.28)

Here, BR = max{|SR − βR|, | − SR − βR|} and BI = max{| − SI + βI |, |SI + βI |}.
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3.2. Error bound for MIMO systems

For MIMO systems, the transfer function H(μ) is a matrix. The ikth entry Hik(μ) corresponds to a SISO
system, whose input is uk(t), the kth entry of the input vector u(t), and whose output is yi(t) = C(μ)(i, :)x(t),
the ith entry of the output response y(t). The transfer function Ĥ(μ) of the reduced-order model is also a
matrix. The ikth entry Ĥik(μ) is an approximation of Hik(μ) for the corresponding SISO system. Therefore,
the error between Ĥik(μ) and Hik(μ) can be measured by Δik(μ), which can be computed from (3.28) as

|Hik(μ) − Ĥik(μ)| ≤
√

(Bik
R )2 + (Bik

I )2 =: Δik(μ),

To compute Bik
R , Bik

I corresponding to Δik(μ), the output matrix C(μ) should be replaced by C(μ)(i, :), the ith
row in C(μ). The input matrix B(μ) should be replaced by B(μ)(:, k), the kth column in B(μ), ∀1 ≤ i ≤ m1,
1 ≤ k ≤ m2.

Once all Δik(μ), 1 ≤ i ≤ m1, 1 ≤ k ≤ m2 are computed by (3.28), the final error bound can be taken as the
maximum of them, i.e.

||H(μ) − Ĥ(μ)||max = max
ik

|Hik(μ) − Ĥik(μ)| ≤ max
ik

Δik(μ). (3.29)

In the next section, we propose an a posteriori error bound for Ĥ(μ), which does not require the coercivity
assumption on the real part and the imaginary part of G(μ), respectively. Instead, only an inf-sup condition
suffices, which implies the error bound is valid for more general LTI systems.

4. Error bound for general LTI systems

In this section, we derive an error bound for more general LTI systems. Instead of (3.1) and (3.2), the
matrix-valued function G(μ) is assumed to satisfy an inf-sup condition of the following form5:

inf
w∈C

n

w �=0

sup
v∈C

n

v �=0

w∗G(μ)v
||w||2||v||2 = β(μ) > 0, Re(s) ≥ 0, ∀μ̃ ∈ D ⊂ R

p̃. (4.1)

We still rely on the primal system in (3.3) and the dual system in (3.5). The reduced-order model for the
primal system is of the same form as the system in (3.4). The reduced-order model for the dual system can be
constructed more flexibly as

(W du)T G∗(μ)V duzdu(μ) = −(W du)T C∗(μ),

ŷdu(μ) = B∗(μ)V duzdu(μ),
(4.2)

where W du and V du can be different from V and W for the primal system, that means it is allowed that
W du �= V and V du �= W .

Again, we define two auxiliary variables e(μ) = (x̂du)∗rpr and ỹ(μ) = C(μ)x̂ − e(μ). Here x̂du = V duzdu is
the approximate solution to (3.5).

Theorem 4.1. For a SISO LTI system, if G(μ) satisfies (4.1), then |y(μ) − ỹ(μ)| ≤ Δ̃g(μ), Δ̃g(μ) :=
||rdu||2||rpr||2

β(μ) . As a result, |H(μ) − Ĥ(μ)| = |C(μ)x − C(μ)x̂| ≤ Δg(μ), Δg(μ) := Δ̃g(μ) + |e(μ)|.

5Same as before, the entries of the vector μ are functions of the parameters μ̃ and the Laplace variable s, i.e. μi :=
φi(μ̃1, . . . , μ̃p̃, s), as defined in (4). Here we also restrict s to be on the closed right half plane: Re(s) ≥ 0, ∀μ̃ ∈ D ⊂ Rp̃, to
avoid defining G(μ) on the system eigenvalues (See footnote 3).
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Proof. The dual system G∗(μ)xdu = −C∗(μ) implies that

(x − x̂)∗G∗(μ)xdu = −(x − x̂)∗C∗(μ). (4.3)

From the definition of the residual rpr = B(μ) − G(μ)x̂ = G(μ)(x − x̂) for the primal system, we get

(xdu)∗rpr = (xdu)∗G(μ)(x − x̂). (4.4)

Combining (4.3) with (4.4), it is obvious that

−C(μ)(x − x̂) = (xdu)∗rpr.

Then
|y(μ) − ỹ(μ)| = |C(μ)x − C(μ)x̂ + (x̂du)∗rpr |

= | − (xdu)∗rpr + (x̂du)∗rpr |
= | − (xdu − x̂du)∗rpr |
≤ ||(xdu − x̂du)||2||rpr ||2.

(4.5)

Replacing w in (4.1) with xdu − x̂du yields

sup
v∈Cn

(xdu − x̂du)∗G(μ)v
||xdu − x̂du||2||v||2 ≥ β(μ),

i.e.

sup
v∈Cn

(xdu − x̂du)∗G(μ)v
||v||2 ≥ β(μ)||xdu − x̂du||2. (4.6)

Since
(xdu − x̂du)∗G(μ)v

||v||2 ≤ ||G∗(μ)(xdu − x̂du)||2||v||2
||v||2 = ||G∗(μ)(xdu − x̂du)||2,

and with the choice v = v0 = G∗(μ)(xdu − x̂du),

(xdu − x̂du)∗G(μ)v0

||v0||2 = ||G∗(μ)(xdu − x̂du)||2,

it suffices to make the following observation:

sup
v∈Cn

(xdu − x̂du)∗G∗(μ)v
||v||2 = ||G∗(μ)(xdu − x̂du)||2. (4.7)

Combining (4.6) with (4.7) shows that

||G∗(μ)(xdu − x̂du)||2 ≥ β(μ)||xdu − x̂du||2.

From the definition of rdu = −C∗(μ) − G∗(μ)x̂du = G∗(μ)xdu − G∗(μ)x̂du, we get

||rdu||2 ≥ β(μ)||xdu − x̂du||2. (4.8)

Substituting (4.8) into (4.5) we obtain

|y(μ) − ỹ(μ)| ≤ ||rdu||2||rpr ||2
β(μ)

·
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Since ỹ(μ) = C(μ)x̂ − e(μ),

|C(μ)x − C(μ)x̂| − |e(μ)| ≤ |y(μ) − ỹ(μ)| ≤ ||rdu||2||rpr||2
β(μ)

·

Finally,

|H(μ) − Ĥ(μ)| = |C(μ)x − C(μ)x̂| ≤ ||rdu||2||rpr ||2
β(μ)

+ |e(μ)| =: Δg(μ). �

Remark 4.2. For MIMO systems, we can use a similar technique as in Section 3.2 to get the final error bound
for the reduced transfer matrix.

Remark 4.3. If W du = V , and V du = W , and WT G(μ)V is invertible on the imaginary axis, then e(μ) = 0,
since

e(μ) = (x̂du)∗rpr

= (V duzdu)∗(B − G(μ)V z)

= (Wzdu)∗(B − G(μ)V z)

= (zdu)∗WT [B − G(μ)V (WT G(μ)V )−1WT B]

= (zdu)∗[WT B − WT G(μ)V (WT G(μ)V )−1WT B]
= 0.

(4.9)

In this case, the error bound reduces to

|H(μ) − Ĥ(μ)| ≤ ||rdu||2||rpr ||2
β(μ)

,

and it can actually be straightforwardly derived based on the error analysis in [23] (see Sect. 5.2 in Chap. 5).
The above assumption on WT G(μ)V is reasonable, since in systems theory, we usually assume that no poles of
the transfer function are purely imaginary. As the error is usually measured on the imaginary axis (frequency
response), a ROM with eigenvalues on the imaginary axis would be a poor approximation with infinite error.
Thus, we may assume the ROM to be invertible on the imaginary axis without loss of generality.

Although the matrix pair W du = V , V du = W implies |e(μ)| = 0, they are not always the optimal choice for
the dual system in the sense of making the residual rdu as small as possible. As a result, the error bound which is
also influenced by rdu decreases probably much slower than using an optimal W du, V du, possibly different from
W , V . In this situation, although no contribution of |e(μ)| = 0 to the error bound, the contribution of rdu is much
bigger. Take the dual system in (3.5) for a non-parametric LTI system as an example. If only Galerkin projection
is used to get the reduced-order model, i.e., W = V , then based on the idea of model order reduction and
moment-matching MOR (see Sect. 7.1.1), the subspace Vdu which includes the trajectory of xdu in the frequency
domain should be Vdu = Kq+1((Ẽc(s0)), C̃(s0)) as defined in (7.2), so that range(V du) = Kq+1((Ẽc(s0)), C̃(s0))
is the proper choice for the projection matrix V du, rather than V du = W = V = Kq+1(Ẽb(s0), B̃(s0)) defined
in (7.1). Simulation results in Section 8 also support our analysis. However, if Petrov−Galerkin projection is
used to obtain the reduced-order model, the choice W du = V and V du = W is optimal for moment-matching
MOR.

Remark 4.4. Note that, for non-parametric systems, μ = s. In the following, we use Δg(s) to denote the error
bound Δg(μ) for non-parametric systems.
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Remark 4.5. For the error bound Δ(μ) proposed in Section 3, a global W which is independent of the parame-
ter μ, is needed in order to prove Proposition 1. For the error bound derivation in Proposition 2 and Proposition
3, W, V do not appear in the proofs, no requirement on the global property of W, V is needed.

For the error bound Δg(μ) proposed in Section 4, the three main ingredients for computing the error bound
are the two residuals and β(μ). For any PMOR method, regardless of the choice of global W, V or local W, V [3],
the finally derived reduced-order model is global, which means the two residuals should be available, even if
the reduced-order models of the primal system and the dual system are not in the form of (3.4) and (4.2),
respectively. What we only need is the solution of the reduced-order models of the primal and the dual systems,
from which we can compute the residuals. Therefore (3.4) and (4.2) can be written in a more general form:

Ĝ(μ)z(μ) = B̂(μ),

ŷ(μ) = Ĉ(μ)z(μ),

Ĝdu(μ)zdu(μ) = Ĉdu(μ),

ŷdu(μ) = B̂du(μ)zdu(μ),

Those reduced-order models are obtained not necessarily using the projection framework in (3.4), (4.2) with
global W, V , instead, they can be obtained by, e.g. matrix interpolation using local W, V s [3]. The error bound
Δg(μ) is still valid for such reduced-order models. However, to be consistent throughout the paper, we prefer
to use the projection framework in (3.4), (4.2).

5. Computation of the error bounds

5.1. Computation of Δ(μ)

In Section 3.1, the error bound Δ(μ) is derived for special LTI systems, where the matrix G(μ) is required
to satisfy the two coercive assumptions (3.1) and (3.2). Δ(μ) is determined by the two vectors ξpr and ξdu, and
the two variables α(μ) and γ(μ).

5.1.1. Computation of α(μ) and γ(μ)

For parameterized LTI systems, to compute α(μ) and γ(μ), we have to compute Re(x∗G(μ)x) and
Im(x∗G(μ)x). It is easy to see that if G(μ) has no special form, Re(x∗G(μ)x) and Im(x∗G(μ)x) are almost
impossible to be computed. Therefore, we assume that G(μ) is in the affine form,

G(μ) = E0 + E1μ1 + . . . + Epμp. (5.1)

Even with this assumption, it is still not easy to identify Re(x∗G(μ)x) or Im(x∗G(μ)x) from x∗G(μ)x, if one has
no insight into the structure of the vector μ of parameters. For a general vector μ ∈ Rp, it is hard to compute
Re(x∗G(μ)x) or Im(x∗G(μ)x). However, for some special μ, it is possible. For example, if μ = (s, μ̃)T , where
μ̃ ∈ R is the only geometrical or physical parameter. Such a μ could come from a parametrized first-order LTI
system (2.4) with only one parameter μ̃ associated with the matrix A, so that G(μ) = sE − μ̃A.

In the following, we assume that A and E are symmetric and G(μ) = sE − μ̃A, then for any s = σ0 + jω,

Re(x∗G(μ)x)
x∗Ãx

=
Re(x∗(jωE + σ0E − μ̃A)x)

x∗Ãx

=
x∗Ā(μ̃)x

x∗Ãx

=
x̃∗(R−1)∗Ā(μ̃)R−1x̃

x̃∗x̃
≥ λmin((R−1)∗Ā(μ̃)R−1) := α(μ),
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where Ā(μ̃) = σ0E − μ̃A, R∗R = Ã is the Cholesky factorization of Ã, and x̃ = Rx. λmin((R−1)∗ĀR−1) is the
smallest eigenvalue of (R−1)∗ĀR−1. If A and E are symmetric, x∗Ā(μ̃)x is the real part of x∗G(μ)x. Therefore,
from the property of the Rayleigh quotient, we can take α(μ) as the smallest eigenvalue of the symmetric matrix
(R−1)∗Ā(μ̃)R−1. As a result, Ā needs to be positive definite to guarantee that α(μ) > 0. If Ã = I, the identity
matrix, then α(μ) simplifies to the minimal eigenvalue of the matrix Ā(μ̃). Taking use of the special form of
Ā(μ̃) = σ0E−μ̃A, we can see that (R−1)∗Ā(μ̃)R−1 = σ0(R−1)∗ER−1−μ̃(R−1)∗AR−1. Here, both (R−1)∗ER−1

and (R−1)∗AR−1 can be precomputed independently of μ̃. In any case, smallest eigenvalue of the symmetric
matrix (R−1)∗Ā(μ̃)R−1 must be computed for each value of μ̃.

Remark 5.1. For first-order LTI systems (2.4), one choice of Ã might be Ã = s0E − μ̃0A, where s0 and μ̃0 are
chosen so that Ã is symmetric positive definite. In the non-parametric case, where μ̃ disappears, Ã = s0E − A
and Ā = σ0E − A. Then if σ0 = s0, we obtain the simple case α(s) = 1. Often, s = jω, and σ0 = 0, then we
can use Ã = −A to define the norm, if A is symmetric negative definite. In this situation, Ā = −A too, so that
α(s) ≡ 1.

For the estimation of γ(μ) with G(μ) = sE − μ̃A, we have

Im(x∗G(μ)x)
x∗Ãx

=
ωx∗Ex

x∗Ãx

=
ωx̃∗(R−1)∗ER−1x̃

x̃∗x̃
≥ ωλmin((R−1)∗ER−1) := γ(μ),

λmin((R−1)∗ER−1) is the smallest eigenvalue of (R−1)∗ER−1. Since it is assumed that γ(μ) > 0, E must be
symmetric positive definite. Since Ā = ĀT needs to be positive definite, it implicates that σ0 ≥ 0, μ̃ ≥ 0 and
A = AT < 0. This means that the error bound is valid for frequencies on the closed right half plane: Re(s) ≥ 0
and for nonnegative parameter μ̃ ≥ 0.

In summary,

• for non-parametrized first-order LTI systems (2.4), once we have computed the smallest eigenvalue of
(R−1)∗ĀR−1 (Ā = σ0E − A), we have obtained α(s). Furthermore, λmin((R−1)∗ER−1) can be computed
a priori. Thus, for each value of s, γ(s) is equal to λmin((R−1)∗ER−1) multiplied by ω. That means, the
two eigenvalue problems are solved only once, and can be computed independently of s. The computation
of the smallest eigenvalue of a positive definite matrix can be cheaply computed using the Lanczos process
which requires only a small number of sparse matrix-vector multiplications. Note that when the real part of
s changes, i.e. when σ0 changes, α(s) has to be nevertheless recomputed. This rarely happens, since we are
often interested in the frequency response, where σ0 = 0.

• If the system is in second-order form (2.5), but is non-parametric, successful computation of α(s) and γ(s)
will depend on the properties (e.g., symmetry, positive definiteness) of all the three system matrices E, K, A.
The analysis is similar to that for the first-order LTI systems.

• However, for parametrized LTI system, even with the simplest case G(μ) = sE − μ̃A, α(μ) has to be
recomputed whenever μ̃ varies. For more general parametrized LTI systems (2.4)(2.5), where both E(μ) and
A(μ) are parameter-dependent, it is almost impossible to compute α(μ) and γ(μ).

• As a conclusion, the error bound Δ(μ) is particularly efficient for non-parametrized first-order LTI sys-
tems (2.4) with E symmetric positive definite and A symmetric negative definite.

5.1.2. Computation of ξpr and ξdu

Next, we show how to efficiently compute the two vectors ξpr and ξdu. Since Ã is assumed to be positive
definite, ξpr is uniquely determined by: ξpr = Ã−1rpr . Similarly from (3.8), ξdu can be uniquely determined by
ξdu = Ã−1rdu.



ERROR BOUNDS FOR LINEAR MOR 2141

The two vectors ξpr and ξdu are functions of μ. For each value of μ, two full-size linear systems must be
solved to get ξpr, and ξdu, which looks expensive. However, some μ-independent terms in Ã−1rpr or Ã−1rdu

can be precomputed. For example, for a non-parametrized first-order LTI system, G(μ) = sE − A, so that

ξpr(s) = Ã−1rpr(s),

= Ã−1(B − sEV z + AV z),

= Ã−1[B − sEV (sWT EV − WT AV )−1WT B+

AV (sWT EV − WT AV )−1WT B],

= Ã−1B − sÃ−1EV (sWT EV − WT AV )−1WT B

+Ã−1AV (sWT EV − WT AV )−1WT B.

The terms WT EV, WT AV, WT B need to be computed only once, and can be repeatedly used for any value of
s. Although (sWT EV − WT AV ) needs to be factored for each possible value of s, this is done in the reduced
state-space, which is therefore quite cheap. The matrix V usually has few columns, therefore, the terms Ã−1EV ,
Ã−1AV , Ã−1B can be computed by solving 2r +m1 linear systems. Here, r is the number of the columns in V ,
which is also the size of the reduced-order model, and m1 is the number of columns in B. As a result, the
estimation of ξpr at any fixed value of s can be done efficiently. Likewise, ξdu can be computed by following a
similar strategy. Furthermore, when the standard 2-norm is used, Ã reduces to the identity matrix. Then there
is no need to solve linear systems.

5.2. Computation of Δg(μ)

The key for computing Δg(μ) is how to compute β(μ). The condition (4.1) is equivalent to

inf
w∈Cn

1
||w||2 sup

v∈Cn

w∗G(μ)v
||v||2 = β(μ). (5.2)

On the one hand,
w∗G(μ)v
||v||2 ≤ ||G∗(μ)w||2||v||2

||v||2 = ||G∗(μ)w||2.
On the other hand, when v = G∗(μ)w,

w∗G(μ)v
||v||2 = ||G∗(μ)w||2.

Therefore,

sup
v∈Cn

w∗G(μ)v
||v||2 = ||G∗(μ)w||2.

Substituting this into (5.2), we get

inf
w∈Cn

||G∗(μ)w||2
||w||2 = β(μ).

From the Courant-Fischer theorem, we obtain,

min
w∈Cn

w∗G(μ)G∗(μ)w
w∗w

= λmin(G(μ)G∗(μ)),

i.e. β(μ) =
√

λmin(G(μ)G∗(μ)). The error bound Δg(μ) includes the two residuals rpr and rdu. For the compu-
tation of rpr and rdu, the affinity Assumption (5.1) on G(μ) is preferred. With the affine form, it is not difficult
to see that rpr and rdu can be efficiently computed [28].
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Remark 5.2. Clearly, for each value of μ, the minimal eigenvalue of G(μ)G∗(μ), or equivalently, the minimal
singular value of G(μ), must be computed to get β(μ). It is impractical if β(μ) must be estimated at many
samples of μ. The method proposed in [31] can be used to compute a lower bound βLB(μ) of β(μ), such that
βLB(μ) could be computed efficiently through solving a sequence of small optimization problems. Without
solving any large-scale problems, βLB(μ) is expected to be quickly available for each sample of μ. However,
since it is a lower bound of β(μ), Δg(μ) computed by βLB(μ) would over estimate the real error of the reduced
transfer function Ĥ(μ). It is observed that when the range of μ is very large, βLB is not close to β(μ) at
all. Furthermore, the accuracy of βLB(μ) highly relies on the optimization solvers, which cannot guarantee to
converge to an optimal solution for each sample of μ. The method in [31] becomes complicated for parametrized
systems, and may easily lead to a meaningless lower bound βLB(μ). More efficient methods for computing or
estimating β(μ) will be future work.

Remark 5.3. As compared with Δ(μ), no strict limitation on the systems matrices E(μ), A(μ), such as sym-
metry, positive definiteness, is required. Therefore, Δg(μ) is valid for more general LTI systems.

6. Reformulated reduced-order model with tighter error bounds

It is discussed in Section 4 that except for some special cases, the value of |e(μ)| in the error bound is nonzero
in general. Motivated by the analysis in [2], we show in this section that a different reduced-order model can be
constructed from ỹ(μ) in Theorem 4.1, so that e(μ) in the error bounds disappears.

From the definition of e(μ) = (x̂du)∗rpr(μ) and rpr = B(μ)−G(μ)V (WT G(μ)V )−1WT B(μ), x̂du = V duzdu =
−V du[(W du)T G∗(μ)V du]−1(W du)T C∗(μ), we observe

y(μ) − ỹ(μ)

= C(μ)x − C(μ)x̂ + (x̂du)∗rpr

= C(μ)x − C(μ)x̂ − C(μ)(W du)[(V du)T G(μ)W du]−1(V du)T [B(μ) − G(μ)V (WT G(μ)V )−1WT B(μ)]

= C(μ)G−1(μ)B(μ) − C(μ)V (WT G(μ)V )−1WT B(μ)−
C(μ)W du[(V du)T G(μ)W du]−1(V du)T [B(μ) − G(μ)V (WT G(μ)V )−1WT B(μ)]

= C(μ)G−1(μ)B(μ) − C(μ)V (WT G(μ)V )−1WT B(μ) − C(μ)W du[(V du)T G(μ)W du]−1(V du)T B(μ)

−C(μ)W du[(V du)T G(μ)W du]−1(V du)T G(μ)V (WT G(μ)V )−1WT B(μ).

(6.1)

The right-hand side of the last equality in (6.1) can be written in matrix form as below,

C(μ)G−1(μ)B(μ)︸ ︷︷ ︸
H(μ)

− [C(μ)V C(μ)W du
] [ WT G(μ)V 0

(V du)T G(μ)V (V du)T G(μ)W du

]−1 [
WT B(μ)

(V du)T B(μ)

]
︸ ︷︷ ︸

H̃(μ)

.

Clearly, y(μ) = H(μ) and ỹ(μ) = H̃(μ). Using H̃(μ) to approximate H(μ), the error bound for H̃(μ) is
Δ̃g(μ), i.e. |H(μ) − H̃(μ)| ≤ Δ̃g(μ). There is no additional term |e(μ)| in the error bound.
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Next we consider constructing a reduced-order model whose transfer function is H̃(μ). From H̃(μ), the
corresponding system with zero initial condition6, can be written as[

WT G(μ)V 0

(V du)T G(μ)V (V du)T G(μ)W du

] [
z1

z2

]
=

[
WT B(μ)

(V du)T B(μ)

]
uL(s),

y =
[
C(μ)V C(μ)W du

] [ z1

z2

] (6.2)

in frequency (Laplace) domain. Here and below, uL(·) is the Laplace transform of the input signal u(t).
If the parametrized LTI system in (2.4) or (2.5) is considered, then G(μ) can be written as G(μ) = sE(μ̃)−

A(μ̃) or G(μ) = s2M(μ̃) + sK(μ̃) + A(μ̃). Inserting, e.g. G(μ) = sE(μ̃) − A(μ̃), B(μ) = B(μ̃), C(μ) = C(μ̃)
from (2.4) into (6.2), we get⎡

⎣ sÊ11(μ̃) − Â11(μ̃) 0

sÊ21(μ̃) − Â21(μ̃) sÊ22(μ̃) − Â22(μ̃)

⎤
⎦[ z1

z2

]
=
[

WT B(μ̃)
(V du)T B(μ̃)

]
uL(s),

y =
[
C(μ̃)V C(μ̃)W du

] [ z1

z2

]
,

where Ê11(μ̃) = WT E(μ̃)V , Â11(μ̃) = WT A(μ̃)V , Ê21 = (V du)T E(μ̃)V , Â21(μ̃) = (V du)T A(μ̃)V , Ê22(μ̃) =
(V du)T E(μ̃)W du, Â22(μ̃) = (V du)T A(μ̃)W du.

Using inverse Laplace transform, the reduced-order model in time domain is⎡
⎣ Ê11(μ̃) 0

Ê21(μ̃) Ê22(μ̃)

⎤
⎦[ ż1(t)

ż2(t)

]
=
[

Â11(μ̃) 0
Â21(μ̃) Â22(μ̃)

] [ z1(t)

z2(t)

]
+

[
WT B(μ̃)

(V du)T B(μ̃)

]
u(t),

ŷ =
[
C(μ̃)V C(μ̃)W du

] [ z1(t)

z2(t)

]
.

(6.3)

It shows that for the original system in (2.4), a reduced-order model as in (6.3) can be derived, whose transfer
function is H̃(s), satisfying |H(μ) − H̃(μ)| ≤ Δ̃g(μ). For the second-order parametrized system in (2.5), the
corresponding reduced-order model can also be obtained in a similar way. Notice also that the reduced-order
model (6.3) cannot be obtained by means of an explicit Petrov−Galerkin projection applied to the original
system in (2.4). Instead, the projection

W̃ =

[
W

V du

]
Ṽ =

[
V

W du

]

is applied to a non-minimal realization of the original system, namely[
E(μ̃) 0

E(μ̃) E(μ̃)

][
ẋ1(t)
ẋ2(t)

]
=
[

A(μ̃) 0
A(μ̃) A(μ̃)

][x1(t)

x2(t)

]
+

[
B(μ̃)

B(μ̃)

]
u(t),

y =
[
C(μ̃) C(μ̃)

] [x1(t)

x2(t)

]
.

6Here, we assume that the original system (e.g. (2.4) or (2.5)) has zero initial condition. For a system with nonzero initial
condition, one can use coordinate transformation x̃ = x − x(0) to get a transformed system with state vector x̃, and with zero
initial condition x̃(0) = 0. A reduced-order model with zero initial condition can be obtained by applying MOR to the transformed
system [17].
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In summary, there are two reduced-order models available for the original system in (2.4), one is the reduced-
order model,

WT E(μ̃)V
dz

dt
= WT A(μ̃)V z + WT B(μ̃)u(t),

ŷ(t, μ̃) = CV (μ̃)z,

(6.4)

constructed directly from the original system; the other is the reformulated reduced-order model in (6.3). On
the one hand, if using the same stopping criteria εtol in Algorithm 2, the reduced-order model in (6.4) is usually
less accurate than the one in (6.3) (though both satisfy the error tolerance εtol), because the error bound Δg(μ)
for Ĥ(μ) is less sharp than Δ̃g(μ) for H̃(μ). On the other hand, the reduced-order model in (6.3) could be of
much bigger size than the one in (6.4). From this point of view, the reduced-order model in (6.4) is practically
preferable, since it is of much smaller size and also satisfies an acceptable error tolerance. The analysis is aided
by an example in Section 8.

7. Automatic generation of the reduced-order models

We explore algorithms of automatic constructing reliable reduced-order models in this section. In particular,
we show that the moment-matching MOR methods can be adaptively implemented using the proposed error
bounds. To this end, we first present a brief review of the MOR methods, and point out the necessity of
adaptively implementing the methods.

7.1. Review of moment-matching MOR methods

7.1.1. Moment-matching MOR for non-parametrized LTI systems

For moment-matching methods, the matrices W , V are constructed from the transfer function (matrix) H(s).
Taking the system (2.4) as an example. If it is non-parametric, then the system matrices are all μ̃-independent,
so that H(s) can be expanded into a power series about an expansion point s0 as

H(s) = C[(s − s0 + s0)E − A]−1B

= C[(s − s0)E + (s0E − A)]−1B

= C[I + (s0E − A)−1E(s − s0)]−1(s0E − A)−1B

=
∞∑

i=0

C[−(s0E − A)−1E]i(s0E − A)−1B︸ ︷︷ ︸
:=mi(s0)

(s − s0)i,

then mi(s0), i = 0, 1, 2, . . . are called the ith order moments of the transfer function. The columns of V span
the Krylov subspace

range{V } = Kq+1(Ẽb(s0), B̃(s0)) := span
{
B̃(s0), . . . , (Ẽb(s0))qB̃(s0)

}
, (7.1)

where Ẽb(s0) = (s0E − A)−1E, B̃(s0) = (s0E − A)−1B. The columns of W span the Krylov subspace

range{W} = Kq+1(Ẽc(s0), C̃(s0)) := span
{
C̃(s0), . . . , (Ẽc(s0))qC̃(s0)

}
, (7.2)

where C̃(s0) = (s0E −A)−T CT , Ẽc(s0) = (s0E −A)−T ET . Obviously, W and V span two Krylov subspaces. It
is proved in [23], that the transfer function of the reduced-order model Ĥ(s) matches the first 2q + 1 moments
of the original transfer function H(s). It is obvious that the accuracy of the reduced-order model depends
on the expansion point s0. In many cases, only a single expansion point is insufficient to attain the required
accuracy. Multiple-point expansion is preferred such that the large error caused at frequencies far away from the
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expansion point can be reduced. A reduced-order model of better accuracy and smaller order can be obtained by
multiple-point expansion. Therefore proper selection of multiple expansion points is important. Previous studies
on multiple-point expansion are found in [1,12,13,20,26,29]. In [26], the expansion points are chosen such that
the reduced-order model is locally optimal. A binary search is used in [1, 12, 20] for adaptive, but heuristic
selection of the expansion points. In Section 7.2, we readdress the problem of selecting multiple expansion
points by using the global a posteriori error bounds proposed in Section 3 and Section 4.

7.1.2. Review of multi-moment matching PMOR methods

Multi-moment matching PMOR methods can be found in [11,16,18,19,44,45]. All these methods are based on
Galerkin projection, i.e. W = V . In this section, the robust PMOR method from [11,19] is reviewed. The method
applies to the systems in (2.4) (2.5) or (2.6). It depends on series expansion of the state x in the frequency
(Laplace) domain. Note that for the steady system with algebraic equations (2.6), direct series expansion of x
in (2.6) suffices. Assume in the frequency domain,

x = G−1(μ)B(μ)uL(μ),

with G(μ) being of the affine formulation in (5.1). Then given an expansion point μ0 = [μ0
1, μ

0
2, · · · , μ0

p], x can
be expanded as

x = [I − (σ1M1 + . . . + σpMp)]−1B̃MuL(μ)

=
∞∑

i=0

(σ1M1 + . . . + σpMp)iB̃MuL(μ),

where B̃M (μ) = [G(μ0)]−1B(μ), Mi = −[G(μ0)]−1Ei, i = 1, 2, . . . , p, and σi = μi−μ0
i , i = 1, 2, . . . , p. We call the

coefficients in the above series expansion the moment matrices of the parametrized system. The corresponding
multi-moments of the transfer function are those moment matrices multiplied by C(μ) from the left.

To get the projection matrix V , instead of directly computing the moment matrices [16], a numerically robust
method is proposed in [11, 19]. The method combines the recursions in (7.3) below, with a repeated modified
Gram−Schmidt process so that the moment matrices are computed implicitly.

R0 = BM , R1 = [M1R0, . . . , MpR0],

R2 = [M1R1, . . . , MpR1],

...,

Rq = [M1Rq−1, . . . , MpRq−1],
...,

(7.3)

where BM = B̃M , if B(μ) dose not depend on μ. Otherwise, BM = [B̃M1, . . . , B̃Mp], if B(μ) can be approximated
by an affine form, e.g., B(μ) ≈ B1μ1+. . .+Bpμp. Here B̃Mi = [G(μ0)]−1Bi, i = 1, . . . , p. The computed V = Vμ0

is an orthonormal basis of the subspace spanned by the moment matrices,

range{Vμ0} = span{R0, R1, . . . , Rq}μ0 , (7.4)

and depends on the expansion point μ0. The accuracy of the reduced-order model can be improved by increasing
the number of terms in (7.4), whereby more multi-moments can be matched.

It is noticed that the dimension of Rj increases exponentially. If the number p of parameters in a parametrized
system is larger than 2, it is advantageous to use multiple point expansion, such that only the low order moment
matrices, e.g. Rj , j ≤ 2, have to be computed for each expansion point. As a result, the order of the reduced-
order model can be kept small. Given a group of expansion points μi, i = 0, . . . , m, a matrix Vμi can be computed
from (7.4) for each μi as
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range{Vμi} = span{R0, R1, . . . , Rq}μi .

The final projection matrix V is a combination (orthogonalization) of all the matrices Vμi ,

V = orth{Vμ0 , . . . , Vμm}. (7.5)

Here, selecting the expansion points μi is unavoidable. Algorithm 2 is proposed in Section 7.2 for adaptively
selecting the expansion points μi using the a posteriori error bound Δg(μ) from Section 4.

7.2. Algorithms for automatic generation of reduced-order models

The algorithms in this section follow the idea of the greedy algorithm widely used in the reduced basis
community. A large sample space Ξtrain of the variable s or the vector of parameters μ, covering the whole
interesting frequency/parameter domain, must be initially given. During each step of the algorithm, a point ŝ
or μ̂ in Ξtrain, which causes the largest error (indicated by the error bound Δ(s), Δg(s) or Δg(μ)), is chosen
as the next expansion point. The process continues until the largest error among all the samples in Ξtrain is
smaller than an acceptable error tolerance εtol for the reduced-order model.

Algorithm 1. Automatic generation of the reduced-order model by adaptively selecting expansion points ŝ for
non-parametrized LTI systems.
Require: Initial expansion point: ŝ; Ξtrain: a large set of samples of s, taken over the interesting frequency range.
Ensure: V , W .
1: W = []; V = [];
2: Set ε(> εtol);
3: while ε > εtol do
4: range(Vŝ) = Kq+1(Ẽb(ŝ), B̃(ŝ));
5: range(Wŝ) = Kq+1(Ẽc(ŝ), C̃(ŝ));
6: V = orth{V, Vŝ}; W du = V ;
7: W = orth{W,Wŝ}; V du = W ;
8: ŝ = arg max

s∈Ξtrain
Δ(s) (or Δg(s));

9: ε = Δ(ŝ) or (Δg(ŝ));
10: end while.

Remark 7.1. Petrov−Galerkin projection with W �= V is used in Algorithm 1. One can certainly use only V
to get the reduced-order model, which reduces to the Galerkin projection method in [38]. It is discussed in [38]
that by using the Galerkin projection, the reduced-order model preserves the passivity of the original system,
which is an important property in circuit simulation. To compute the error bound Δg(s), W du, V du are needed.
In the algorithm, we use W du = V and V du = W , such that the second part |e(s)| in the error bound reduces
to zero. However, as is discussed at the end of Section 4, if for Galerkin projection where only one projection
matrix V du is needed for the dual system, it is preferred to use

range(V du
ŝ ) = Kq+1((Ẽc(ŝ)), C̃(ŝ)), (7.6)

for a chosen expansion point ŝ, rather than V du = V , i.e. V du should be computed based on the trajectory of
the state xdu of the dual system.

In the following, we consider an algorithm for parametrized LTI systems. Since the multi-moment match-
ing PMOR method in Section 7.1.2 is a Galerkin projection method. We use also Galerkin projection in the
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algorithm, though the algorithm can be straightforwardly extended to any other Petrov−Galerkin methods.
From (7.5), we see that the reduced-order model depends on the expansion points μi, i = 0, . . . , m. Algorithm 2
adaptively chooses the multiple expansion points, which cause the largest errors at the subsequent iteration steps.
The next expansion point μ̂ = (μ̂1, . . . , μ̂p) is chosen as the point at which the current reduced transfer function
Ĥ(μ) has the biggest error measured by the error bound Δg(μ). The projection matrices for the dual system
at a particular expansion point μ̂ are chosen as W du

μ̂ = V du
μ̂ = span{Rdu

0 , . . . , Rdu
q }μ̂, where Rdu

0 , . . . , Rdu
q are

composed of the moment matrices of the dual system, and are defined analogously as for R0, . . . , Rq in (7.3). In
particular, Rdu

j = [Mdu
1 Rj−1, . . . , M

du
p Rj−1], j = 1, . . . , q. Rdu

0 = [G∗(μ̂)]−1(−C∗(μ)), and Mdu
i = [G∗(μ̂)]−1ET

i ,
i = 1, . . . , p.

Algorithm 2. Automatic generation of the reduced-order model by adaptively selecting expansion points μ̂ for
parametrized LTI systems.
Require: Initial expansion point: μ̂; Ξtrain: a large set of samples of μ, taken over the interesting range of all the

parameters μ1, . . . , μp.
Ensure: V, W .
1: W = []; V = [];
2: Set ε(> εtol);
3: while ε > εtol do
4: Vμ̂ = span{R0, . . . , Rq}μ̂;
5: V = orth{V, Vμ̂}; W = V ;
6: V du

μ̂ = span{Rdu
0 , . . . , Rdu

q }μ̂;

7: V du = orth{V du, V du
μ̂ }; W du = V du;

8: μ̂ = arg max
μ∈Ξtrain

Δg(μ);

9: ε = Δg(μ̂);
10: end while.

Remark 7.2. Note that the dimension of the training set Ξtrain in Algorithm 2 may grow exponentially with
the number p of the parameters in μ ∈ Rp if the tensor product sampling approach is used. However, one can
use sparse grids or other adaptive sampling techniques [15,27,47] to avoid the exponential growth. Nevertheless,
suffering from curse of dimensionality is a common problem with almost all PMOR methods and algorithms.
Furthermore, the error of the reduced-order model computed by Algorithm 1 and Algorithm 2 cannot be
guaranteed to be below εtol everywhere in the frequency/parameter domain, but just at the samples of the
frequency/parameters in Ξtrain, at which the error bound is evaluated.

8. Simulation results

In this section, we use four examples exhibiting different properties to show the performance of the error
bounds. Three of them are non-parametrized LTI systems. The last example is a parametrized LTI system with
four parameters. We use Galerkin projection W = V to get the reduced-order models for all the examples. Note
that in the following, complex samples of s are included in Ξtrain of Algorithm 1 and Algorithm 2, leading to
a complex V . To obtain real reduced-order matrices, we use V = {Re(V ), Im(V )} to transform V into a real
matrix.

When computing Δg(s), the projection matrix V du for the dual system is computed by (7.6). When computing
Δ(s), we take Ã = I, such that the norm || · ||Ã reduces to the standard 2-norm. In this case, the two coefficient
vectors ξpr, ξdu equal to the two residuals, therefore, there is no need to solve the two linear systems in
Section 5.1.2.

The error bounds derived in the above sections are designed for the absolute error, e.g. εab(μ) = |H(μ)−Ĥ(μ)|
for a SISO system. In the following results, we also show the performance of the error bound for the relative
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Table 1. Spiral inductor, εtol = 10−3, n = 1434, r = 24.

Iteration ŝ/(2πj) εre
max Δre(ŝ)

1 1 0.23 1.86 × 104

2 1 × 1010 0.04 2.85 × 103

3 4 × 107 6.6 × 10−5 0.3
4 3.89 × 108 4 × 10−8 3.5 × 10−4

error defined as εre(μ) = εab/|H(μ)|. Accordingly, Δre(μ) = Δ(μ)/|Ĥ(μ)|, Δre
g (μ) = Δg(μ)/|Ĥ(μ)| are used as

the error estimates for the relative errors, since H(μ) is never computed in practice.
For a MIMO system, the true error is firstly defined entry-wise, then the maximum is taken, so that εab(μ) =

max
ij

|Hij(μ) − Ĥij(μ)| is the absolute true error, and εre(μ) = max
ij

|Hij(μ)−Ĥij(μ)|
|Hij(μ)| is the relative true error, i =

1, . . . , m1, j = 1, . . . , m2. The error bound for the absolute error is already defined in (3.29), Δ(μ) = max
ij

Δij(μ).

The error bound for the relative error is defined as Δre(μ) = max
ij

Δij(μ)

|Ĥij(μ)| . The same definitions also apply to

Δg(μ). For both SISO and MIMO systems, when there are no parameters, μ = s in the error bounds as well as
in the true errors.

At each iteration step of Algorithm 1 and Algorithm 2, the maximal error bound in Ξtrain, is computed, and
is used as the error bound for the reduced-order model. Therefore, the maximal true error εab

max = max
μi∈Ξ

εab(μi)

or εre
max = max

μi∈Ξ
εre(μi) is used for a comparison. In the following, Ξ in the definitions of εab

max or εre
max may

refer to Ξj
train or Ξj

ver, j = 1, 2, 3, 4. When the error bound for H̃(μ) of the reformulated reduced-order model
in Section 6 is studied, the corresponding true errors are denoted by ε̃ab

max and ε̃re
max respectively.

8.1. Results for Δ(s)

The two non-parametrized LTI systems involved in this subsection are in the form of (2.4), and have symmetric
positive definite matrix E and symmetric negative definite matrix A. One is a SISO system, a PEEC model of
a spiral inductor. The other is a single-input, multiple-output (SIMO) system, the model of an optical filter.
They can be found in the Oberwolfach MOR benchmark Collection7. The model of the spiral inductor is of
size n = 1434, and the size of the optical filter model is n = 1668. There are 5 outputs for the filter model.
The working frequency range for the spiral inductor is f ∈ [0, 10GHz], numerically f ∈ [0, 1010]. The optical
filter is assumed to work in the range of f ∈ [0, 1KHz], numerically f ∈ [0, 103]. For each example, the variable
s = 2πjf is sampled in the above frequency interval to form the sample space Ξtrain in Algorithm 1.

8.1.1. Example 1: The spiral inductor

For this example, we take the sample space as:

Ξ1
train :

{
si = 2πjfi, fi = 10(i/100), i = 1, . . . , 1000

}
where si are the samples in Ξ1

train. The first 6 moments (q = 5 in Algorithm 1) are matched for each chosen
expansion point ŝ. The initial expansion point is taken as ŝ = 2πjf̂ = 2πj, with f̂ = 1. Three more expansion
points are adaptively selected by Algorithm 1. Finally, a reduced-order model of order r = 24, and with sufficient
accuracy, is derived. The results are listed in Table 1. Δre(ŝ) in the table is the relative error bound at the selected
expansion point ŝ, which is also the maximal error of the reduced-order model in Ξ1

train estimated by Δre(s).
εre
max is the true maximal relative error of the reduced-order model in Ξ1

train, at the current iteration step. The
final reduced-order model is obtained at the last iteration step, and this is also the case for the results in all

7URL: http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark.

http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
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Table 2. Spiral inductor, εtol = 10−3, n = 1434, r = 24.

Iteration ŝ/(2πj) εab
max Δ(ŝ)

1 1 0.02 252.8
2 1.4 × 107 1.9 × 10−4 2.42
3 1 × 1010 3.6 × 10−6 2.5 × 10−2

4 1.2 × 108 7.5 × 10−9 9.2 × 10−5

101 103 105 107 109
0
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4
·10−8

Frequency (Hz)

εre(s)

Figure 1. Spiral inductor, the true relative error over Ξ1
ver.

the Tables (Figures) below. The data shows that Δre(s) is a bound for the true error of the reduced-order
model at all the samples in Ξ1

train. The results for the absolute error are listed in Table 2, where Δ(ŝ) has been
demonstrated to be a rigorous bound for εab

max, the maximal absolute error of the reduced-order model in Ξ1
train.

In Figure 1, we further show that Δre(s) can actually bound the true error εre(s) of the final reduced-
order model in the whole frequency range. That means, if we use more densely distributed samples, e.g., 2000
exponentially distributed samples,

Ξ1
ver :

{
si = 2πjfi, i = 1, . . . , 2000, fi = 10(i/200)

}
to represent the whole interesting frequency interval [0, 1010], the errors of the reduced-order model at those
sample points are still smaller than Δre(ŝ) = 3.5× 10−4 at the last iteration step in Table 1, which is the error
bound for the final reduced-order model.

Similar results can be given by the absolute error bound Δ(s), and will not be repeated.
It is interesting to see that the training sample space Ξtrain does not have to be too rich. If 2000 samples are

taken to form the training space (instead of the previously used 1000 samples in Ξ1
train):

Ξrich1
train :

{
fi = 10(i/200), si = 2πjfi, i = 1, . . . , 2000

}
,

the results in Tables 3 and 4 are the same as those in Tables 1 and 2.

8.1.2. Example 2: The tunable optical filter

The second example is a SIMO system, so the definitions for true errors and the error bounds of the MIMO
systems are used.
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Table 3. Spiral inductor, εtol = 10−3, r = 24, Ξrich1
train .

Iteration ŝ/(2πj) εre
max Δre(ŝ)

1 1 0.23 1.86 × 104

2 1 × 1010 0.04 2.85 × 103

3 4 × 107 6.6 × 10−5 0.3
4 3.89 × 108 4 × 10−8 3.5 × 10−4

Table 4. Spiral inductor, εtol = 10−3, r = 24, Ξrich1
train .

Iteration ŝ/(2πj) εab
max Δ(ŝ)

1 1 0.02 252.8
2 1.4 × 107 1.9 × 10−4 2.42
3 1 × 1010 3.6 × 10−6 2.5 × 10−2

4 1.2 × 108 7.5 × 10−9 9.2 × 10−5

Table 5. Optical filter, εtol = 10−3, n = 1668, r = 12.

Iteration ŝ/(2πj) εre
max Δre(ŝ)

1 1 2.5 3.2 × 103

2 966 3.8 × 10−3 21.1
3 462.4 3.4 × 10−5 0.17
4 676 4.8 × 10−6 7.9 × 10−2

5 188.4 9.3 × 10−8 8.7 × 10−4

For this example, we choose 600 sample points in the interesting frequency interval f ∈ [0, 103] to form the
sample space,

Ξ2
train :

{
fi = 10(i/200), si = 2πjfi, i = 1, . . . , 600

}
.

Finally, 121 samples are selected as the expansion points. The reduced-order model is of order r = 12. In
Algorithm 1, we take q = 1, i.e. the first 2 moments are matched for each expansion point.

The dashed line in Figure 2a shows the absolute error bound Δ(ŝ) at each of the selected expansion points ŝ,
which bounds the true maximal absolute error εab

max, plotted by the solid line.
In order to validate the error bound, the true errors εab(s) of the final reduced-order model at more dense

sample points are plotted in Figure 2b. There are 2100 exponentially distributed sample points taken in [0, 103]:

Ξ2
ver :

{
fi = 10(i/700), si = 2π

√−1fi, i = 1, . . . , 2100
}

.

The true error at each sample point is also below the error bound at the final iteration step in Figure 2a.
The results of the relative error bound Δre(s) are presented in Table 5. Here the final reduced-order model

with good accuracy is obtained within 5 iteration steps, and 5 expansion points ŝ are used.

8.2. Results for Δg(s)

We use the model of an interconnect8 to demonstrate the behavior of Δg(s). The model is a non-parametrized
LTI system in (2.4), and is of size n = 6134. Since the matrix E is singular, the error bound Δ(s) is not valid
anymore. The interesting frequency range is f ∈ [0, 3GHz], i.e. f ∈ [0, 3 × 109].

8The detailed description for the example can be found in [20].
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Figure 2. Optical filter, q = 1, εtol = 10−3, n = 1668, r = 12.

Table 6. RLC tree, εtol = 10−3, n = 6134, r = 24.

Iteration ŝ/(2πj) εab
max Δg(ŝ)

1 0 0.3916 2.93 × 106

2 3.0000 × 109 5.4495 × 10−4 3.93 × 105

3 1.7665 × 109 4.1075 × 10−8 31.54
4 1.1146 × 109 4.1076 × 10−8 3.11
5 2.1733 × 109 4.1073 × 10−8 0.23
6 2.4385 × 109 4.1070 × 10−8 3.3 × 10−3

7 0.3525 × 109 4.1077 × 10−8 6.64 × 10−8

Table 7. RLC tree, εtol = 10−3, n = 6134, r = 26.

Iteration ŝ/(2πj) εre
max Δre

g (ŝ)

1 0 1.25 6.07 × 107

2 2.67 × 109 1.4660 × 10−4 6.08 × 104

3 1.77 × 109 3.3174 × 10−8 22.69
4 9.27 × 108 3.3161 × 10−8 8.23
5 3.00 × 109 8.7115 × 10−10 1.47
6 1.34 × 109 8.7809 × 10−10 1.32
7 3.44 × 108 8.6021 × 10−10 9.70 × 10−6

A training sample space containing 900 samples,

Ξ3
train :

{
fi = 3 × 10(i/100), si = 2πjfi, i = 1, . . . , 900

}
,

is used to compute the expansion points. We take q = 5 in Algorithm 1. The simulation results of Δg(s) and of
Δre

g (s) are listed in Table 6 and Table 7. A reduced-order model is successfully found by using either Δg(s) or
Δre

g (s) after 7 iteration steps.
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Figure 3. RLC tree, the true absolute error over Ξ3
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Figure 4. RLC tree, the behavior of Δ0
g(s) with V du = V .

To test the rigorousness of the error bound Δg(s), we plot in Figure 3 the true absolute errors of the final
reduced-order model at 2700 exponentially distributed samples in f ∈ [0, 3 × 109]:

Ξ3
ver :

{
fi = 3 × 10(i/300), si = 2π

√−1fi, i = 1, . . . , 2700
}

.

The errors are all below the error bound Δg(ŝ) = 6.64× 10−8 in Table 6, the error bound for the final reduced-
order model derived at the last iteration step.

It is analyzed at the end of Section 4 that for Galerkin projection, the error bound Δg(s) using V du computed
from (7.6) should perform better than the error bound, say Δ0

g(s), using V du = V . Here we show the behavior of
Δ0

g(s) in Figure 4. With the same inputs for Algorithm 1, we compare Δ0
g(s) in Figure 4 with Δg(s) in Table 6.

It is obvious that Δ0
g(s) decreases much slower than Δg(s). Using Δg(s), the algorithm constructs the final

reduced-order model within 7 iteration steps; while using Δ0
g(s), it takes 84 iterations. It is observed that the
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residual of the dual system ||rdu||2 decreases at least as fast as ||rpr ||2 if V du �= V . However, ||rdu||2 stagnates
at around O(1) for the case V du = V , while ||rpr||2 keeps decreasing.

8.3. Results for Δg(μ) and Δ̃g(μ)

In this subsection, we show the behavior of the error bounds Δg(μ) and Δ̃g(μ) in Theorem 4.1 by using the
parameterized system for a MEMS model, Butterfly Gyroscope 9, as an example. It is of the following form

M(d)ẍ + D(θ, α, β, d)ẋ + T (d)x = Bu(t),
y = Cx.

Here, M(d) = (M1 + dM2), T (d) = (T1 + 1
dT2 + dT3), D(θ, α, β, d) = θ(D1 + dD2) + αM(d) + βT (d) ∈ Rn×n,

n = 17, 913. The parameters are d, θ, α, β.
After Laplace transform action, the system in frequency domain is

s2M(d)x + sD(θ, α, β, d)x + T (d)x = BuL(s),
y = Cx.

The above system can be rewritten into the affine form,

G(μ)x = BuL(μ),
y = Cx,

where G(μ) = T1 + μ1M1 + μ2M2 + μ3D1 + μ4D2 + μ5M1 + μ6M2 + μ7T1 + μ8T2 + μ9T3 + μ10T2 + μ11T3. Here
μ = (μ1, . . . , μ11)T includes the newly generated parameters, μ1 = s2, μ2 = s2d, μ3 = sθ, μ4 = sθd, μ5 = sα,
μ6 = sαd, μ7 = sβ, μ8 = sβ/d, μ9 = sβd, μ10 = 1/d, μ11 = d.

The transfer function of this system is of very small magnitude, which is in the interval [10−7, 10−4] [21].
Therefore, the tolerance εtol for the absolute error of the reduced-order model is assigned a small value εtol =
10−7. The tolerance εtol for the relative error is taken as εtol = 10−2.

For this example, the training sample space is taken as Ξ4
train:{

3 random θ ∈ [10−7, 10−5], 10 random s, 5 random d ∈ [1, 2], and α = 0, β = 0
}

.

The frequency range for s = 2πjf is f ∈ [0.025, 0.25]KHz, numerically f ∈ [25, 250]. There are totally 150
samples of μ = (μ1, . . . , μ11). It is indicated in [46], that α = 0 and β = 0 do not affect the accuracy of the
reduced-order model, therefore they are taken as zeros in Ξ4

train.

8.3.1. Behavior of Δg(μ)

Figure 5 shows the error bound Δg(μ) and the true absolute error εab
max at each iteration step of Algorithm 2.

The plot on the right is the effectivity Δg(μ)
εab
max

, which shows the sharpness of the error bound. It is already below
10 at the final iterations in Algorithm 2, showing the error bound is close to the true error. Here R0, R1, R2

in (7.3) are used for each expansion point μi to generate the projection matrix V , the resulting reduced-order
model is of size 804, where 33 expansion points have been selected.

To further reduce the size of the reduced-order model, one may use only R0, R1 for each μi. The case is shown
in Figure 6. The computed reduced-order model is of a much smaller size r = 210, and 36 expansion points have
been selected.

To verify the reduced-order model obtained by the above two cases,

• Case 1: Vμi = span{R0, R1, R2}μi ,
• Case 2: Vμi = span{R0, R1}μi ,

9Benchmark available at http://modelreduction.org.

http://modelreduction.org
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Figure 5. Vμi = span{R0, R1, R2}μi , i = 1, . . . , 33. εtol = 10−7, r = 804.
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Figure 6. Vμi = span{R0, R1}μi , i = 1, . . . , 36, εtol = 10−7, r = 210.

a much denser sample space is taken as

Ξ4
ver : {5 random θ, 50 random s, 10 random d, and α = 0, β = 0}.

There are totally 2500 samples of μ = (μ1, . . . , μ11). The data of the two reduced-order models are listed in
Table 8. In the table, Δg(μfinal) is the value of the error bound Δg(μ) at the expansion point μfinal selected by
Algorithm 2 at the final iteration step, which is the error bound for the final reduced-order model. The true
error of the reduced-order model is very close to but below Δ(μfinal) in each case, indicating that the error
bound is both rigorous and sharp. The number of iterations indicates the total iteration steps implemented in
the greedy algorithm. To evaluate the transfer function over Ξ4

ver, one needs 1295 seconds if the reduced-order
model of size 804 is used. Instead, only 29 seconds are needed, if the reduced-order model in the second case is
used.

The relative error bound Δre
g (μ) behaves as well as the absolute error bound. The corresponding results in

Figure 7 are computed using R0, R1 for each expansion point. The reduced-order model is of order r = 216, and
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Table 8. Verification of the final ROMs over Ξ4
ver.

Cases Δg(μ
final) εab

max iterations ROM size time

Case 1 7.4 × 10−8 1.77 × 10−9 33 804 1295 s
Case 2 7.1 × 10−8 1.4 × 10−9 36 210 29 s
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Figure 7. Vμi = span{R0, R1}μi , i = 1, . . . , 39, εtol = 10−2, r = 216.
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Figure 8. Vμi = span{R0, R1}μi , i = 1, . . . , 34, εtol = 10−7, r = 429.

39 expansion points have been selected after 39 iterations. The figure again shows the robustness of the error
bound.

8.3.2. Behavior of Δ̃g(μ)

In Section 6, we propose a reformulated reduced-order model, whose transfer function is exactly ỹ(μ), so that
the error bound for the transfer function of the reformulated reduced-order model is Δ̃g(μ). Figure 8 shows the
decay of Δ̃g(μ) with the iterations in the greedy algorithm, Algorithm 2. When compared to the error bound
Δg(μ) for the reduced-order model in (6.4), the error bound Δ̃g(μ) for the reformulated reduced-order model
is sharper. When Δ̃g(μ) is used in the greedy algorithm, there are 34 iterations used, instead of 36 iterations
for Δg(μ), shown in Figure 6. However, the difference is not that big. The big difference is the size of the
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Table 9. CDplayer, εtol = 10−3, q = 5, r = 60.

iteration ŝ/(2πj) εre
max Δre

g (ŝ)

1 0 61.02 8.3 × 103

2 3.61 28.43 2.10 × 103

3 48.8 8.88 3.86 × 103

4 11.8 0.74 513.7
5 94.4 0.73 199.6
6 615 0.0019 0.27
7 482 9 × 10−4 0.02
8 1000 4.4 × 10−5 1.27 × 10−4

reduced-order models. The reformulated reduced-order model is of size r = 429, while the reduced-order model
obtained using Δg(μ) is of size r = 216.

8.4. Sharpness of the error bounds

It can be seen that for the examples studied, the error bounds Δ(s) and Δg(s) are not sharp at most iterations
of the greedy algorithm. One key reason might be the values α(s), γ(s) in the denominator of Δ(s), and the value
β(s) on the denominator of Δg(s) are too small. In Section 8.1, α(s) is around O(10−9) and γ(s) is at O(10−13)
for the second example, the optical filter. For the first example, the spiral inductor, γ(s) is at O(10−13), though
α(s) is around O(10−3).

In Section 8.2, β(s) in Δg(s) is around 1× 10−4. If we use another example to check Δg(s), it behaves much
better. The example is a model of a CD-player, of size n = 120. We use a sample space of 200 samples:

Ξtrain = {si = 2π
√−1fi, fi ∈ [0, 1000], i = 1, . . . , 200},

in Algorithm 1. Here fi are logarithmically equally spaced points generated using the command
logspace(0,3,200) in MATLAB. It is observed that the values of β(s) at all the samples of s are between 0.2
and 700. The decay of the error bound Δg(s) with the iterations in the greedy algorithm is listed in Table 9.
Compared with the results of Δg(s) in Table 7, the error bound is much sharper.

Notice that in the beginning, either the error bound Δg(μ) or Δ̃g(μ) for the parametrized LTI systems
is actually not sharp at all, this is also because the smallest singular value β(μ) of the matrix G(μ), which
appears in the denominator of the error bound, is very small, around O(10−8). With the iterations in the greedy
algorithm going on, the two residuals in the numerator decrease very fast, so that the error bound quickly
becomes much sharper.

It should be pointed out that the greedy algorithm is used to construct the reduced-order model, hence
the final reduced-oder model is only available at the last iteration step of the algorithm. The reduced-order
models at the intermediate iterations are less important than the reduced-order model at the final iteration
step. What does matter is that the error of the finally derived reduced-order model is not only below the
acceptable tolerance εtol, but also closely estimated by the error bound. Therefore, the sharpness of the error
bound at the last iteration step is of most importance.

9. Conclusions

In this work, we proposed some a posteriori error bounds for reduced-order modeling of linear (parametrized)
systems. The error bound Δ(s) for non-parametrized first-order LTI systems with symmetric negative definite A
and symmetric positive definite E can be cheaply computed, so that the reduced-order model can be constructed
efficiently. Computation of the error bound Δg(μ) requires solving an eigenvalue problem for each sample in the
training sample space. More efficient and robust methods for computing or estimating Δg(μ) will be studied
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in the future. The error bounds are rigorous. The sharpness of the error bounds depends, nevertheless, on the
properties of the system matrices. It is demonstrated that with the guidance of any of the proposed error bounds,
the reduced-order models computed with moment-matching MOR methods can be generated automatically and
reliably. It is possible that the error bound Δ(μ) or Δg(μ) may realize automatic implementation of other MOR
methods which are based on approximation of the transfer function.
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